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We present a theory of the de Haas-van Alphen (dHvA) effect in the superconducting mixed state
within the framework of Gorkov s scheme near H, 2 in a two-dimensional (2D), extremely type-II super-
conductor. A semiclassical approximation is developed whose results are compared to the exact
quantum-mechanical result. A remarkable agreement between the two methods is found even for ex-

tremely strong fields and low temperatures, where strong quantum oscillations exist. The method is used
to calculate variationally the superconducting free energy to the fourth order in the Gorkov expansion.
The resulting variational equation for the order parameter is solved exactly, and the mean-square order
parameter over the entire vortex lattice, as well as the superconducting magnetization, is calculated as
functions of the magnetic field and the temperature. It is found that, despite significant smearing effects
of the collective pairing process which involves many Landau levels, strong quantum oscillations exist in

the superconducting order parameter. The calculated superconducting magnetization oscillations are of
the same order of magnitude as the normal-electron ones. The envelope of these oscillations is found to
decay exponentially with increasing magnetic field. At sufficiently low temperatures the fine structure of
the oscillations may reflect the repulsive nature of the interaction between vortex lines. The transition to
superconductivity is investigated along, and above, the classical Ginzburg-Landau phase boundary:
Reentrance of the superconducting state above H, 2( T), a dramatic manifestation of the 2D dHvA effect,
is found to occur within an experimentally accessible range of fields and temperatures if the cyclotron-
effective mass is an integral multiple of the free-electron mass.

I. INTRODUCTION

The behavior of type-II superconductors under very
high magnetic fields has become a subject of considerable
interest recently, ' especially in the light of reports ' of
the observation of de Haas —van Alphen (dHvA) oscilla-
tions in 1:2:3 oxide superconductors. The dHvA effect,
which is an extremely effective method for investigating
Fermi surfaces, may shed light on the highly debated is-
sue concerning the nature of the normal state above the
transition to superconductivity. The very existence of
well-defined magnetic oscillations seems to imply that a
sharp Fermi surface exists for the underlying normal
state.

Beyond this direction of research, which is of obvious
importance, there is a much less obvious, but presumably
not less important line of research: A study of magnetic
quantum oscillations in the superconducting state near the
upper critical field. ' Such a study was carried out more
than a decade ago by Graebner and Robbins on the lay-

ered transition metal dichalcogenide 2H-NbSe2. Earlier
attempts to investigate this matter were made theoretical-
ly by Rajagopal and Vasudevan, ' and by Gunther and
Greunberg, "who considered the effect of Landau quanti-
zation on the linearized Gorkov equation. They have
found that T,z(H ) should be an oscillatory function of H
and that the period of these oscillations should be the
same as that of the normal dHvA oscillations.

The discovery of the oxide superconductors creates a
very exciting situation since in these materials working in
the superconducting state does not necessarily exclude
the use of high magnetic fields. ' Thus the unique com-
bination of extremely type-II character and highly two-
dimensional (2D) electronic properties ofFered by these
materials (especially the Bi-based compounds) makes it
possible to observe the effect of Landau quantization on
the superconducting order parameter. "' This may
provide valuable information about the very nature of the
superconducting state in this class of materials.

Another exciting line of research is the search for new
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superconducting ground states in very high magnetic
fields, far above the classical Ginzburg-Landau phase
boundary. The possibility of superconductivity under
very high magnetic fields was indicated soon after the de-
velopment of Gorkov's semiclassical theory for H, 2.'
Gruenberg and Gunther" noted that at zero temperature
H, 2 could be arbitrarily large, provided that impurity
scattering and Zeeman spin splitting are ignored. Re-
cently Telanovic, Rasolt, and Xing considered the ex-
treme quantum limit in an isotropic 3D system, when
only the ground electronic Landau level is occupied, and
found a reentrant superconducting state far above the
classical Ginzburg-Landau phase boundary. This may be
realized in low density electron gas systems, such as
doped semiconductors. The issue was considered by oth-
er authors, ' ' who reexamined the linearized Gorkov
equation in great detail, and expressed some doubts con-
cerning the reality of this effect.

Stimulated by these developments, several authors ' '
have extended the discussion to the vortex state far away
from H, 2, by considering the Bogoliubov-de Gennes
equations' in the limit when a small number of Landau
levels are occupied. This is of fundamental interest since
it is concerned with quasiparticle excitations in a 2D sys-
tem in the limit when charged particles and vortices in-
teract strongly. ' '

The aspect which makes the superconducting state so
unusual and exciting at a high magnetic field is the
enhancement of the single-electron density of states in
certain field regions. Cooper pairing in these regions is
reinforced and this may compete with the destructive na-
ture of the magnetic field with respect to the supercon-
ducting order. In a 2D electron system the density of
states is singularly enhanced at the Landau levels, while
the introduction of the third dimension smears out this
singularity. It is therefore of great interest to investigate
the effect of magnetic quantum oscillations in the super-
conducting state of an ideal, two-dimensional, model sys-
tem in the extremely type-II case, which is actually the
case in some high-T, oxides.

