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The dynamical activation processes of a complex system under an external force are studied. The sys-

tem is composed of clusters, and each cluster is an aggregation of strongly correlated units. The activa-
tion processes of the clusters are assumed to be described by generalized random walks, and their prop-
erties are studied by one of a response function 4', (t}. In the analysis, effects of the other clusters are
taken into account by an average over %,(t), that is (%,(t)). The temporal behaviors of %,(t) and

(%,(t)) have been expressed as a power law. The indices of the power law are parametrized. The pa-
rameters are introduced to characterize the structures of the units and the distributions of the clusters in

the system. In this sense, the system is a multifractal.

I. INTRODUCTION

Complex systems have no characteristic length, ' ex-

cept for irregularities and fragmentations. This feature
gives rise to the development of such interesting concepts
as fractals, self-similarity, and chaos, etc. Self-similarity
is an invariant property with respect to a scaling opera-
tion or operations. To characterize the spatial or the
temporal patterns of complex systems, ' the scaling law

giving the fractal dimension has been extensively used.
The fractal dimension is expressed as an index of the
power law for these patterns. In this sense, the scaling
law can be regarded as a fundamental attribute specifying
the degree of complexity or irregularities.

Originally the inverse power law has been known as
the so-called Zipf law and the Bradford law. The fre-

quency size distributions have been expressed as an in-

verse power law. Since the pioneering study of fractal
geometry by Mandelbrot, ' many hierarchical spatial or
temporal patterns have been reproduced by computer
simulations, and the geometrical structures are classified
according to their fractal dimensions. As for the tern-

poral patterns, however, the analysis has been restricted
to some simple systems.

Shlesinger, Hughes, and Montroll propose an interest-
ing process exhibiting a long-time-tail behavior. Similar
phenomena have been observed in ultrametric space,
and in charge transfer in amorphous materials. The
long-time tail can be expressed as an inverse-power
dependence, t ' r (t is the time with ) a constant). On
a log-log plot, the long-time tail is a linear curve, and its
slope yields an index giving the fractal dimension. Using
this approach, Shimada found fractal behavior of Droso-
phila; the frequency-of-staying (FS) time distribution at
feeding spots can be expressed in a power-law form. Phy-

siologically, the animal's behaviors are understood as an
activation process (response) of the biological system to
stimuli in the environment. A similar understanding is
possible for the temporal patterns observed in the elastic
shocks. The response behavior seems to have arisen
from dynamical activation processes under external
forces. ' Unfortunately, we have no suitable model at
present for these activation processes.

In this paper, we propose an activation process for a
model system. The system is composed of clusters, and
each cluster is an aggregation of strongly correlated
units. "' The units are assumed to satisfy scaling rules.
The activation process of clusters may be described by a
response function %,(t) based on generalized random
walks (GRW). ' In the analysis of %,(t), we pay special
attention to eFects due to other clusters, and define a
quantity (4,(t)) averaged over the clusters. The tem-
poral behaviors of +,(t ) and ('p, (t ) ) are found to follow
a power law specified by indices. The indices are given in
parametrized forms, which are determined by scaling fac-
tors for the clusters and the distribution of the clusters.

II. GENERALIZED RANDOM WALKS

We consider an activation process in a system com-
posed of clusters [Fig. 1(a)]. A cluster is an aggregation
of strongly correlated units [Fig. 1(b)]. The units are as-
sumed to satisfy scaling rules to be specified later. We
describe the activation process as a stochastic process by
a recursion relation of generalized random walks
(GRW). ' The recursion relation of a probability
W(m, N), in which a cluster (walker) is in a state (site) rn

after N steps reads
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M

g g Pg+k ~(m+aIm)=1 .
k=1 a

(2.2)

In generalized walks, as a subsidiary condition the
jumping probabilities are related to the corresponding
ones by a map F,

M 1

W(m, N)= g g Pg, ~ k(m Im —a) W(m a—,N k—),
k=1 a= —1

(2.1)

where a=+1, 0, or —1, and the Pg N k(m Im —a)' s
represent jumping probabilities between states m —a at
step N —k and m at step N; see Fig. 2.

