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Vortex motion in type-II superconductors is studied starting from a variant of the time-dependent
Ginzburg-Landau equations, in which the order-parameter relaxation time is taken to be complex. Us-

ing a method due to Gor kov and Kopnin, we derive an equation of motion for a single vortex (B «H„)
in the presence of an applied transport current. The imaginary part of the relaxation time and the
normal-state Hall effect both break "particle-hole symmetry, " and produce a component of the vortex
velocity parallel to the transport current, and consequently a Hall field due to the vortex motion. Vari-
ous models for the-relaxation time are considered, allowing for a comparison to some phenomenological
models of vortex motion in superconductors, such as the Bardeen-Stephen and Nozieres-Vinen models,
as well as to models of vortex motion in neutral superAuids. In addition, the transport energy, Nernst
effect, and thermopower are calculated for a single vortex. Vortex bending and fluctuations can also be
included within this description, resulting in a Langevin-equation description of the vortex motion. The
Langevin equation is used to discuss the propagation of helicon waves and the diffusional motion of a
vortex line. The results are discussed in light of the rather puzzling sign change of the Hall effect which
has been observed in the mixed state of the high-temperature superconductors.

I. INTRODUCTION

The study of vortex motion in type-II superconductors
continues to attract the attention of theorists and experi-
mentalists alike, due in part to the rather unusual mixed
state transport properties of the high-temperature super-
conductors. One of the more vexing of these properties is
the anomalous behavior of the Hall effect, which is ob-
served to change sign in the superconducting mixed
state. ' Such behavior is not expected within the stan-
dard models of vortex motion in superconductors, the
Bardeen-Stephen model, and the Nozieres-Vinen mod-
el. ' Indeed, even the low-temperature superconductors
exhibited a range of behaviors not in accord with either
of the above models, including a sign change'; for a re-
view of the early work, we refer the reader to the article
by Kim and Stephen. " It is the Hall-effect data which
constrains models of vortex motion in superconductors,
and which represents the greatest challenge to the theo-
rist. This paper is an attempt at understanding vortex
motion and the Hall effect in type-II superconductors
starting from the time-dependent Ginzburg-Landau
equations.

Before discussing the new results contained here, we
will first briefly review the phenomenological theories of
vortex motion (for a more critical assessment, see Refs. 9
and 11). In the Bardeen-Stephen (BS) model of vortex
motion, it is assumed that the vortex may be modeled as
a normal core of radius the coherence length. If the ap-
phed transport current is J,=e*n,v„, with n, the
superfluid density (the density of Cooper pairs), e* the
charge of a pair (which we will take to be positive), and

v, &
the uniform superfluid velocity far from the vortex,

then the Lorentz force per unit length acting upon an in-

dividual vortex is F=poI, Xe„where e, is a unit vector
which points in the direction of the magnetic field and

=able' is the flux quantum (we will take c =1 in this
paper). This is balanced by a viscous drag force (per unit
length) f= —rivL, where vL is the velocity of the vortex
line. This drag is due to the dissipation which occurs in
the normal core of the vortex, so that g ~ cr„'"„', with o„'"'
the longitudinal normal-state conductivity. By balancing
these two forces, F+ f=0, we find

oJ, Xe, =nvt .

Josephson' demonstrated that the motion of the magnet-
ic flux produces an electric field, given by Faraday's law

(E&=—v, xB, (1.2)

where ( E & is the spatially averaged electric field and 8 is
the magnetic induction field. Assuming that 8=Be„
and combining Eqs. (1.1) and (1.2), we then have

(1.3)

so that the flux flow conductivity is cr„„=ri/(PQ)
=sr„'"„'(H,2/8). In the BS model the Hall field is entirely
due to the Hall field produced in the normal core of the
vortex; the corresponding Hall angle is equal to that of a
normal metal in a field equal to the field in the core.
More importantly, the Hall angle has the same sign as in
the normal state.

The Nozieres-Vinen (NV) model, on the other hand,
incorporates the hydrodynamic Magnus force on the vor-
tex,
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F=gon, e'(v,
&

—vt ) Xe, . (1.4) show that a single vortex has the equation of motion

The Magnus force must be balanced by viscous drag
forces f, so that again F+ f=0. In the absence of any
viscous drag (f=0), the vortices would simply drift with
the transport current (vL =v„); this would lead to a per-
fect Hall effect and no longitudinal resistance. The Hall
fields generated in this fashion have the same direction as
the normal-state Hall fields. By making rather different
assumptions regarding the nature of the contact potential
at the interface between the superfluid and the normal
cores, NV conclude that the viscous force should be of
the form f= —av, &. The longitudinal resistivity obtained
is of the same form as the BS result, whereas NV find
that the Hall angle in the mixed state is equal to its value
at the upper critical field H, 2. However, we still find that
the Hall angle has the same sign as in the normal state.

The conclusion is that neither of these phenomenologi-
cal models is able to explain the sign change in the Hall
angle. One difBculty is that both models are strictly
speaking only valid at T =0; they are also only correct at
low magnetic inductions, and should not be applied near
0,2. However, it seems unlikely that a finite temperature
generalization, or the inclusion of intervortex interac-
tions, would act so as to change the sign of the Hall an-
gle. A more serious diSculty is that both treatments
start from a hydrodynamic description, with no reference
to the underlying superconducting order parameter. It is
unclear whether the inability of the BS and NV models to
predict the sign change is due to the hydrodynamic
description itself (for instance, the implicit assumption of
Galilean invariance}, or with the approximations in-
volved in the calculation.

There have also been several attempts at a fully micro-
scopic calculation of the Hall effect for a single vortex,
starting from the Bogoliubov —de Gennes equations for a
moving vortex. ' ' The dissipation is provided by quasi-
particles which scatter from the time-dependent potential
provided by the moving vortex; this is balanced by the
Magnus force on the vortex. The Hall effect is entirely
due to the Magnus force, so this approach is also unable
to explain the sign change of the Hall coef6cient. These
calculations are limited to very pure superconductors,
and do not include band-structure effects which are im-
portant in determining the sign of the Hall effect in the
normal state.

As an alternative to the hydrodynamic and microscop-
ic approaches, we shall study the Hall effect starting from
a time-dependent version of the Ginzburg-Landau equa-
tions. This method is intermediate between the hydro-
dynamic and microscopic approaches, in that the time
dependence of the order parameter is explicitly con-
sidered, while the effects of the quasiparticles are lumped
into an effective conductivity for the "normal Quid. " The
scheme is to then use this model to systematically study
the motion of a single vortex. This program has already
been carried out for the longitudinal resistivity by
Schmid, ' Gor'kov and Kopnin, ' ' and Hu and Thomp-
son. ' The time-dependent Ginzburg-Landau (TDGL)
equations must be generalized somewhat in order to
study the Hall effect; with this generalization, we will

v„Xe,=a)vL+a~vL Xe, , (1.5)

where a, and az are functions of the parameters which

appear in the TDGL equations. Such an equation of
motion for superconducting vortices was originally pro-
posed by Vinen and Warren; a similar phenomenological
model has recently been used by Hagen et al. to discuss
the sign change of the Hall angle in Y-Ba-Cu-O. We see
from Eq. (1.5} that a& will determine the longitudinal

conductivity, while az determines the Hall conductivity.
In particular, if az &0, then the Hall effect in the vortex
state will have a sign which is opposite to the sign of the
normal-state Hall effect. Having reduced the problem to
this effective equation of motion, one can then pose the
question, "What choice of parameters leads to a Hall
effect which changes sign?"

The outline of the remainder of the paper is as follows.
In Sec. II the time-dependent Ginzburg-Landau equa-
tions are presented and discussed. In Sec. III we derive
an equation of motion for a single vortex, starting from
the time-dependent Ginzburg-Landau equations. From
this equation of motion the longitudinal and Hall conduc-
tivities are calculated and compared to the predictions of
the Bardeen-Stephen and Nozieres-Vinen models. We
also recover known results for the motion of a rectilinear
vortex in a neutral superfluid in the appropriate limit. In
Sec. IV we study the thermal transport properties of a
single vortex, and calculate the Nernst coef6cient and the
thermopower. The effects of vortex bending and fluctua-
tions are considered in Sec. V. We will derive a Langevin
equation for vortex motion, which we wi11 use to study
helicon waves and the diffusive motion of the vortex
center of mass. The relevance of these results to the
anomalous transport properties of the high-temperature
superconductors is discussed in Sec. VI. The London ac-
celeration equation for a charged superfluid is derived
from the TDGL equations in Appendix A. Numerical
coeScients which enter the vortex equation of motion are
calculated using a tria1 solution for the order parameter
in Appendix B. Appendix C is a summary of the
definitions of the transport coefBcients.