In this paper we provide a detailed exposition of our
theory of Landau quantization in the superconducting
state of a 2D electron gas.

We use the standard Gorkov scheme for the expansion
of the superconducting free energy in a nonuniform order
parameter, and apply a semiclassical approximation to
the single-electron Green's functions: We take advantage
of the large difference in length scales between the cyclo-
tron radius of electrons at the Fermi energy and that of
Cooper pairs in the ground Landau level (the coherence
length) for the semiclassical situation considered, and find

a simple expansion for the single-electron Green's func-
tions, which enter into the pairing correlation functions.
This enables us to calculate analytically not only the
quadratic term in the free energy in Gorkov's scheme,
but also the quartic term. Our approximation is carefully
tested versus the exact quantum-mechanical result, avail-
able for the quadratic term. Excellent agreement is found
even in cases when the semiclassical scheme is expected
to break down. The resulting free energy is written in a
variational form similar to that of Abrikosov. The corre-
sponding equations for the variational coefficients are a
generalized version of the Abrikosov variational equa-
tions. ' They are solved explicitly and the resulting
coefficients are found to satisfy the Abrikosov recursion
relations. All these enable us to corn.pute the mean-
square order parameter over the entire vortex lattice, as
well as any physical quantity which is a functional of the
order parameter.

In addition to the complete formal presentation we ex-
hibit results of an extensive numerical study, which in-
cludes quantum oscillations in the order parameter and in
the magnetization associated with both the superconduct-
ing and the normal electrons. Our main concern here is
in identifying and analyzing structures in the dHvA effect
which are unique to the superconducting state, and can
be measured experimentally.

II. PAIRING IN A 2D ELECTRON GAS
UNDER A MAGNETIC FIELD

A. General reyresentabon

We consider a pure, 2D electron gas (in the x —y
plane) under a perpendicular magnetic field H (along the
z axis}. The Landau-gauge free-electron Green's function
with spin u is given by

~& (x —x )~& (x —x )

L„k „ ico co,(n+ ,') co, cr—/2——+py k

where P„(x—xo) is the one-dimensional harmonic-
oscillator wave function with energy fico, (n+ —,

' ), centered
at xo=k„a~, with a~=cd/eH; co„=(2v+1)mk~T/fi,
v=O, +1, . . . , are the thermal Matsubara frequencies;
u, =eH/m, c is the cyclotron frequency; m, =eH/moc,
with mo the free-electron mass, is the Zeeman frequency,
and Ez =Ap is the Fermi energy.

For the sake of simplicity we assume a simple BCS
pairing interaction V which is independent of the mag-
netic field. Near the upper critical field H, 2( T) at an ar-
bitrary temperature 0& T & T„ the order parameter b,(r)

F ~(2)+F( )
S S s

where

(2)

F,' '= fd r, fd r2 —5(r, —rz}—Q(r„r2}
1

and

X b, *(rz)b,(r, )

is small and the superconducting free energy can be ex-
panded in b,(r). To fourth order, one has
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F,' '= f d ri f d r2 f d r3 f d r4R(ri, r2, r3, r4)

X b, (r„)h,'(r3)

X b, '(r2)b, (r, ),
where the kernel Q(ri, rz) is given by

kBT
Q(r„r2)= g 6 (r2, r, ;co„)G (rz, r, ; —co )

manifold of eigenfunctions, which can be represented as

b, (x y)=b, e " '" f(z)
where z=(x+iy)/aH and f(z) is an arbitrary entire
function in the complex plane. This form corresponds to
the symmetric gauge, where the vector potential is given
by A(r) =

—,'r X H. The corresponding eigenvalue has
been calculated by Rajagopol and Vasudevan' for a 3D
electron gas. In our 2D system it takes the form

and

kBT
R (r„ri, r3, r4) =

4 g 6 (r&, ri, —co„)

(5) A= —'iiico g '
k T

2 c
I If~n+n' B

n, n' ——on n

X gg„(ico )g„(—ico,),

with
XG (r2, r4, co )

X 6 (r3, r4', —co„)

XG (ri, r„'co ) .

To investigate the pairing instability we consider the
linearized Gorkov equation for the pair potential b,(r):

fd rzQ(ri rz)h'(rz)= —5'(r, ) .1
(7)

The integral operator Q has a infinitely degenerate

1

[ico„co,( n—+ —,
'

) +p —
—,
' co,e ]R

Note that this triple sum is divergent. A cutoff should be
introduced either by truncating the Matsubara sum at
v=vD —1, with vD= —,'(TD/T), and where TD is the
effective "Debye" temperature, or by restricting n +n

' to
lie between 2n0 —

nD and 2n0+ na, with na
=m.kii TD/%co, . The latter procedure leads to the follow-

ing expression:

2

n+ n'=2no+ nD tanh(Ps„ /2)+ tanh(Ps„. /2)

n n'=0'n+n'=2n —n
n!n'! 2"+" n +n'+ 1 2n

where E„/fi=(n+ —,
' )co, —p —,' „coE/A—'=(n'+—,

' )co, —p
+—,'co„and P= I/kz T. It should be emphasized that the
two procedures do not yield exactly the same result. It is
clear that the procedure which leads to Eq. (11) is the
more physical way of introducing the cutoff, since it ap-
plied to real energies. We shall discuss this issue later in
Sec. IV.