Under an external force, the jumping probabilities are
inAuenced by the activation processes of the other clus-
ters, Fig. 3(a). Normalization of the jumping probabili-
ties is given by

g W(m, N)=1 . (2.4)

In what follows, for simplicity, we limit ourselves to the
activation process in which we can neglect the m depen-
dence of Pg ~ k(m l—m a)

PN, & —k ( m
I
m ~ ) =PN, 1V k— (2.5)

and introduce generating functions for 8'and P, respec-
tively, defined by

W(N;z)= g W(m, N)z (2.6)

The map F symbolically denotes memory effects, or
nonlinear effects between the jumping probabilities at
successive steps. Fig. 3(b) shows scaling rules to be given
later for the subunits of the cluster.

Note that translational in variance of
Pg, N k(m Im —a) with respect to m and N leads to con-
servation of probability according to Eq. (2.1):

F: P~~ k~)(. l ) PQN —k( I ), for k=1,2, . . . , M .

(2.3)
P(k;z) = g Pz N kz (2.7)

where we have assumed 0 & z & 1, and have shifted
the N dependence of Pz z k into the difference k
[=N (N k)]—, for —simplicity. Then we can rewrite the
recursion relation, and it becomes

M
W(N;z)= g P(k;z)W(N k;z), —

k=1
(2.8)
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FIG. 1. (a) System composed of clusters. (b) Clusters are
correlated and units of the cluster are distributed so as to satisfy
scaling rules.

FIG. 2. (a) Recursion relation for W(m, n). (b) Normaliza-
tion of the jumping probabilities.
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FIG. 3. (a) Jumping probabilities influenced by the activation process of other clusters. (b) Jumping probabilities between the

effective time units satisfying scaling rules (3.7) and (3.8).

M
P(k;1)=1, (2.9)

after a summation over m in (2.1). The normalization of
P(k;z) is given by

waiting-time probability between the events. In the con-
tinuum limit At ~0, the activation process correspond-
ing to 8'o(t;z ) (with X b, t = t) is expressed by

k=1

and the subsidiary condition (2.3) reads
;(t;z)= f p (r)W, (t r;z)d&, —

min
(3.2)

F: P(k —I;z)~P(k;z), (2. 10) cf. (2.8), where p (r) is a continuous function defined by

for any k.

III. SPECIFICATION OF ACTIVATION PROCESSES

In the following we restrict the activation process to
the case in which a=O [Pg z I, in (2.7)] and we assume
that Pg, ~ & is a function of k [ =X—(N —k) ];

P~x k p(k ht) . —— (3.1)

Here another argument k At is introduced to clarify the
functional dependence of P~& k, and we consider k At
as k effective time units. The effective time unit At
characterizes variations of the states (events) when we re-
gard the clusters as points; see Fig. 3(a).

The probability p (r) (k b, t =w) corresponds to a

p (r)dr=p (k bt)b, t, (3.3)

p'(t)—= g p'(k At) .
k=1

(3.5)

Note that the function p (t ) represents a renormalized
transition probability in the recursion relation (2.8). In

and t,„=M b, t and t;„=b,t. Normalization of p (r) is
expressed by

f p (r)dr=1, (3.4)
min

corresponding to (2.9).
In what follows, we consider an activation process de-

scribed by a function defined by a sum of contributions

p (k bt) [=p (r)];
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I'2: p„(t )=abp„, (bt ) (n ~ 2), (3.8)

where t:—At, and 5t characterizes variations of the states
between the effective time units, "local states" of the clus-
ter 5t &&b,t =t.

The condition F1 specifies the time evolution of the ac-
tivation process of the units, and 4(Et) is a slow varying
function due to the smallness of factor c (&1. The condi-
tion F2 characterizes the scaling rules between the suc-
cessive scaling stages. Here, note that processes specified
by (3.7) and (3.8) lead to the basic rule for the temporal
scaling given by Shlesinger and Hughes. It is important
to see that condition (3.7) is satisfied by the differential
equation, and that the factor b contains a t dependence as
will be shown in the next section. Conditions (3.7) and
(3.8) have arisen from the subsidiary condition of the
GRW [see (2.3) or (2.10)]. Note also that p (t ) [see (3.5)]
is to be interpreted as the staying probability density of
the GRW, that is a waiting-time probability density for
the activation process of the cluster.