II. TIME-DEPENDENT GINZBURG-LANDAU
EQUATIONS

A. The model

To begin our discussion of vortex motion in supercon-
ductors, we first need an appropriate generalization of the
familiar equilibrium Ginzburg-Landau equations to in-
clude dynamics. Such generalizations have been the sub-
ject of intensive study over the years, starting with
Schmid's derivation of TDCxL equations. ' ' Gor'kov
and Eliashberg later showed that Schmid's results were
only valid in the dirty limit, and derived a modified ver-
sion of the TDGL equations which are valid when the
pair breaking is due to paramagnetic impurities. These
equations were further developed to include the effects of
electron-phonon scattering on the order-parameter relax-
ation. ' While there are some important consequences
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of these generalizations, they result in more complicated
and cumbersome dynamic equations; we will therefore
adopt the TDGL equations originally proposed by
Schmid (with minor modifications) as the prototypical
equations of motion. Most of the results in this paper
may be generalized in a straightforward, if not tedious,
manner to the other more complicated dynamical equa-
tions.

Our equation of motion for the superconducting order
parameter g(r, t) is

x a, +i+ y= —r 5
(2.1)

with the Hamiltonian

$2a= Jd'r
2

V —i' A y +a(T)lyl'+ —Iql'
2

+ (VX A)
8m

(2.2}

In the above equations, A is the vector potential with
h =V X A the microscopic magnetic induction field,
B= (h ) is the induction field, m is the effective mass of a
Cooper pair, e'=2e is the charge of a Cooper pair (we
take e' to be positive), a(T)=ao(T/T, —1), and
I =I",+iI 2 is a complex dimensionless relaxation rate.
For anisotropic superconductors (such as the high-
temperature superconductors) we would need to allow for
an effective-mass tensor m;; in order to simplify the dis-
cussion we shall assume that m,"=m5; . This assump-
tion will be relaxed when vortex bending is considered in
Sec. V. As long as I

&
)0, this equation of motion relaxes

to the correct equilibrium Ginzburg-Landau equation.
The total chemical potential p, is given by

2

. e* — fi . e*
Ry 8 +i 4 g= V —i A

2m fi

+
I al 0 b—

l Wl'0, (2.6)

VXVX A=4m(J„+J, }, (2.7)

so that V (J„+J, ) =0. The supercurrent J, is given by

2

J, =
2

. (g'Vg —4VP')— (2.8)

where 4=&+p fe*. The difference between N and N is
generally small, ' and we shall neglect this difference in
what follows.

By choosing the complex relaxation time y appropri-
ately, we can consider a variety of different models. If
I 2=0, the order-parameter equation of motion leads to
the London acceleration equation for the superfluid ve-
locity, as shown in Appendix A. If I z= —1 (so that

y, =I
~

' and y2=0), then we have the TDGL originally
derived by Schmid. ' If I', =I 2=0 (so that y, =O and
y2= —1), then we have the Gross-Pitaevskii equation
(often called the nonlinear Schrodinger equation) for a
charged superfluid at zero temperature. More generally,
such an imaginary part of the relaxation time is generat-
ed in renormalized theories of the critical dynamics of
neutral superfluids. A microscopic derivation of the
TDGL by Fukuyama, Ebisawa, and Tsuzuki, leads to a
value of y2 that depends on details of the band structure
of the material, and is generally proportional to the
derivative of the density of states at the fermi energy
N'(e~). In what follows we will consider y to be arbi-

trary, and after having derived an equation of motion for
a vortex we can then consider specific models for y.

%e also require an equation of motion for the vector
potential, which is just Ampere's law

p=p+e*@+
5n,

(2.3)

while the normal current J„ is given by

J =a'"'E=a'"'( —Ve —5, A),

with cr'") the normal-state conductivity tensor

(2.9)

~ a, +i—i +i c y= —(r+n. 1 . e* . 5&
fi

(2.4)

Similar equations have been used to study the hydro-
dynamics of superfluid He near the A, transition.
By defining a dimensionless order-parameter relaxation
time

I,—i (1+r,)

r'+(1+r )' '

our order-parameter equation of motion becomes'

(2.5)

where p is the chemical potential, 4 is the electric poten-
tial, n, = ll(tl is the superfluid density, and 5&/5n, is the
kinetic energy of the superfluid. The last contribution is
often neglected, although it is essential if one desires a
Galilean invariant equation of motion. If we set
(5%/5n, )$-.5%/5$', then we can rewrite Eq. (2.1) as

(n)0xx
~(n)

(n)
Oyx

(n)
+xy

(n)
O'xx

(2.10)

The Onsager relations and rotational symmetry imply
that o'~"„'(H)= cr„'~'(H),—so that the conductivity tensor

may be decomposed into a diagonal piece and an an-

tisymmetric piece. The longitudinal normal-state con-
ductivity o.„'"„' is generally a weak function of the magnet-
ic field, and we will consider it to be field independent;
the Hall conductivity in the low-field limit is of the form

(y)(H)=m, rv~"„~, with ~,=eH/m the cyclotron fre-

quency and ~ the scattering time. Since in what follows
we will be considering inhomogeneous magnetic fields,

the normal-state Hall conductivity is generally a function
of position. In equilibrium the electric field is zero, and
the TDGL equations reduce to the familiar equilibrium
Ginzburg-Landau equations. '

The new features in Eqs. (2.6) and (2.7) are the imagi-
nary part in the order-parameter relaxation time, y2, and
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the Hall conductivity for the normal fluid, &„'"„'. These
terms are crucial for understanding the Hall effect in the
mixed state. ' To see why, notice that if yz and cr„'"„'

are both zero the TDGL equations have an important
particle-hole symmetry: the equations are invariant under
the simultaneous transformations g~g', 4~ —4, and
A —+ —A. Under this transformation the total current
J=J„+J, changes sign, as does the electric field. If we
define the total conductivity tensor a„„(H) in terms of
the spatially averaged current and electric field as
J„(H)=o„„(H)E„(H),then upon reversing the magnetic
field J„(—H)=o„„(—H)E„(—H); but because of the
particle-hole symmetry J„(—H) = —J„(H) and
E ( —H)= —E„(H), so that cr„,( —H)=o„,(H); under
these conditions the conductivity tensor is even in the
magnetic field. However, we know from the Onsager re-
ciprocity relations that in general cr„„(H)=o'„„(—H).
Rotational invariance in the plane perpendicular to the
applied field requires that the off-diagonal components of
the conductivity tensor satisfy 0„„(H)= —tr,„(H); when
combined with the Onsager relations, we find that the
off-diagonal components of the conductivity tensor must
be odd in the magnetic field for a rotationally invariant
system. We therefore conclude that if y2=cr'"'=0, then
the Hall conductivity o „„(H)—=0. If either of these quan-
tities is nonzero, then the particle-hole symmetry is des-
troyed, and there will be a nonvanishing Hall conductivi-
ty. The term y2 produces a Hall effect due to the Magnus
force on the vortex, while o „'"' produces a Hall effect due
to the transverse response of the normal Quid to the elec-
tric fields generated in the vortex core.