Note that Eq. (11), without the combinatorial factors,
and after restricting the sums over the Landau levels to
diagonal terms (n'=n) only, is identical to half of the
BCS expression for the condensation energy. In the low-
field limit, however, the full expression (ll) tends to the
BCS result. Thus the off-diagonal terms are as important
as the diagonal ones in this limit. This property remains
valid even at large fields, provided that the number of oc-
cupied Landau levels is large.

The eigenvalue A corresponds to the ground Landau
orbital of the entire condensate of Cooper pairs in the
magnetic field. The arbitrariness of the function f(z)
thus reflects the degeneracy of this ground state in the
limit where the nonlinear terms in the Gorkov expansion
are neglected. The zeros of f(z) in the complex plane
are the points where the magnetic flux lines thread in 2D
superconductor. Thus the arbitrariness of the location of
the zeros reflects the absence of any interaction between
vortex lines in this state.

The degeneracy is, however, removed by the nonlinear
terms, which introduce effective interaction between the

I

vortex lines. As we shall see later, the solutions of the
nonlinear equation in arbitrary magnetic field correspond
to periodic (Abrikosov) vortex lattices, as in the classical
Ginzburg-Landau (low-field) limit. For an extremely
type-II superconductor the resulting close-packed vortex
lattice corresponds to a lattice of highly overlapping flux
tubes. Thus the electrons in our 2D system are affected
by a strong, uniform magnetic field, which forces them
into well-defined cyclotron orbits, provided that the effect
of scattering by impurities is sufficiently small. This
leads, at sufficiently low temperatures, to strong quantum
oscillations in the eigenvalue A as a function of H.

B. The semiclassical picture of pairing

To gain insight into the phenomenon of pairing in our
2D system under a magnetic field it is quite necessary to
make some approximations. The semiclassical approxi-
mation is found quite useful in this regard, and usually it
is very well justified, even for very large magnetic fields.

In the semiclassical limit, n~=EF/%co, &&1, one may
invoke the WKB approximation of the wave functions

P„(x—xo) and use the stationary phase approximation to
calculate the Green's function in Eq. (1). In this ap-
proach the interpretation of the phase integral leads to a
clear classical picture of the pairing orbits.

Thus in the %'KB approximation one has
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P„(x—xo)=
' 1/2

(2n —g )

where

g„'(r2, r&}=(2ma~) 3~2(2np)

X cos[S„(g)], n »1,
where

S„(g)=—,'g(2n g—)'~ +n arcsin(g/V 2n )—nn/2

(12)

(13)

Xexp — A p+i(2n)'~ sgn(co„)
le

Ac ~H

(17)

and g=(x —xo)/ale. Transforming the sum over k in
Eq. (1) to an integral over xo, and performing the integral
by the stationary phase method, which is consistent with
the semiclassical approximation used, the equation for
the stationary point can be written in the form

Xp

2
X1+X2

=-,'(y, —y, )'(8naH/p' —1), (14)

G (rz, r, ;co„)=—
g '+ (r2 rl}

n
'

p i co,lco—, —X (16)

J

where p =(x& —x2) +(y, —y2) . As we shall see later,
propagation distances p that are much larger than the
magnetic length aH contribute very little to the pair
correlation function Q(r„r2}. Thus, since in the semi-
classical limit n &)1, we may assume that p (&SnaH in
Eq. (14) and find, for the stationary point,

12
xQ p (x

&
+x2 )+&2n aH (15)

P

Expanding the Green's function in the small quantity
(pl&8n aH ) we find that, to leading order,

A is the vector potential at the mean position —,'(r, +r2},
and

2mO
(18)

X exp — A p 2 (p, co„),
Ac

(19}

where

Here no is defined as the integral value of nz E~/fu——o, .
This expression can be further simplified if the lower

limit, no—, of the sum over n' in Eq. (16) is replaced by
Moreover, since the energy denominator in Eq.

(16) is minimal at n'= n n0——=0, or +1, and as long as

E~ &&ks T, we may also approximate the quantity (2n )'
in Eq. (17) by (2n)'~ =(2nD)'~ +n'/(2no)'~+
Using the Poisson summation formula for the sum over
n ' and performing the integration by the residue method,
we find that

0 1 —1/2G (rz, r, ;co„)=—
3/2 1/4 P

c(o2m Ha) (2n p )

9 (p, co„)=2imsg ( nc)o'exp i [(2no)' '+p /(2nD)' ']sgn(co }
~H ~,(2n, )'" 2 (co„) (20)

and

S (co„)=1/[1—exp[ 2n ~co,~/co, +—2mip sgn(co„)]] .