IV. SCALING PROCESSES

The process that we considered is originally expressed
by Eq. (2.1), with normalization condition (2.2) and subsi-
diary condition (2.3). We depict the process on the
discrete site step space (see Figs. 2 and 3). In Fig. 3(b),
we show an enlarged triangle and partition the triangle
into discrete ones as shown, characterized by a set of time
intervals scaled from t to t'=bt, t"=b t, . . . , t'n'=bnt,
and so on.

By solving Eq. (3.7), we obtain expressions for p„(t)
satisfying conditions (3.7) and (3.8):

p, (t )[=p, (b t )]=ae

p2(t ) =abp, (bt) [cf. (3.8)],
(4.1)

(4.2)

Fig. 3(a), we show processes corresponding to a= —1, 0,
and + 1. The process denoted by p (t ) represents the
contributions specified by some of the constituent clus-
ters.

Since the cluster is an aggregation of the units [see
Figs. 1(b) and 3(b)], the process between the effective time
units is decomposed into a sum of the contributions ar-
isen from the units having a new index n, p„(k b, t );

p (k b, t)= g p„(k bt) (3.6)
n=1

[see Fig. 3(b)].
The index n represents the scaling stage for the units.

To simplify the notation, we shall use t for ht
[p(t )=p (4t ) and p„(t )=p„(b t )]. We consider the scal-
ing stage characterized by the two scaling factors a and b.
Furthermore, as an explicit specification for
F in (2.10), we impose two conditions on p„(t )

[ =p„(ht ), n ~ 1]

Fl: p, (t+5t)=[1 4(—et)5t]p, (t) (s «1), (3.7)

a nb n —1e —b "t
(4.4)

Here it is important to note that one can include effects
of the other clusters through the function 4(t) because
4(t) plays the role of a transition probability in (3.7). To
characterize these effects, suppose that the slow varying
of function 4(t ) satisfies a scaling relation,

e(t )=a "e(tIb" ) (4.5)

where a" and b" are new scaling factors characterizing
distributions of the other clusters around the cluster
(walker); see (2.1).

By solving the functional equation (4.5), we obtain

lna"4(t)= At& p= (4.6)

where A is a constant. ' Substituting (4.6) into (4.1), we
get

p, (t)= '

—A
a exp t"+', p+ 1%0

1+p
at ", p+1=0 .

(4.7)

Based on results (4.7), we can reproduce the usual pro-
cesses as specialized cases: exponential dependence for
p=0, Gaussian dependence for p=1 and power-law
dependence for p = —1.

V. LOCAL RESPONSE FUNCTION

To investigate the activation process, we introduce a
local response function defined by the sum of jumping
probabilities (4.4) [cf. (3.6) for k=1]. Here again note
that the respective jumping probabilities are given as the
subsidiary conditions of the GRW.

We start with the expression (4.4),

p (t)=a"b" 'e (5.1)

with (4.5) or (4.6).
The activation process of the cluster c is described by

p, (t)= g p„(t)
n=1

(5.2)

[see Fig. 3(b)], or cf. (3.6) for k = 1, and b, t is replaced by
t. A normalized expression proportional to p, (t ) is then
given by

(5 3)

a is an initial value for p&(t) [p&(0)=a & 1], and s is a
very small parameter.

Note that @(Et) is slow varying because of e, and that
b(e) is approximately a constant parameter. The p„(t) is
expressed by

p„(t ) [=p„(t) ]=abp„, (bt )

where 0= g p, (t) . (5.4)

b=b(e)= —f N(sy)dy,
t 0

(4.3)
From now on we call %,(t) a local response function.
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1 y eF(n;a, b) (5.5)

F(n;a, b)=n ln(ab) —b "t (a, b & 1, t =t/5t), (5.6)

where 5t is the unit time in (3.7).
With the aid of (4.3) and (4.6), we can taken into ac-

count the effects that arise in the local response function
%,(F) from the other clusters. The first factor
exp[n in(ab)] (a, b & 1) in e decreases, while the second
factor e —b"& increases, as n~ao. Therefore we can ex-