B. Dimensionless units

v, =J, /e *lPl . In our dimensionless units this becomes

KJ, = f—v, . (2.16)

C. SimpliScation of the TDGL equations

h=VXQ,
1E= — VP—BEQ .
K

The real part of Eq. (2.12) is

(2.17)

(2.18}

r & d&f rzPf =—, v'f —0'f+f— f'—r
K

while the imaginary part is

r2dif+riPf + fv Q+—Qvf =—o1 2

(2.19)

(2.20}

and Eqs. (2.13)—(2.15) become

V x V xq=a'"' ——VP —a Q —f'Q .1

K
t (2.21)

To derive an equation for the potential P, first multiply
Eq. (2.20) by f:

First, we rewrite the complex order parameter in terms
of an amplitude and a phase, g(r, t) =f (r, t)exp[i'(r, t)].
(Note that a moving vortex does not possess cylindrical
symmetry, so that the phase variable g is equal to the an-
gular variable 8 only near the center of the vortex. ) In
tertns of the gauge invariant quantities Q= A —Vg/«
and P = tb+ d,y, the magnetic and electric fields are

In order to facilitate the calculations it is helpful to re-
cast Eqs. (2.6)—(2.10) into dimensionless units

r iPf'+ v(f'Q)+—rd'a, f =0 .1
(2.22)

r=Ar', t =(R/lal)t', P=(lal/b)'

A=~2H, A, A', 4=(e'/lal)4',
g =(2m/fi)(1/4n«)o',

(2.11)

Next, use the fact that V (J, +J„)=0 to obtain

V.(o'"'E)—V.(f'Q) =0

Finally, combining Eqs. (2.22) and (2.23) we obtain

(2.23)

VXVX A=Jn+J, ,
T

1J =o. ~ ——7'4 —8 A(n)
n

(2.13)

(2.14}

J, = .(y*vy yv@') I pl'A . — —1

2Kl
(2.15)

The "." in Eq. (2.14) indicates a tensor product. The
super5uid velocity, in conventional units, is

where the magnetic penetration depth A, =[mb
/4~(e~)2lal]'~~, the coherence length g'=&/(2mlal}'
the Ginzburg-Landau parameter «=A, /g, and the ther-
modynamic critical field H, =4nlal /b. In these units
the equations become (we will henceforth drop the primes
on the dimensionless quantities)

2

(y, +irz)(B, +i@)g= —i A g+P —
lt/rl g, (2.12)—

—v ~~"~ ——vP —a,q +r if'P+r jd,f =o .

(2.24)

The remainder of the paper is devoted to solving Eqs.
(2.19), (2.21), and (2.24} for a moving vortex. If we set rz
and o„'"'=0, then our equations are identical to those
studied by Schmid, ' Hu and Thompson, ' and Gor'kov
and Kopnin, ' in the context of the viscous motion of a
single vortex. These equations are therefore a generaliza-
tion which allows for the possibility of a nonzero Hall
conductivity.

III. VORTEX EQUATION OF MOTION
IN THE LIMIT B«H„

Since the full nonlinear TDGL equations are compli-
cated, we want to focus attention on the motion of the
vortices, as they are the "elementary excitations" of the
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mixed state. In this paper we will derive an equation of
motion for a single vortex; we therefore consider magnet-
ic fields which are slightly above the lower critical field
H„. The vortex motion, and the concomitant motion of
magnetic flux, lead to dissipation in the mixed state of
type-II superconductors. Several approaches have been
adopted in order to study the vortex motion. Schrnid'
constructed a dissipation functional starting from the
TDGL, and from energy balance arguments he was able
to calculate the flux flow conductivity in terms of the pa-
rameters of the TDGL equations. Hu and Thompson' '

also used energy balance arguments to calculate the flux-
flow conductivity, but they included important backflow
contributions which had been neglected by Schmid. This
method is intuitive and easily implemented, but is
insuScient for our purposes as Hall fields are nondissipa-
tive. Instead, we will use the method developed by
Gor'kov and Kopnin' ' in their study of flux flow; this
method has also been used to study the mutual friction of
vortices in superfluid HeII near the k point.
There are essentially three steps to the calculation. We
first assume that the vortices translate uniformly, so that
the order parameter, vector potential, and chemical po-
tential are functions of the quantity r —vLt, where vL is
the vortex line velocity. Next, we assume that these
quantities may be expanded in powers of vl . The terms
of O(1) are simply the equilibrium Ginzburg-Landau
equations, while the O(UL } equations are a set of linear,
inhomogeneous differential equations. These equations
will only have solutions for particular values of vL.
Therefore, the final step is to derive a "solvability condi-
tion" for vI, which is tantamount to deriving an equation
of motion for the vortices. This equation of motion,
along with Faraday's law for the moving vortices, '

(E)= —vL XB, lead to the longitudinal and Hall con-
ductivities.

2
V'fo Qofo+fo f—o =o, (3.4)

V X V XQo+fo2Qo ——0, (3.5)

with the equilibrium supercurrent given by

Jo= —foQo (3.6)

Next, we need the O(UL) equations. In terms of the
quantities f„=vI Vfo, Q, =—(v~ V)Qo, these are

, V'f, ——Qd', —2f,Qii Q,
K

(3.7}+f i 3fofi—+y2Pfo= yif—.
V X V X Q, +foQi+2fof iQo+ O'"'V—P =o'"'Q„,(n)

K

(3.8)

V(o''"'V—P)+y,foP =yg f, ——V (O'"'Q„),
K

(3.9)

with the current J,=J&, +J&„,where

Ji.= —fo Qi —2fof i Qo (3.10)

——VP+~'"'Q„1
ln

(3.11)

Far from the center of the vortex J,„~O, and J&, is equal
to the applied transport current J, . Equations (3.7)—(3.9)
are a set of inhomogeneous linear equations which must
be solved in order to determine the vortex velocity.

We next derive a solvability condition for the linear in-
homogeneous equations which will determine the vortex
velocity. Following Gor'kov and Kopnin' we note that
the time-independent Ginzburg-Landau equations possess
a translational invariance, so that if fo(r) and Qo(r} are
solutions, so are fo(r+d) and Qo(r+d), with d an arbi-
trary translation vector. If d is an infinitesimal transla-
tion, then we have fo(r+d)=fo(r)+d. Vfo(r)+, so
that the quantities fd =d Vfo and Qd =—(d.V}Qo will

solve the linear equations (3.7) and (3.8) without the inho-
mogeneous terms on the right-hand side and with P =0:

A. Derivation of the solvability condition

First, we assume that f, Q, and P are only functions of
r —vLt. Therefore we replace all time derivatives in Eqs.
(2.19), (2.21), and (2.24) by —vz V, and obtain the follow-

ing set of equations:

y ivy Vf y2P—f= , V'f—Q'f +f—f'— —2 2 (3.1)

(3.2)V X V X Q =o'"' — VP + ( v I V }Q —f Q, —(.)

—V. ~ a ". — VP+(v .V}—Q
(.)

K K
L

+yif2P —ygv~ Vf =0, (3.3}

Qofd 2foQo Qu+fd 3fofd =02

K

V XV XQd+foQd+2fofdQo

with the current

(3.12)

(3.13)

where P =4—vL .Vg.
Next, we expand all quantities in powers of the vortex

velocity; f =fo+f„Q=Qo+Q, , where f, and Q, are
0 (vI ). Note that P is 0 (U~), since the electric field van-

ishes in equilibrium. The O(1) equations are simply the

equilibrium Ginzburg-Landau equations,

Jd= (d V)Jo= fofdQo —foQa . (3.14)

To derive the solvability condition, we multiply Eq. (3.7)
by f„and integrate over a cylindrical volume. We then
integrate the term fd V f, by parts twice, discarding the
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surface terms, and we use Eq. (3.12) for fa to eliininate
the nonlinear terms in the integral. We finally obtain

f d "(2fofiQo Qa 2fofaQo Qi

+r if fa+72J'fofa }=0.

Using Eq. (3.10) for J„and Eq. (3.14) for Ja, we may ex-

press Eq. (3.15) in terms of the currents as

f d r(Ja Qi —Ji, .Qa)

d r V& «+'V2P 0 d (3.16)

Further simplification occurs in the large-~ limit, ' where
Qa= —Vga jsc, Qi= —Vy, /a. . Inserting these expres
sions into the left-hand side of Eq. (3.16), we have

f d r ( Ja Q, . Ji,—Qa ) =—f d r (J„Vya —Ja Vyi )
1

=—f d r[V (J„ya) V.(Jay—i)] f d——ryaV Ji, , (3.17)

d ry V.J„=—— d ry V J,„
= f d'rXa(7'ifop r2fof. ) . —(3.18)

where we have used the fact that V-J&=0. The first in-
tegral on the right hand side of Eq. (3.17) may be convert-
ed into a surface integral. The second term may be
rewritten using V.J»= —V.Ji„, and then by using Eq.
(3.9) we find

In this coordinate system, we have vL d
= —uLd sin(P —8H }and (vL Xe, ) d= uLd co—s(P —8H).