(21}

~co„~/aHco, (2nD)' = ~2v+1~/g, (22)

where g:Au+/m. ks T is the th—ermal mean free path of an
electron in the normal state, we find that

Note that the integral over n' reduces to the pole con-
tribution at n'=iJ. +ico„lco„which represents a
thermally broadened energy shell around the Fermi level.
Thus the single-electron states which participate in pair-
ing originate in many Landau levels around the Fermi en-
ergy rather than in a single, discrete level. Only at zero
temperature may the semiclassical process of pairing be
regarded as taking place on a single Landau level. This
observation is consistent with the remark following Eq.
(11) emphasizing the importance of the off-diagonal terms
in the pairing process.

We are now ready to calculate the kernel Q [Eq. (5}]:
Using Eqs. (5) and (19)—(21) and the identity

Q(ri r»= 2~k~ T
g exp

kFp

v —1D

X g Re(q, )e
v=O

2ie r1+ 2

Rc 2
'P

(23)

where m, —=m, lmo. This factor is responsible for the
quantum oscillations.

Note that the imaginary frequency formalism used
here is equivalent to the real frequency one only at
discrete values of the temperature, for which vD is an ex-
act integer. We therefore restrict the temperature in our
calculations to such values. Note also that although our

where a„—=2(2v+ 1)aH/g, and ri=m, /2M is the densi-
ty of states in the 2D electron gas. In the above expres-
sion q„ is given by

exp[2n ~co„~/co, +i nsgn(co„)m, ].
Wv=

cos(2nn~)+ cosh[2n. ~co
~ /co, +i m sgn(co„)m, ]

(24)
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derivation of Eq. (23) is in the Landau gauge, the result
is expressed in a gauge invariant form.

The validity of Eq. (23) can be tested by checking
whether the eigenfunction (8) of the exact kernel Q is also
an eigenfunction of the approximate one given by Eq.

(23). We find that the answer to this question depends on
the gauge selected. In the symmetric gauge the "wave
function" defined in Eq. (8) is an exact eigenfunction of
our semiclassical kernel. Indeed, substituting Eqs. (8)
and (23) into the left-hand side of Eq. (7), we find that

f —(1/2)
v —

1

d r zQ(r ir z)4'(r z)=(2m aHk sT/k F) )7e '" g Re(q„)bof dpe f e ' f'(zi —pe' )18,
0 0 0

(25)

where p —=plaH. We now use the Taylor expansion of the
entire function f(z ) about zi.

n

f(z i pe' ) =f—(z, )+ g, e'" f '"'(z, )
nI

(26)

under the integral over 8 in Eq. (25): For any n ) 1 the
integral vanishes, while for n =0 it is given by

f 18e ' f'(z, pe' )=—2nf (z) . (27)

With the help of this result Eq. (25) reduces to

f1'rzQ(ri, rz)&'(rz) = &„&'(ri),

where

v —1
gH D

A„=2' g Re(q„)y„

(28)

(29)

and

—a~ —(1/2)pdpe
0

(30)

Thus the eigenfunction [Eq. (8)] of the exact quantum-
mechanical kernel Q is also an exact eigenfunction of the
semiclassical kernel derived here. The resulting expres-
sion for the eigenvalue, A„, has a very simple structure
(discussed later). This simplicity is due to the analyticity
of the entire function f(z, —pe' ), which leads, after in-

tegrating over 0, to a complete elimination of the p
dependence in Eq. (27). This leaves the Gaussian factor

—(1/2)e " '~ as a natural cutoff for p) aH in the integral over
p. This is a very important observation: It confirms our
a priori assumption that in the semiclassical limit the
single-electron Green s function, appearing in the pair
correlation function [Eq. (5)], can be approximated by the
form (19), obtained under the assumption that

p « 8n0aH. In this framework the pair propagator
Q(r„rz) is constructed from pairs of electrons, which
propagate from r1 to r2 in cyclotron orbits n, n ', centered
at the respective stationary points [Eq. (15)]:

H, z( T)=$0/2m ( ( T), (33)

where $0—=hc/2e is the fiux quantum, and g(T) is the
temperature-dependent Ginzburg-Landau coherence
length, is equivalent to the equation

g (T)=aH/2 (34)

which shows that in the zero-field (T~T, ) limit our
coherence length for an arbitrary magnetic field tends to
the Ginzburg-Landau result.