Multiplication of b in the numerator and the denomina-
tor of %,(t ) leads us to

oi~b

( y =1na /lnb ) .
t 5t 1+y

(5.7)

Note that t +c—o as no~oo (cf. b &1) and vice versa.
Therefore no is related to t by a function q

pect a value n such that F(n;a, b) has a maximum for the
given a and b. Figure 4 shows some of typical behaviors
of F(n;a, b)

An asymptotic form of the local response function
0', (t ) is obtained by evaluating (5.5) in terms of the max-
imum of F. The value no giving the maximum term is
given by BF/Bn =0, that is

a=0. 9 (a)

30 10 20 30 40

a = 0.81
b = 0.90

10

FIG. 4. (a) and (b) behaviors of F(n, a, b ).
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(5.8)

In this procedure, the asymptotic form of %,(t) is ob-
tained as follows:

ImA

ji

np
G(c)(n }

—a "ob "oe b— (5.9) x xx y Z(

[I o
—(1+y ) +re ) r/—b Q 8t = 1]

where y is parametrized by e contained in b(s) [see (4.3)].
If we approximate the sum in (5.5) by the integral and

use the saddle-point method, we obtain the asymptotic
form of %,(t):

0 QQ7 2 3 '' Ml
Co

J
r

= ReR

[I ) =(m/2)' (1+y)' +rlbQ, 5t =1],
where the factor rlnb

r
arises from the integration.

(5.10)

FIG. 5. Complex n plane: Contours C and Cp. The contour
Cp contains the simple poles of cot(~n), while the contour C
contains the simple poles of p&(n ).

VI. AVERAGE RESPONSE FUNCTION

Properties of the response function are studied by tak-
ing an average for the respective clusters. To this end, we
introduce an average response function defined by

(%,(t ) ) = 1 g G "(n )P(c )dc,
n=1

G(c)(n } eF(n;a, b) Q1

bQ

(6.1)

from (5.5), where P(c ) is a probability specifying distribu-
tions of the clusters. When P(c) is given by 5(c —co),
and the contribution is approximated by the maximum
term (no}, we can reproduce the previous result (5.9) from
Eq. (6.1):

1 b,
Pi). g k

[ (k) ]2+~2 (6.3)

where Ck is a weight factor for the cluster k, and no"' is a
maximum value concerned with the cluster k [see (5.7) or
(5.8)], and b, denotes a variance of the clusters common
to no '.

In the above case, we can express the asymptotic form
of the total response function by

tivated at times t„t2, . . . , tk. Namely, we consider a set
of the clusters activated at [tk ] (k =1,2, . . .}. Further-
more, we suppose that the total system is described by a
distribution of the clusters specified by [no(")], that is

p(c)~pt, (n ),

(qi, (t))= g G ' (n)-G ' (no) . (6.2)
(%c(t))„rm= g G"(n}p~(n) .

n=1
(6.4)

n=1

For a more general case of the average response func-
tion, we have to evaluate P(c) correctly. To this end, we
sum up the contributions of the respective clusters ac-

I

In the limit 5~0 of (6.4), we can get the result obtained
by (6.2} or (5.9). The right-hand side of (6.4) is rewritten
as a sum of the residues of the poles within the contour co
in Fig. 5

(%,(t ) )„„=—pc cot(nn )G"(n }pz(n )dnasym 2 Cp

+i &n

g Ck[cot(~z (k, )G"(z,k, ) c c ]+——f. . cot(mn)G"(n)p~(n)dn,
k=1 Ep

(6.5)

where

Z (k) =n +El', (6.6)

and c.c. stands for complex conjugates of the correspond-
ing expressions. In (6.5), we have deformed the contour
co into the contour c by noting that G "(n) goes to zero
rapidly compared with the divergent terms of cot(mn ) as G(c)(n(k) +&y ) G(c)(n (k) )(&b )iPbfI (6.8}

I

no~ao. When 5 tends to zero, dominant contributions
arise from the terms in the [ ] of (6.5). The quantities in
the terms are evaluated by putting y =+5 as follows:

e ™l2coth(my), y )0
cot[m(n(') '+iy)]= '; ~2 (6.7)e' coth vry, y &0,
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As for G "(z (») ), we have used an approximated relation
nO

b' t&~tk as no~ao. The factors a, b are parameters in
the relation

If we assume Bnk/Bk )0 and approximate the k summa-
tion of G "(t ) by a maximum term no similar to (5.8), the
result reads

no"'=q»(t», a, b) (5t =1),
cf. (5.8), where r» is replaced by t» for 5t = l.