Before evaluating the solvability condition, we first
want to simplify the equations for the order parameter,
vector potential, and scalar potential, in order to bring
them into a more manageable form. The equilibrium or-
der parameter fo(r) and vector potential Qo(r)=go(r)es
satisfy Eqs. (3.4} and (3.5}, which in the cylindrical coor-
dinates defined above become

Combining Eqs. (3.16), (3.17), and (3.18), we have

—f ds (Ji Xa —JaXi}

= —f d'«7 if.fa Y1Xaf9'+rzJ'fofa

1 1 d dfo
~zrdr dr

d 1 d(rgo) 2

Qofo+fo —fo'=o— (3.23)

(3.24)

+ruafof } . (3.19)

This is our solvability condition for steady vortex motion,
which is exact to linear order in the vortex velocity. If
this solvability condition does not hold, then the linear
inhomogeneous equations have no solutions, and steady
vortex motion is impossible. The remainder of this sec-
tion is devoted to evaluating Eq. (3.19).

,& (&. s)

B. Coordinate system and core Selds

The coordinate system which will be used for evaluat-
ing Eq. (3.19) is defined in Fig. 1. The applied transport
current J, is assumed to be in the x direction', the magnet-
ic field is in the z direction (out of the page); the vortex
moves at an angle 8H with respect to the —y direction, so
that the averaged electric field (E) makes an angle 80
with the x axis. We will use (r, 8,z) as our cylindrical
coordinates, with unit vectors e„e&, and e„respectively.
The displacement vector d makes an angle P with respect
to the x axis. The explicit forms of J„vL, and d in this
cylindrical coordinate system are

J, =J,[cos8e„—sin8eo],

VL = uL [sin(8 8H )e, +c—os(8 8H )—eej, —

d=d [cos(8—P)e, —sin(8 —$)ee] .

(3.20}

(3.21)

(3.22)

FIG. 1. Definition of the coordinate system (r, 9) and the re-
lationship between the uniform transport current J„the vortex
velocity vL, the average electric field E, the Hall angle 80, and
the arbitrary translation vector d. The magnetic field is out of
the page.
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af,
uL sin(8 —8H } .

K Bf
(3.25)

Now we notice that as r ~0, I' = —
vL VH

= uI cos(8 —8H ) lr. We therefore decompose P (r) as

P(r)=uL [pi(r) cos(8 —8H)+p~(r) sin(8 —8H)] .

(3.26)

The contribution pi(r) satisfies a homogeneous equation

d 1 d("pi) z

dr dr
(3.27)

with the boundary condition pi(r)-llr as r~0. The
contribution p2 is due to the particle-hole asymmetry,
and satisfies an inhomogeneous equation

0'xx d 1 d(rp2)
&

dfo 0'x&' dhp

(3.28)

with the boundary condition p2(r =0)=0. We also have

p, (r), p2(r}~0 as r~~. This means that the homo-
geneous contribution to pz(r) is identically zero, so that
p2(r) is 0 (y2, o „'~'). Note that the equations for p, and p2
are decoupled; if we had included the terms involving
spatial gradients of the Hall conductivity then these two
equations would be coupled together, an inessential corn-
plication for our purposes.

It is now possible to determine the electric field at the
core of the vortex, E(0). First, notice that as r —+0, the
scalar and vector potentials have the following behaviors:

1
Qii(r) = — +—'hii(0)r,

KT
(3.29)

p, (r)= ——p', r, p, (r)= —p,'"r,{1) {l)
T

(3.30)

where ho(0) is the magnetic field at the center of the vor-

tex, and where p'," and p2" are constants which are
determined from the solution of Eqs. (3.27} and (3.28). In
terms of these constants, the electric field at the center of
the vortex is

E(0)= — VP+(vL V)QO—1

with Qo(r) ——I!(ar) as r ~0.
The equation for the gauge-invariant scalar potential is

rather more complicated. It can be simplified somewhat
if we ignore spatial derivatives of the normal-state Hall
conductivity, which should be small (especially near the
center of the vortex). Then V. ( o'" ' VP }=o „'"„'V P. Us-

ing the coordinate system defined above and ho= V X go,
Eq. (3.9) then becomes

{n)

, V'P rifF—

where we have used Eqs. (3.26), (3.29), and (3.30). Expli-
cit expressions for p &" and p2" may be found in Appen-
dix B. The electric field at the core of the vortex is not
parallel to the averaged electric field, (E), except for the
particle-hole symmetric case (p 2" =0).

C. Evaluation of the solvability condition

We start by evaluating the left-hand side of Eq. (3.19).
The surface integral can be expressed in terms of the ap-
plied transport current at the boundaries, since at the
boundaries J„(r= oo, 8)=J„Jd e„=d sin(8 —P)l(ar ),

gd =d—V8= —d sin(8 P)lr a—nd g, =icJ,r cos8. Substi-
tuting these expressions into the left-hand side of Eq.
(3.19},and performing the reinaining angular integral, we
find

—f dS [Ji,gd
—Jdgi]= — (J, Xe, ).d .1 2% (3.32)

This term represents the driving force on the vortex, due
to the applied transport current. It is balanced by the
viscous forces on the right-hand side of the solvability
condition, Eq. (3.19).

The next step is to evaluate the right-hand side of Eq.
(3.19). The first term is

yi f d r f„fd=mvz. dyi f (fo) r dr, (3.33)

f d r Pfofd = ir(vL Xe, ) d f (fo }pir dr

irvL d f —(fii)'p2r dr . (3.35)
2 0

For the fourth term we have

yz f der yd fof„=— y2(vL X e, ).d —. (3.36)

Collecting together the various terms on the right-hand
sides of Eqs. (3.33)—(3.36), equating them with the driving
force on the left-hand side of Eq. (3.32), and recalling that
the displacement vector d is arbitrary, we obtain the fol-

lowing equation of motion for the vortex:

a )K a2K
J, Xe, = v~+ vL Xe, ,

2 2

where the constants a
&

and az are given by

ai =yi f (f0) r dr+yi f fopidr

(3.37)

where the prime denotes a derivative with respect to r.
The second term is

y, f d r yd foP= nvt dy—, f fop, dr
0

+n.(vt Xe, ) dyi f fop2dr . (3.34)
0

The third term is

{&)
p2

v
{1)

+—,'ho(0) vI Xe, , (3.31)
K 2 0f (fo)'p&r dr, (3.38)
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a2= — f (f0 )'p, r dr ——y, f "fOp@dr .

(3.39}

and

2Pyg 2 Hc2
~x

8mK2
(3.49)

Alternative expressions for a& and a2 may be obtained by
using Eqs. (3.27) and (3.28) for p, (r) and p2(r), as follows:

f
o„'"„' „d 1 d(rp, ) 2o„'"„'

0 K 0 dT r dP K

(3.40)

d 1 d(rpz)

with the corresponding Hall angle

CX2

tan8 H
1

(3.50)

D. Comparison to previous work

Therefore, we find that the Hall angle is independent of
magnetic field near H, &.

'V2 1
xy 0

——cr'"'h (0)

2~(n)
p — ——o "(0}h (0),xx (~) X2 1

K
2 2 K xy 0

(3.41)

where cr„'"'(0)=o„'"'[ho(0)] is the normal-state Hall con-
ductivity in a magnetic field equal to the field in the vor-
tex core. Then we have

2fo
a, =y, f (f') + dr, (3.51)

Neutral superPuids Th.e dynamics of a vortex in a neu-
tral superfluid described by "model-A" dynamics (a
nonconserved order parameter without coupling to a con-
served density) has been considered by Onuki. This is a
limiting case of the above results, obtained by taking
o „'"„'~~, z~ ao, and cr„'"„'=0; then p i (r) = 1/r and
pz(r)=0. Using the expressions for a, and az in Eqs.
(3.38) and (3.39), we find

2~(n)
ai=yi f (fo) r dr+ ""p'i" — f (fo)'pzr dr, ~2= 'V2 (3.52)

2~(n)

K

(3.42)
For the Galilean invariant case I 2=0; if in addition we
assume that the dissipation is small so that I

&
((1, then

yi=I, and y2= —1 (see Sec. IIA above). Combining
these results, we arrive at the equation of motion derived
by Onuki,

(3.43)
(v i vL )Xe =aivL (3.53)

v, ) Xe, =a)vL +a2vL Xe, . (3.44)

Equations (3.37)-(3.44) are the primary results of this pa-
per.