Now the self-consistency equation determining H, z( T )

at any temperature 0 & T & T, can be written in our semi-

classical approach as

represents the projected distance between the centers of
the two orbits on the x axis. There are two such dis-
tances corresponding to the 2 signs in Eq. (32). For elec-
trons near the Fermi surface the semiclassical conditions
yield quite different length scales for these distances:
One distance is much smaller than the magnetic length,
a&. The other distance is approximately
2(2nF)' aH ~by l/p-2(2nF)' aH, that is about twice the
cyclotron radius, which is much larger than aH. Only the
latter configuration is consistent with the conventional
picture of Cooper pairing (see Fig. 1 in Ref. 13), since in
this configuration the distance p =—

l r, —rz l
between the

intersection points of the two orbits is much smaller than
the cyclotron radius (2nF)' az and the short sectors of
the orbits connecting these points are nearly parallel,
satisfying approximately the standard condition of Coop-
er pairing: k'= —k. In this semiclassical picture the
significance of the magnetic length a& as a coherence
length for the paired electrons is clearly understood:
Only for propagation distances p which are of the order
of aH or smaller do the paired electrons remain coherent.
Indeed, the Ginzburg-Landau definition of H,z(T), that
1s,

xo =
—,
' (x, +x z )+v 2n aH by /p (31) vD

—1

(32)

and x0, which is obtained from x0 by replacing n with n'.
The distance between the two stationary points,

Ixo xol =aHI(2n')'~ +(2n )'"Iin
p

a—=2(aH/g) g Re(q )y,—I/A, =O,
v=0

(35)

where A, = Vg. The well-known low-field limit, that is,
the BCS equation for T„ is readily recovered by taking
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0.2 combinatorial factor:

(n + }' i —1/2 —(n —n') /4n
, =inn) e

nl n 1 2n+n' (38)

O.l--
259 25.2 25.4

and by setting the lower limits of the summations over
the Landau level quantum numbers, measured with
respect to nF, to be at —oo. With the help of the Poisson
summation formula and the residue method, one recovers
our formula for A, Eq. (29), with y„ identical to our re-

sult, Eq. (30), but with a slightly different formula for q„,
that is,

0.2
q =2—2Re 1 1

/ o
—' / o

where

e= exp(2n [co„/co, in+—]) . (40)

Q. I

25.0 25.2
H {T)

25.4

We have compared the two results for q„and found that
they are numerically very close, except for very low tem-
peratures (see Fig. 1).

III. THE SUPERCONDUCTING STATE BELOW Hc2
FIG. 1. A comparison between the semiclassical approxima-

tion used in this paper for the condensation energy 5 (solid
curve) and the asymptotic expression derived by the
Gruenberg-Gunther method (Ref. 11) (dashed-dotted curve), for
two difFerent temperatures: (a) T=1 K and (b) T=0.5 K. In
these plots Hi, =2.22, E+=2029 K, and T, =87 K.

y„—+1/a„=g/2(2v+ 1)aH (36)

and, with the neglect of quantum oscillations (i.e., taking
q„=2), Eq. (35}reduces to

v —1D 1 KvD

,
=J tanh(v)=1/A, ,

V+2 0 V
(37)

the well-known BCS result.
It should be emphasized here that our semiclassical

scheme is not identical to the conventional semiclassical
scheme used by Gruenberg and Gunther:" In the latter
the semiclassical condition nF »1 is invoked at the end
of the derivation; that is, the exact quantum-mechanical
result, Eq. (9), is calculated in the asymptotic limit. This
can be done by using a Gaussian approximation for the

the ratio a~/g between the magnetic length and the
thermal mean free path in Eq. (30) to be larger than uni-

ty. This amounts to taking a„»1 and neglecting the
quadratic term in the exponent with respect to the linear
term. The integral over p is then trivially performed to
yield

A. The quartic term

To study the superconducting state below H,2(T) one
should be able to calculate the quartic term in the free en-

ergy, Eq. (2), for a general variational form of the order
parameter b,(r). This is a complicated problem in the
general case, but can be considerably simpli5ed within
our semiclassical approach due to our observation that
paired electrons propagate coherently only within a dis-
tance much smaller than their cyclotron radii. Thus in
calculating the quartic term we may take advantage of
the fact that this term describes the propagation of four
electrons where every one of them engages in pairing
with two others [see Eq. (6}]. As a consequence this
four-particle correlation process contributes significantly
to the superconducting free energy only where the propa-
gation distances of the four electrons involved are within
a region of the order of the magnetic (coherence) length.
It would therefore be sufficient to use our approximate
farm (19), for the single-electron Green's functions in the
calculation of the quartic term.
Now, since those eigenfunctions of the integral operator
Q [see Eq. (5)] which have the general form (8) constitute
a complete set in the subspace of wave functions 4(x,y ),
corresponding to the ground Landau orbital, Eq. (8) is
the most general variational form of the order parameter
when the condensate of Copper pairs is restricted to the
ground Landau orbit. Substituting this variational form
inta Eq. (4), and using the approximate form, Eq. (19), of
the single-electron Green's function, we can write the
quartic term as
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F = Boi3Of d rid r2d r3d r4(p12P42P13P43)
' f(zi )f (z2 )f (z3 )f(z4 )

4
1X exp —g lz, I'/2 exp ——($12~3}12+$42~3}42+$13~913+$43i}3}43}

j 1
2

T

Xexp ——( il i26412+ '9425/42+ i}i 36/1 3+ '1}435/43 )
2

exp[1 sgn(~ }(2nF} (P42 P12+P13 P43) la l(P42+P12+P13 P43)]

where p;1 =lr; —r, l/aH, gj—:xj/aH, rij =yjlaH, z, =—(J.
+i g, g';1 —= (g;+pi )/2, b g,z

——(g; —gi), and Bo=—ks T/32&A' aH co,nF. The use of the approximate
form (19) will be further justified later on.