The first term of (6.5) is then rewritten into

C» [cot(nz (») )G "(z (») ) —c.c. ]
k=1 0 0

= g C„G"(z (») )coth(~b, )
k=1 0

X [sin[nb(inb» )(1+y» )+m/2]]

=G'"(t)coth(nh) jcos[mb, lnb ~(1+y)]],

(6.9)

(6.10)

[G(~)(& )» 1 r
—(1—y)i2

I'o= —(1+y)"+r' e' '+r' bQ„cf. (5.9), y
=

2 lnb

(6.16)

(1 y)/2rot
cos[~b, ~lnb ~(1+y)]+o(b, ) .

(6.17)

Finally, substituting (6.16) into (6.10), we obtain an ex-
pression for ( 4', ( t ) )„„,

where

G "(t)= g C»G"(z („) ) .
k=1 0

(6.11)

(6.12)

where we have approximated coth(b, n ) by 1/b rr as
6~0, and we have replaced tk, bk, and yk by t, b, and

0 0 0

y, respectively. The above results show that the asymp-
totic behavior is enhanced by 6, and is modified by a
slowly varying oscillation. As a more general case, we
consider a process that Ck and tk are specified by

and

C»-a "(a&0, a &1) (6.13)

b (6.14)

respectively.
Equation (6.13) states that the magnitude of the weight

factor C„decreases as n» increases, whereas (6.14) shows
that the activation times are described by the scaling
times. Under these conditions, the quantity G '(t ) [see
(6.11) or (6.9)] is expressed by

2n
G(c)(

bQ k

(a =a'+, 5t =1) . (6.15)

The last member of (6.10) was obtained by neglecting the
k dependence in sin[ ]. This was done because of the
smallness of parameter A. Specifically, when the activa-
tions of the clusters are described by a single mode, that
is C» =5( k —k o ), the contribution of ( 4, ( t ) )„„ is ex-
pressed by

rt
(0', (t) )„„= cos[mb, ~lnb ~(1+y)]+o(h),

Compare the results of (6.12) and (6.17) with the factors
given in (5.9) or (5.10). We note that the factors are
modified in (6.12) and (6.17). The modifications arise
from the presence of the other clusters specified by the set
of activation times (t» ), that is [no"'», (k =1,2, . . . ); see
(6.3) and (6.9).

VII. CONCLUDING REMARKS

We have proposed a model system composed of clus-
ters as a complex system. Based on this idealized model
system, we have studied a dynamic activation process.
The activation process was assumed to be described by a
response function of the clusters. The clusters are con-
stituent elements of the system, and each cluster is an ag-
gregation of strongly correlated units. The units were as-
sumed to satisfy the time evolution (3.7) and the scaling
rules in (3.8). The two conditions (3.7) and (3.8) are given
as subsidiary conditions of generalized random walks
(GRW). The model system was specified by two types of
scaling factors: {a,b] in (3.8), and ja",b "] in (4.5).
The first pair [a, b ] determines the main behavior of the
response function, while other pair ja",b"

»
character-

izes the activation process in terms of the function 4(t )

for the response function. For the cluster, a local
response function was introduced by the transition proba-
bility of GRW. Furthermore, to specify the states of the
system, an average response function was introduced to
specify distribution functions of the clusters. By evaluat-
ing the average response function (%,(t)) approximate-
ly, we obtained the asymptotic behavior of (q), (t)) for
some special cases. Based on this analysis, we found that
effects due to other clusters modify the behavior of the lo-
cal response function in two ways: The first is a
modification of the index [as given by (4.3)] of the
response function, that is a parametrized index with (4.5)
or (4.6) [see also (5.9) or (5.10)]. The second is a
modification of the behavior into an oscillating power
form [see (6.12) and (6.17)].
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