To calculate the conductivities, we use Faraday's law,
(E)= —vL X B, to obtain

(3.45)

We therefore obtain the longitudinal conductivity

CK )K
xx (3.46)

and the transverse or Hall conductivity

CX2K

Zy (3.47)

Returning to conventional units, we have

2m &i Hc2

8 2 (3.48)

The last integral in Eq. (3.42) is generally quite small, be-
ing 8(yz, y2o„'~'), and will be dropped from now on. Fi-
nally, by using Eq. (2.16) for the superfluid velocity, we
can also write Eq. (3.37} in terms of the superfluid veloci-
ty at the boundaries (where f0= 1), v»=2J, /z, as

The left-hand side is the Magnus force acting on the vor-
tex, and the right-hand side is the viscous drag on the
vortex. If, in addition, I i

=0 (so that our order-
parameter equation of motion corresponds to the Gross-
Pitaevskii equation), then ai =0, and the vortex will drift
with the local superfluid velocity.

An interesting feature of Eq. (3.51) for ai is that the in-
tegral is logarithmically divergent [since fo(r)=1 for
r))1]. According to Onuki, the divergence should be
cut off at a length L, which is either the intervortex spac-
ing or the wavelength of second sound. However,
Neu ' has recently shown that the damping coeScient a&
is actually velocity dependent, indicating a general break-
down of linear response in two dimensions for the
superfluid described by model-A dynamics (similar re-
sults for the drag on a disclination line in a nematic liquid
crystal have been obtained by Ryskin and Kremenet-
sky ). The point is that for a moving vortex, there is a
length scale set by the velocity of the vortex, which in
conventional units is L =Pi/(2my, vt), and it is this
length which cuts off the divergence of the friction
coefficient. Therefore a, =y, ln(L/g) is perfectly well
defined, in contrast to the equilibrium energy of the vor-
tex, which is logarithmically divergent and will depend
on the system size (or the intervortex separation). A
more realistic model of a superfluid includes a coupling of
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the order parameter to the entropy density ("model-F"
dynamics ); as shown by Onuki, this coupling re-
moves the divergence in a, by causing the dissipation to
occur in the core of the vortex. Something similar occurs
for the charged superfluid, where there is an additional
length scale set by the conductivity of the normal fluid, as
discussed by Hu and Thompson;' in conventional units,
this length is fur=(4Mo„'"„)/2my))' A, . As shown in

Appendix B, if the normal fluid has a very high conduc-
tivity so that gzr))g, then a, =y)ln(gzr/g); the length

guz cuts off the logarithmic divergence in a). We there-
fore expect linear response to hold for more realistic
models of neutral superfluids and for charged superfluids
(superconductors}.

Paramagnetic impurities. For a superconductor con-
taining a high concentration of paramagnetic impurities,
Gor'kov and Eliashberg have shown that the parame-
ters in the TDGL are related such that gttr=g/&12, and

=48mA'cr„'"„'/(2my)). Kupriyanov and Likharev nu-

merically integrated Eqs. (3.23), (3.24), and (3.27), and
found a&=0.438y, . Hu used a hybrid method which
combined a trial order-parameter solution with numerical
integration and also found a l

=0.438y l corrected the
earlier work of Hu and Thompson. ' The trial order-
parameter solution discussed in Appendix B gives a value
of a, =0.436y, . Therefore, it appears that at least in the
large-~ limit the trial order parameter allows us to calcu-
late the transport coefficients to within 1%. The results
may be extended to lower values of ~ by finding the op-
timal value of („(z) using the variational principle dis-

cussed in the Appendix. Substituting our value of al into
our expression for the longitudinal conductivity, Eq.
(3.48), we find

o = 1.47o,'"' (3.57}

Schmid obtained a similar result but with a prefactor of
1.56; we have not been able to track down the source of
this small discrepancy. For the Hall conductivity, we
have

o =2.89o„"( )a2 H, 2
" rl

(3.58)

where we again use the results of Appendix B to find

a~= —0. 178y2 —0.258 y2+ o„"(0)27TA (g)

(„) ho(o}+ in' cr„'")(0)
m cl

(3.59)

Fukuyama, Ebisawa, and Tsuzuki have derived TDGL
equations from the microscopic BCS theory, including
terms which break particle-hole symmetry, and find

y2= —1; if we ignore the contribution from the normal-
state Hall conductivity, then a2=0. 326, quite different
from the value of a2=1 which we obtain for the neutral
superfluid discussed above. Due to the screening effect of
the normal fluid, the vortex does not experience the full

Magnus force as it would in a neutral superfluid.
Dirty Iimit. As shown by Schmid, ' in the dirty limit

the dimensionless normal-state conductivity is propor-
tional to the real part of the order-parameter relaxation
time: e„'"„)=0.173y, (o„'"„)/y,=g in Schmid's notation).
Using the results of Appendix B, we find that
al=0. 508yl. Therefore, in conventional units we find
for the longitudinal conductivity

o „„=2.62o.'"„' (3.54)

in agreement with the results of Kupriyanov and
Likharev and Hu. For the Hall conductivity we ob-
tain (in conventional units)

ye=a
6'F

«, ~, 2m''(0) '

k~T,

(3.60)

(3.61)

()a2 H, 2
oxy =6oxx

where

a2= —0. 140y2 —0. 186 y~+ cr„y (0)2M {pg)

(„) ho(0}+ in' o'„~)(0}
m cl

(3.55}

(3.56)

where m is the effective mass of a Cooper pair in the x -y

plane, g(0) is the zero temperature correlation length in
the x -y plane, eF if the Fermi energy, and a is a dimen-
sionless parameter introduced by Fukuyama, Ebisawa,
and Tsuzuki which characterizes the electronic structure
of the material. The sign of the Hall conductivity there-
fore depends on the sign of a; in this picture the sign
change would be a consequence of the detailed electronic
structure of the material.

There are two features of this result which are worth em-

phasizing. First, the Hall conductivity contains two con-
tributions, one from the imaginary part of the order-
parameter relaxation time y2, and one from the normal-

state Hall conductivity. If I &=0 [which would produce
the London acceleration equation (see Appendix A)],
then y2&0, and these two contributions have the same

sign, leading to a Hall effect in the mixed state of the
same sign as in the normal state. To get a sign change we

at least require that yz&0. If, in addition, I, &(1, then

IV. THERMOMAGNETIC EF1R,CTS
IN THE LIMIT B &&H,2

A. The transyort energy

In addition to producing dissipation, moving vortices
also transport energy in a direction which is parallel to
their velocity. This leads to thermomagnetic effects in
the mixed state which are significantly enhanced over
their normal-state counterparts. In order to calculate
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these effects, we first note that the energy current, which
can be derived from energy conservation, ' is given by (in
dimensionless units}

tional units and (a/2n)8. in dimensionless units) and U&
is the transport energy per vortex (the —,

' is due to the
choice of dimensions); this combination is equal to

J"=Exh—ExB—1

2K
i—A f(B, i—4)gV

K
n U~ =2m.