The entire function f(z) can be written as
00

f(z )=e" ' g c„exp(2irinz /a„), (42)

where I c„]are arbitrary variational coefficients, and a„ is
an arbitrary, dimensionless constant. The sum over n
defines an analytic function in the complex plane, which
is periodic along the x axis. Since the period is of an arbi-
trary size a„aH, the proposed form of f(z } can be used

(1/2 jzwithout loss of generality. The Gaussian factor e"
can be decomposed into an integral of the form

e "~ ' =3/2/n. f exp(2mz —2m }dm (43)

and so, f(z ) may be written as a Fourier-like expansion
in the complex plane:

f(z)= g f c„(rn)e " dm = ~~~ c e" ',
n = —00

(44)

and2mwhere c„(m )
=&2/n. e 2 c„ co„(m )—:2m—2n ~i /a„.

The use of such a complex "Fourier" representation
for the entire function f(z ) simplifies significantly the
calculation of F,' '. A further simplification may be
achieved by noting that the above formula for F,' ' con-
tains factors of the form exp(ikF'p ,'la.„lp—)!—3/p,where

kF ——sgn(co, )(2nF )' =kF aH sgn(co, ), which can be
represented in the semiclassical limit as a Fourier in-
tegral:

d2 g
~

exp(ikFp ,' la„lp
—}—/'t/p~(2m ) e " f

Qp la„l /2+i (p —kF )sgn(co, )
(45)

where p =paH.
Thus, representing each factor of this type by the Fourier integral (45), and using a combination of stationary phase

and contour integration methods, we can reduce the multiple integral involved in the calculation of F,' ' into a triple in-
tegral, and then write

aaF'4'= —2m-a 2
gs H

2 2aH, ~0
~o

go 2mks T,

X, c c c c e 14 23

1 2 3 4~1& ~ ~ ~

X ~ ~'f "dp»f "dp42exp~ la-l(p4—2+p») 4(p42+—p130 0

}t'42+}('13
X dp12 exp[ —

—,'(p12 p42) 4(p12
—p13) ]

XIO((bco14bco23) I l pi2 (p42+pi3)/2] + 4(p42 p13) ] },
(46)

where co,j. =(co;+coj)/2, hco;~=(co, co ), go
=—fiUF/nksT, is the —zero-temperature coherence length, and Io is the

modified Bessel function of zero order.
Note that in deriving this formula we have consistently neglected every term of O((b,co;. ) ) or higher in the exponent.

These terms are found to be either very small compared to unity (in the semiclassical liinit), or of the order unity, but
independent of the magnetic field. Since terms of this type are absent in the zero-field (classical Ginzburg-Landau) lim-
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it, the field-independent ones should cancel each other, while the other ones are negligible.
Equation (46) shows that the contributions to the integrals over p; —= ~r,

—r
~

from regions where p,"&&an are negli-

gible. The dominant contributions to these integrals come from regions where p," aH, for which the approximation
(19) for the single-electron Green's function is valid. Thus our use of the form (19) for the Green's functions in Eq. (6}is
consistent with the result of the calculation presented in Eq. (46).

Using the integral representation
2'

Io(2&ah ) =f exp(ae'e+ be ' )d 8
0

and performing the integrals over the real parts of co;, i =1,2, 3,4 we can rewrite Eq. (46) in the form,

n&, n2, n3

X g Re(q, )5„(nz n—
&, n3 n&—) exp [(n2 n&—) +(n3 n, —) ]

X

(47)

where

(+la ) n.

J J

are new variational coefficients, N is the total number of vortex lines threading the superconductor,

(48)

I Ha a

ko
~'"a„(k,T, )',

and

oo

5,(n, n')= dpexp( —2a~ —p )
0 2'

X f"d8f dx f dyexp —(x +y }sin 8—ixy sin(28}—
p

+ [y(ln cos8 n sln8)+x( ln cos8+n sln8)]
a„

(49)

B. Variational solutions

It is now possible, without any further approximation,
to solve the variational equation derived from the free en-
ergy functional (2) with the quartic term given by Eq.
(47). The quadratic term, Eq. (3), can be readily calculat-
ed with the help of Eqs. (28)—(30) to yield

F,'2'= m.a 2 Nb,~ri~— (50)

F, =maHNgbo —a g a„*a„

+ g U(n2 n„n 3 n—)a„—
nl n2n3

Thus, to fourth order in 50, the superconducting free en-
ergy can be written in the following variational form:

U(n, n'}= lkoa g Re(q„—)exp[ (nia„) (n—+n' )]
v=0

X5„(n,n') . (52)

The free energy functional F, [a„,a„'J in Eq. (51) de-
scribes an ensemble of particles (bosons), with condensa-
tion energy cz per particle, but zero kinetic energy, in-
teracting via a two-body potential U(n, n') given by Eq.
(52}. The variational coefficients a„,a„* may be regarded
as. annihilation and creation operators for those bosons.
It should be noted here that Eq. (51) does not include any
contribution to the free energy associated with the in-
duced supercurrent. The leading contribution of this
type is quadratic in 60 but its prefactor is vanishingly
small for the extremely type-II superconductors con-
sidered in this paper.

Variation of F, with respect to the coefficients [a„*]
leads to the following equation for each n:

~n +n —n n n2 3 1 2 3
(51) aa„=26,oII g U "(n2 —n „n n, )a„a„'a—„+„

n&, n&

where (53)
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where

U"(n, n')= —g Re(q, ) exp[ —(m./a„) (n +n' )]
v=O

X Re[5„(n,n')] . (54)

a„= exp
a,

(55)

where b„ is an arbitrary real number, provided that the
amplitude ho of the order parameter is the real positive
so1ution of the quadratic equation:

b,a=a/2Bs(b„, b» ),

s(b„,by ) =—

n, n = —oo
I

2vrinn'b„ la„

(56)

Equation (53) is a generalized version of the variational
equation first derived by Abrikosov in his classic paper. '

We have found that it has a continuum of exact solutions,
which can be written explicitly in the form

derived after noting that (1) For n, n' ~ 1 the contribution
to the sums over n and n' in Eq. (57) is small, provided
that b» la„ is not too small compared to unity; and (2) the
dominant contribution to the integral over p in Eq. (49)
originates in p(1. We may, therefore, regard the in-
tegration operator (1/2n}f.0 d8( ) as an averaging ( },
and use a "cumulant" expansion of the average 0-
dependent exponential in Eq. (49). Thus to second order
in any combination of x,y, n, n' (note that xy ~p) only
the first cumulant of the 8-dependent exponent contrib-
utes and we find that

—2 ——-2

5 (n, n')=4f dpe

x f'dx f'dy exp[ —(x +y )(sin 8}].
0 0

(59)

Now ( sin 8}=
—,
' and the integrals over x and y can be

readily performed analytically to yield

5 (n, n') =2m f e [erf(p/&2)] dP—:5„. (60)

n, n = —ccI aa

X g Re(q, )Re[5„(n,n')] (57)

~~V 2 2
2n.i'

exp — (n +n' )+ nn'
Note that 5 is independent of n and n' Thi.s refiects the
fact that in the semiclassical approximation used the vor-
tices and the superconducting electrons are separable en-
tities. Consequently the double sum over n and n' in Eq.
(57) can be readily carried out, leading to

and b»—:m/a„. Note that at this stage b„and a„, and
therefore also b, are completely arbitrary real numbers.

These solutions for the variational coefficients [a„]
yield for the entire function f(z ):

f(z)=e' ~ 83
m.z b

a a
(58)

where 83(g~z) is the Jacobi theta function, and the
complex number b is defined by b =—b„+ib~ The result-
ing solutions for the order parameter [see Eq. (g)] can be
readily identified with the Eilenberger quasiperiodic
eigenfunctions for arbitrary 2D periodic lattices, whose
primitive unit vectors are a„and b. The relation between
b and a„, that is, a„b~=m, fixes the Aux through each
unit cell to be one ffux unit $0. The remarkable thing
about this set of solutions is that despite the inclusion of
the quartic term in the free energy, the variational pro-
cess does not favor any special geometry of the vortex lat-
tice. Only the calculation of the free energy (51) for the
various geometries of the vortex lattice can eventually
isolate a single structure, like the triangular lattice:
b„=—,'a„, b =(&3/2}a„as a favorable solution. Note
that for any b„of the form b„=(rn+ —,'}a„,with m in-

teger, our coefficients a„[Eq. (55)] satisfy the Abrikosov
periodicity conditions a„+2=a„, and a, =iao.21

To the best of our knowledge this is the first time one
writes explicit expressions for the variational coefBcients
a„(denoted c„ in Abrikosov's paper). It is remarkable
that the same solutions are valid both in the (local)
Ginzburg-Landau regime and in the (nonlocal) high-field
regimes.

A useful approximate expression for s (b„,b ) can be

s(b„,b ) =s(2b la„) g Re(q „)5, ,
v=O

(61)

with s(s)—:~83(0~a)( + (82(0~&)( and Sz 3(g~s) the
Jacobi theta functions.

It can be readily shown that (b„la„)' y(2b/a„) is just
the well-known geometrical factor P„of the Abrikosov
theory. ' Thus our final result for the square amplitude
of the order parameter can be written in the form

CX&0= (eke T, )
28

where

Note that

~H ~H g Re(q„)5
v=O

(63)

f, = = r) —ab,o+ b.o
F

2 & 4

NmaH (eke T, )

= —q(m.k~ T, )
48

(64)

60=(1/nNaH) f d r~A(r)~

Thus Eq. (62) provides an explicit expression for the
square modulus of the order parameter averaged over the
entire Abrikosov vortex lattice.