0
—(fo) +fpgp+2hp r dr —28 . (4 8)
K

+ —+i A P'(8, +i@)g
K

(4.1)

where the unit of heat current is (H, /4m. )(fi/m}(a /A, ).
In Eq. (4.1) we have subtracted the energy current of the
uniform background induction field, which was not con-
sidered by Schmid. Expressing this in terms of the
gauge-invariant quantities Q and P, we have

J"= — VP ——B,Q X(VXQ)1

K

+———(Vf)B f +Pgf —v B1 1 2 2

K K
I. (4.2)

We again assume that the vortex translates uniformly,
and expand the order parameter and the potentials in
powers of the velocity, to obtain the local heat current

J"= — VP +vL —VQp X (V X Qo)
1

P

+———(v Vf, )(Vf, )+PQg,' v8' . —(4.3)

Using V X V XQp+ fo Qp
=0, the first and last terms in

Eq. (4.3) may be combined:

(VP)X(VXQp)+PVXVXQp=VX(PV XQo), (4.4)

where a vector identity has been used. The second term
on the left-hand side of Eq. (4.3}may be written as

(VL 'VQp) X(V XQp)

=VX[(vL Qp)VXQo]+vL(VXQp)

( vL 'Qp}V X V X Qp (4.5)

where we have again used several vector identities. Com-
bining Eqs. (4.3}-(4.5), we have

I"=Vx 1 P+ vQLVpX—
Qp

1+
q (vt. Vfo)(Vfo)+fo(vt. Qo)Qo

+VL A0 Vl B (4.6)

(J")= f d rJ"(r)= ,'nU&vL, — (4.7)

where n is the vortex density (equal to B/Po in conven-

Finally, we average overall space, and note that the first
term in Eq. (4.6} is a surface term, which vanishes. Then
we have

The first two terms in the integral in Eq. (4.8) are the ki-
netic energy of the superfiuid (the factor of —,

' coming
from an angular average}, while the third term is twice
the magnetic-field energy. Recently, Doria, Gubernatis,
and Rainer have derived a "virial theorem" which
shows that this combination is precisely equal to 2H B.
Therefore, we find quite generally that U&

(2n./—ir)8nM, where M=(B—H)/4n. is the spatially
averaged magnetization of the sample. This result is true
throughout the mixed state. Near H, &, B=O, so that
M= —H, &/4m. Then U =(4n/a)H, &, which is the line

energy e, of the vortex. ' The line energy is calculated
using a trial order parameter in Appendix B; for large K,
we find that the transport energy per vortex near H„ is

(in@+0.519),0o
U& = (in@+0.519)==2~

K
(4.9)

where the units have been reinstated in the last line of Eq.
(4.9). Therefore, the moving vortex transports an amount
of energy equal to the vortex line energy.

Before discussing the various thermomagnetic effects,
we should mention that there have been several previous
attempts to calculate the transport energy in the low in-
duction limit. De Lange and Kopnin both calculated
the transport energy but neglected to account for the
contribution coming from the electromagnetic field.
Hu included the contribution from the electromagnetic
field, but unfortunately never provided an explicit deriva-
tion of his result.

B. Thermomagnetic efFects

We are now in a position to calculate the thermomag-
netic effects; the definitions are summarized in Appendix
C. First, we combine Eq. (4.7} with Faraday's Law for
the moving vortices, ( E) = —vL XB, to obtain

(J")=(U, /a)(E) X, , (4.10)

so that the vortex contribution to the transport coefficient
a„=U&/B. The normal fluid contribution to a„ is gen-
erally several orders of magnitude smaller than the vortex
contribution, and it will therefore be omitted. Since the
energy current for a vortex is always perpendicular to the
electric field, the moving vortices do not contribute to the
transport coefficient a„„;any contribution to a„„arises
solely from the normal fluid flow. We may therefore
write a „=Te'"'/p„'"„', with e'"' the normal-state thermo-
power and p„'"„' the normal-state resistivity. The longitu-
dinal thermomagnetic effects arise primarily from the
motion of the normal Quid, while the transverse ther-
momagnetic effects are predominantly due to vortex
motion.

We have, for the Nernst coefficient v,
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1 0o A' ln~
pxxax =

TH' " ~ TH 2m a,
(4.11) 0 rl

g, B,rl. +qz(B, rL ) Xe, =PoJ, Xe, +g, zaz2
(5.1)

where we have used Eq. (3.48) for the resistivity and Eq.
(4.9) for the transport energy. This is the Nernst
coefficient for a single vortex; for a collection of n =B/Po
noninteracting vortices, this result should be multiplied
by n. The thermopower is given by

1E=—p„„a„,+Hv tan8H = (p„, /p„'"„')e'"'+Hv taneH

(4.12)

with p „ the flux-flow conductivity calculated above. The
vortex motion does contribute to the thermopower if
there is a nonzero Hall angle, but under most cir-
cumstances the first term in Eq. (4.12) is much larger
than the second term. Therefore the thermopower in the
mixed state will generally track the behavior of the flux-
flow resistivity, and not the behavior of the Hall angle.
This is in agreement with recent measurements of the
thermopower in the high-temperature superconduc-
tors; ' ' similar conclusions have been reached starting
from a phenomenological model.

V. VORTEX BENDING AND FLUCTUATIONS

So far we have limited our discussion to the motion of
rectilinear vortices, without thermal fluctuations. How-
ever, it is straightforward to generalize the technique dis-
cussed in Sec. III above to situations in which the vor-
tices are bent along the z direction. This has been carried
out by Gor'kov and Kopnin;' ' the addition of a com-
plex relaxation time does not change their derivation, so
we wi11 only outline the derivation here and refer the
reader to the original literature for the details. First,
since we have in mind the problem of vortex motion in
high-temperature superconductors, we want to allow for
an anisotropic effective mass in the Ginzburg-Landau
Hamiltonian; the effective mass is m in the x -y plane, and
m, along the z direction. In this notation, g, A, , and
v=A, /g will denote the correlation length, penetration
depth, and Ginzburg-Landau parameter in the x -y plane.
Next, we label the vortex position by rl (z, t); r will be a
position vector in the x-y plane. We assume that both
the order parameter and the vector potential, which are
functions of the position (r, z) and time t, are functions
only of the distance away from the vortex at time t; e.g. ,

f (r,z, t) =f (r —rI ). We again expand the order parame-
ter, vector potential, and scalar potential in powers of the
velocity B,rL and the curvature B,rl of the vortex; substi-
tuting these expansions into the TDGL equations, we
find that the zeroth-order terms produce the equilibrium
Ginzburg-Landau equations, while the first-order terms
produce a set of linear inhomogeneous differential equa-
tions. Utilizing the translational invariance of the equi-
librium equations, we derive a solvability condition.
After evaluating this solvability condition, we arrive at
the following equation of motion for the vortex (in con-
ventional units):

with
2

2m 0o
ai a2, (5.2)

0o

and where e&=me, /m„with e, the line energy of the
vortex (see Appendix B).

This equation of motion can be used to study the prop-
agation of helicon waves, which are elliptically polarized
waves which propagate along the z direction. Setting
J, =0, and searching for solutions of the form

i ( kz cot)—

we find (in conventional units)

(5.3)

+ay l a)
a+a ln~ k

2m,
(5.4)

5HL
ri, B,rL +g, (B,rL ) Xe, = — +g,

5rL
(5.5)

where the "Hamiltonian" for the vortex line is
'2

BrL
HL = f dz — —

Po( J, Xe, ) rL (5.6)

and where the noise term has the correlations

&g, (z, r)) =O
t

(g;(z, t)gj(z', t')) =2ri&k&T515(z —z')5(t t'), —(5.7)

with the brackets denoting an average with respect to the
noise distribution. We see that the first term in the Ham-
iltonian is the bending energy of the vortex while the
second term is essentially "J, A"; i.e., the interaction en-

ergy between the magnetic field and the transport
current. Similar Langevin equations for vortices in

superfluid HeII have been derived starting from model-F
dynamics by Onuki, ' Kawasaki, and Ohta, Ohta,
and Kawasaki. Also, Ambegaokar et al. have used

Langevin equations for point vortices in two dimensions
to study vortex dynamics near the Kosterlitz-Thouless
vortex unbinding transition.

We can use the Langevin equation to determine the
distance that a single vortex line rL (z, t) wanders perpen-
dicular to the z axis in a time t, in the absence of a trans-

If we set a, =0 and a2=1, then we obtain the well-known
dispersion relation for helicon waves in an ideal in-
compressible fluid. ' However, under most cir-
cumstances a2 &&a&, so these waves are overdamped, and
therefore rather difficult to observe.

It is possible to include the effects of thermal fluctua-
tions by appealing to the fluctuation-dissipation theorem.
To the right-hand side of Eq. (5.1) we add a fiuctuating
force g(z, t), which is chosen in such a manner so as to
guarantee that the correct equilibrium correlations are
obtained. The resulting equation of motion (in conven-
tional units) is
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2k, rlzl I (z'/4DI tl ),
~1

(5.8)

where D =Z, /rt& =(fi/ttt, )(in~/2a, ) is the diffusion con-
stant for the vortex motion, and where the scaling func-
tion f (x) is given by

f(x)= e "+— e ~ ~4"siny y
V'~x vr — y

(5.9)

The last integral in Eq. (5.9) can be expressed in terms of
generalized hypergeometric functions, but this is not par-
ticularly useful for our purposes. We are primarily con-
cerned with the limiting behavior of the scaling function.
For x —+0, the siny may be expanded in a power series
and we find

f(x)- 1 [1+x+0(x )], (5.10)

while for x~~ the integral may be calculated by
steepest descents with the result

f(x)-1+ e "[1+O(x ')] .
2

&mx
(5.11)

We see that at equal times (x ~~) the mean-square dis-
placement as a function of z scales as lzl', so that the
vortex "diffuses" along the z direction, as was first dis-
cussed by Nelson. On the other hand, if we focus on
the fixed value of z =0, then we see that the mean-square
displacement scales with time as

2k@~ 4D t(lr, (o, t) —r, (0 0)l'& =
77

(5.12)

This is quite different from the result we would obtain for
point vortices diffusing in two dimensions, where the
mean-square displacement would scale as ltl. The
difference is due to the restraining effect of the line ten-
sion of the vortex.

We should stress that our vortex equation of motion
was derived in the absence of vortex pinning. Pinning
may be included in a phenomenological fashion by in-
cluding a pinning potential V (rr, z) in the Hamiltonian
for the vortex line:

2
BrL

HL = f dz —
&

+V&(rL,z) —pz(J, Xe, ) rL
2 az

(5.13)

The equation of motion would still be given by Eq. (5.5).
Numerical studies of this equation have recently been
carried out by Enomoto and collaborators.

port current. For simplicity we will assume that F2=0,
so that the motion is purely diffusive. Clearly the center
of tnass does not move, i.e., (rL(z, t))=0. For the
mean-square displacement we have

(lr (z, t) —r (0,0)l )

dk de 1 —e'
=Sg,k~ T f27 ~ 2 T Z]k + pico

VI. DISCUSSION AND SUMMARY

In this paper we have derived an equation of motion
for a single vortex in a type-II superconductor in the
large-sc limit, starting from a set of generalized TDGL
equations. This in turn allowed us to calculate the Hall
conductivity for a single vortex moving in response to an
applied transport current. There are two important
features of the results which are worth emphasizing.
First, there are two contributions to the Hall conductivi-
ty cr„(and therefore to the Hall angle 8H}, one from the
imaginary part of the order-parameter relaxation time y2,
and the other from the Hall conductivity of the normal
fluid in the core of the vortex, o„'"„'(0). This is different
from both the Bardeen-Stephen (BS}and Nozieres-Vinen
(NV) models, in which 8H is determined entirely by the
normal-state Hall conductivity. Second, 8H is indepen-
dent of the magnetic field. In this regard our result
resembles the behavior of 8H obtained in the NV model,
but with a magnitude which depends on details such as
the normal-state conductivity, the order-parameter relax-
ation time, and so on. This is quite different from the
predictions of the BS model, in which the Hall angle is
linear in magnetic field. Jing and Ong have recently
measured the flux-flow Hall conductivity in NbSez, a ma-
terial which can be prepared with comparatively few
macroscopic inhomogeneities which would serve to pin
vortices. They find that 8H in the vortex state is field in-
dependent, in agreement with the NV model; however,
their results would also be consistent with the con-
clusions of this paper. On the other hand, Hagen et al.
have measured the flux-flow Hall effect in thin films of
the high T, superconductor T12BazCaCuzOg (which
should also have relatively weak pinning due to enhanced
thermal fluctuations) and find that 8H has a field-

independent component with a complicated temperature
dependence and a component which is linear in the mag-
netic field and which resembles the normal-state Hall an-

gle, in apparent contradiction with our results. However,
it is important to bear in mind that our derivation was for
a single vortex; i.e., for H close to H„. It is possible that
at higher magnetic inductions the contribution to o„
from the Hall conductivity of the normal fluid in the vor-
tex core will become magnetic-field dependent (as the
magnetic field in the core would then be a function of H).
When this is added to the field-independent contribution
from yz, 8H would have exactly the form suggested by
the experiments of Hagen et al. The complicated tem-
perature dependence of the field-independent term would
be encapsulated in y2.

As discussed in the introduction, this work was
motivated by a number of experimental observations of
an anomalous sign change in the Hail conductivity in
several of the high-temperature superconductors. With
results in hand, it is now time to see whether our calcula-
tions shed any light on these puzzling observations.
First, as previously noted, the Hall conductivity of the
vortex state will have a sign opposite to that in the nor-
mal state if a2 (0. From the explicit calculations of a2 in
Appendix B, we see from Eq. (B15) that if y2& 0, there is
at least the possibility that a2 &0, whereas if y2 & 0, it ap-
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pears that a2 is always positive. Therefore the issue of
the sign change of the Hall conductivity hinges on wheth-
er y2 is positive or negative. If we choose y2 so that we
generate the London acceleration equation in the hydro-
dynamic limit (ensuring Galilean invariance), then we
must take y2= —1, and the Hall effect does not change
sign. This is in accord with the simple picture that the
vortex motion which results from the Magnus force pro-
duces a Hall field which is in the same direction as the
normal-state Hall field. If, however, we imagine deriving
the TDGL equations from the microscopic theory, along
the lines of the work by Fukuyama, Ebisawa, and
Tsuzuki then the order parameter relaxation time de-
pends upon the detailed electronic structure of the ma-
terial, and it is quite possible that y2 )0, producing a sign
change in the Hall conductivity.

There has been a recent suggestion by Wang and
Ting ' that pinning forces acting on a vortex may pro-
duce backfiow currents which act in such a way so as to
change the sign of the Hall angle. It appears difficult to
incorporate this effect into the present calculation. How-
ever, there are several a priori objections to this mecha-
nism which are worth mentioning. First, the observed
sign change occurs at relatively high temperatures (close
to T,z); one might expect that at these temperatures
thermal fiuctuations would tend to overwhelm the pin-
ning forces, rendering them ineffective. In fact, experi-
mental studies of the Ettingshausen effect and the
Nernst effect in Y-Ba-Cu-0 near T,2 appear to indicate
extensive flux flow, consistent with the idea that pinning
is insignificant in this regime. Second, from their model
Wang and Ting predict that as the temperature is
lowered the pinning should cause the longitudinal and
Hall resistivities to vanish at different temperatures, for a
fixed value of the magnetic field. However, the recent
measurements of Luo et al indicate .that these resistivi-
ties vanish at the same temperature. Third, Wang and
Ting begin with a hydrodynamic model for the superfluid
velocity (with the attendant shortcomings), and incorpo-
rate the effect of pinning by including a pinning force
which depends on the fluid velocity in the normal core.
This is rather peculiar, in that one expects the pinning
force to be position dependent, but not velocity depen-
dent. A crucial test of the Wang and Ting theory would
be to see if a Hall resistivity which is initially positive in
the mixed state of some material can be induced to
change sign as pinning sites are artificially introduced (by
ion boinbardment, for example).

Are there other measurements which might be useful
in sorting out the sign change problem? One might hope
that measurements of the thermopower would be useful,
as the thermopower owes its existence to particle-ho)e
asymmetry. Unfortunately, the thermopower in the
mixed state is dominated by the normal-state contribu-
tion, and is therefore proportional to the fiux-flow resis-
tivity [see the discussion in Sec. IV 8 and Eq. (4.12)].
Therefore the thermopower provides very little additional
information which would be useful in piecing together
the puzzle. The observation of helicon waves in the vor-
tex state would also be interesting; a change in the sign of
the Hall effect would cause the polarization of the helicon

waves to change direction. However, given that these
waves are heavily overdamped, the prospects for observ-
ing this effect appear dim. If the sign change is indeed a
consequence of the electronic structure of the material,
then a more sophisticated theory should be able to pre-
dict the existence of the sign change based on, say, band-
structure calculations. There is clearly a need for greater
theoretical understanding of the interplay between ma-
terials properties and vortex motion in superconductors.
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APPENDIX A: LONDON ACCELERATION EQUATION

In this appendix we will derive the London accelera-
tion equation for a charged superfluid starting from the
order-parameter equation of motion, Eq. (2.4). In the
London approximation, we assume that the superfluid
density is constant throughout the fluid, and write the or-
der parameter as P(r, t)=n, ' exp[i&(r, t)], with
n, = ~a (T)~/b. Substituting this into Eq. (2.4), and writ-
ing for the relaxation rate I =I &+iI 2, with I.

&
and I

both real, we have for the imaginary part

er,
A'B,y+ p+ e '4+ ( 1+I i )

—v, = V v, , (A 1)

~here the superfluid velocity is

fi e*
v, =—Vg — AI A'

(A2)

(A3)

If I 2=0, then we can put this into a more familiar
form by noting that V Xv, = —(e "/m )B, so that

V(2v, )=(v, V)v, +v, X(VXv, )

=(v, V)v, — v, XB.
7?l

(A4)

Substituting this into Eq. (A3), we obtain the final form of
the London acceleration equation, with a dissipative
term

B,v, +(v, V)v, = ——Vp+ (E+v, XB)1 e

+$3V(V v, ), (A5)

with the supercurrent being given by J, =e*n,v, .
If I z&0, then Eq. (A3) has no simple hydrodynamic

interpretation. In fact, Eq. (A3) is similar to the equation

Taking the gradient of Eq. (A 1), recalling that
E= —V4 —8, A, and defining a viscosity coeScient
g& =fil, /2m, we have

1
B,v, +(1+I 2)V( —,

'
v, ) = ——Vp+ E+gqV(V v, ) .
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used by Vinen and Warren in their study of vortex
motion in dirty materials.

APPENDIX B: VARIATIONAL CALCULATION
OF THE CONSTANTS

ho(r)= '

ho(0)— r +8(r ), for r«g, /a,
2/2

Ko(r)
(B7)

[(&r )2+g2 ]1/2
o(r}= (Bl}

where g„ is a parameter which measures the healing
length of the order parameter and is numerically close to
one. An optimal choice for g„ is that which minimizes

the free energy; the dependence of g„on ~ is then

In this appendix we will calculate the various constants
which appear in the transport coefficients, which involve
the solution of Eqs. (3.23), (3.24), (3.27), and (3.28). There
are no known exact solutions to this set of equations, so
generally they must be solved numerically. However, ap-
proximate closed-form solutions may be obtained by us-

ing a trial form for the amplitude of the order parameter
fo(r); since the equations for the vector potential and the
chemical potential are linear, a sufficiently clever choice
for fo(r) will allow the remaining two equations to be
solved exactly. This is the method originally due to
Schmid, ' who assumed an approximate order-parameter
profile (in dimensionless units) of the form

where ho(0) is the field at the center of the vortex,

Ko(g„ /a )
ho(0) = =—(in@ —0.231),

g„K,(g„/z) x
(B8)

and where the last line is correct in the large-K limit.
The core field ho(0) =2H„ in the large-~ limit. It is also

easily verified that

277B=2% 0 r r r=
0 K

(B9)

as required by flux quantization.
The equation for p2(r), Eq. (3.28), does not appear to

have an analytic solution. However, as we are primarily
interested in the r ~0 behavior, we seek an approximate
solution as follows. First, we define a new function
h2(r)=p2(r)+ A/r, where A is a constant to be deter-
mined. Substituting into Eq. (3.28},we have

cr„'"„' d 1 d(rhea}

[1 Ko( g„/x')—/K i (g„ /~) ]' (B2) dfo o'y' d&o fo
=y2fo — —A yi . (B10)

dr K dr r
with Ko(z) and K, (z) the standard modified Bessel func-
tions. In the limit of large a., this reduces to g„=v'2,
which is the value used by Schmid, ' whereas $„=0.935
when v= 1/v'2. Upon substituting Eq. (Bl) into Eqs.
(3.24) for the vector potential and Eq. (3.27) for the chem-
ical potential, we obtain the following analytic solu-
tiOnS. 15, 18,66

R K, (R /g)

f.«i(C. C) '

R Ki (R /a')
Qo(r) =-

(„iver Ki(g, /a)

with the local magnetic field

1 ~[rQo(r))ho(r)=-
Br

Ko(R /a. )

g„K,(g„/a)

(B3)

(B4)

(B5)

where we have defined R=[(Kr) +g, ]'i and
g=(o„'"„'/y, )' . These quantities have the limiting be-
haviors

Now all of the terms on the right-hand side of this equa-
tion are proportional to r as r —+0. Therefore, we choose
A to eliminate these linear terms, so that the remaining
terms are 0(r ) as r —+0. Using the small-r behavior of
fo and ho, we find that we must choose

(B1 1)

With this choice of A, Eq. (B10) is approximately homo-
geneous for small r. The solution is therefore

Ki(R/g)

g, r K, (g„/g)
' (B12)

Ko(k. C) 1 („) 0 (B13)

where C is a constant which must be determined from the
boundary conditions. In order that p2(0)=0, we must
have C= A; our approximate solution for small r is
therefore

E, (R /g)

g, r K, (g„/g)

p, (r)= .

Ko(C. C) +0(r ), for r «g„/a,

K, (~r /g)

(B6)

We expect that this expansion will capture the small-r be-
havior in the limit that $~0.

We are now in a position to calculate the coefficients a,
and a2, which are defined in Eqs. (3.38) and (3.39). Per-
forming the integrals, for a1 we obtain
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+ri ri( &0(k.4)
4 g, Xi(g/g)

which has the limiting behavior

(814) a2
g &OC. C

(ku 0)—
g g (g /g)

'r2+ —2oxy(0)

ri —.+
&a&—

g2 +O(g'), for g«g, ,
2g,

+—cr„'y'(0)ho(0),(.)

where the integral I(z) is given by

(816}

For a2 we have

(815)

r, [ln(g/g, )+0.365+0(g )], for g))g, . 2z K(x)
I(z)= f 2

dx.
iz z

This integral has the limiting behavior

(817)

1 —
[ —,'(lnz) —[ln(2) —r]lnz]z +O[z (lnz) ], for z «1,

I(z) =
2%0(z) 4 16K2(z)+, forz»1.
zEi z z z E, (z)

(818)

Using the trial order-parameter solution it is also possi-
ble to calculate the line energy E'& in the large-x limit' ' (C3)

E, = (lnv+0. 519) .= 2~
K

(819) where the resistivities are expressed in terms of the con-
ductivities as

APPENDIX C: DEFINITION
OF THE TRANSPORT COEFFICIENTS

2 2p„„=o„„/(o„„+o„),
2 2p„=o„ /(o„„+o„).

(C4)

In this appendix we summarize the definitions of the
transport coeScients, for completeness. A full discussion
may be found in Ref. (34}. In the presence of an electric
field E and a temperature gradient VT, the electrical
current J and the heat current J" are written as

1

T~ xypxx (C5)

Under most experimental conditions, the second term in
Eq. (C2) is much smaller than the first, so for most pur-
poses we have

J =O. ,E +cr„E + +axx BT axy BT
T Bx T By

The Ettingshausen coefficient ~ as defined as

'=(BT/By)/HJ„, (C6)

axy BT axx BT+
y xyx xxy TB T

BT BT
x (Xxx Ex waxy Ey xx xyBx By

(Cl)

under the conditions J"=J =BT/Bx =0. We then find

that

a„„A'=Tv,

which is a consequence of the Onsager relations.
The absolute thermopower e is defined as

h BT BT
y xyEx xxEy+ xy +XXBx By

Z„/(BT/Bx), — (C8)

where the Onsager relations and rotational symmetry
have been used to simplify the equations.

The isothermal Nernst coefficient is

v=E /H(BT/Bx),

under the conditions J =J =BT/By =0. We then find

1e= —[p„„a„+p a„].
Using Eq. (C5), the thermopower can be rewritten as

under the conditions J =J =BT/By =0. Then by solv-

ing Eqs. (C1), we find that the Nernst coefficient can be
expressed as

1e= —
p „u +Hv tan0~,

where tanOH p y/p is the Hall angle.

(C10)
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