The corresponding superconducting free energy per
unit Aux area can thus be written in the following
Landau-like form:
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Note that B [Eq. (63}] is proportional to Pz while the
other factors in (63}are independent of the vortex lattice.
Thus the free energy f, for a & 0 is negative and inversely
proportional to P„, as in the classical Abrikosov
theory. ' ' This implies immediately that the triangular
vortex lattice yields the minimum free energy.

An important test of our results for 50 is to examine its
zero-field (classical) limit: In this limit (aH /g) » 1,
q„~2, so that

7TYg) dva —+ f tanh( v) —1/A,
0 V

viations, which reflect the sensitivity of the condensation
energy to the presence of the cutoff in the pairing energy
spectrum. As already indicated in Sec. II, the cutoff may
be introduced in two alternative ways, which are not
equivalent. Physically the procedure which leads to Eq.
(11) should be the correct one since the cutoff is intro-
duced to the real pairing energies there. Our WKB
scheme is associated, however, with the alternate ap-
proach, where the cutoff is introduced to imaginary
(Matsubara) energies.

We therefore consider here the difference hA between
the corresponding quantum-mechanical expressions for
the condensation energy:

the well-known BCS result for a. Furthermore, since
a„&&1, and T~T, in this limit: hA —= A —AM, (6g)

5,~2m f e " [erf(p/v 2)) dp
0

4f "e ""'pdp= ',

and

(65}

where A is given by Eq. (11),and A~ is given by Eq. (9),
with the Matsubara sum truncated at

~ v~ =vn —1, that is,

(n+n'}! X (n )+y (n'}
AM =

~pro~ !n'! 2"+"'
co,(n+n'+1) —2p,

B~—,'Pq g (2v+1) =
—,'Pq 7g(3)

v=0 8
(66) with

where g(n) is the Riemann zeta function. Thus the order
parameter

vn —1
1

n =—'
, +, im(v+ ,') ,'—Ps—„— (70)

Q2
~~ [7@3)/g l

which is the well-known Gorkov results near T, .

IV. BEYOND WEB

(67) For Landau levels satisfying —,'p~s„~ & eve the truncated
Matsubara sum y (n ) in Eq. (70} and the corresponding
hyperbolic tangent in Eq. (11}are related by a contour in-
tegral over a circle of radius ~VD in the complex plane
(see Fig. 3), that is,

The WKB approximation used in this paper yields a
remarkable agreement with the exact quantum-
mechanical calculation of the condensation energy even
quite close to the quantum limit (see Fig. 2). This should
not be surprising since it is well known that for harmonic
oscillators the semiclassical path integral is identical to
the exact quantum-mechanical one.

There are, however, some small, though systematic de-

g (n)= —,
' tanh(Pe„ /2) —T„

with

1 g tanh(z )dz

n, cr

For Landau levels outside the circle y (n ) =—V'„

(71}

(72)

3.0

2.6-
+2pE~= 7TV

2.2-
—I/2 EF

l.s I

65.0 63.5 &to 64.5 650 65.5

FIG. 2. A comparison between the semiclassical approxima-
tion used in this paper for the eigenvalue of the kernel Q
(dashed curve) and the exact quantum-mechanical eigenvalue
(solid curve). Note the small jumps in the exact result, which
are due to the presence of the sharp cutoff. In this plot T=0.75
K, m, =2, and the other parameters are as in Fig. 1.

—l7T P
D

FIG. 3. The "cutoff" circle in the complex energy plane. The
sense of integration along the contour is indicated by arrows.
"Matsubara" frequencies are indicated along the imaginary
axis, Landau levels along the real axis.
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Thus the difference 6 A may be calculated from the ex-
pression

0.50

0.28-

b A =
—,
' (n + n ')! +n, ~+ +n', —~

„„-on! n'! 2"+" n+n'+1 —2nF
7

(73)
P.26-

0.8-

p 4 iW

0.0-
0

-p4

-0.8-

O.p eo I20 ISO

FIG. 4. The "cutoff" circle integral 'T„[Eq. (72)] as a func-
tion of n, shown both inside and outside the pairing regions.
Note the jumps at the circle edges.

once the contour integrals Y„are computed.
The behavior of hA when the field is varied can be

studied by inspecting these integrals. Assuming, for sim-
plicity, that the spin splitting is zero, the integrand has a
simple pole whenever a Landau level crosses the cutoff
circle (see Fig. 3). This happens when fico, (n +—,

'
)

=EF+~k&TD. Thus the sum over the Landau levels is
dominated by the levels nearest to the circle edges
(defined as the intersections between the circle and the
real axis). It can be checked that the contributions from
the levels inside the circle are positive while the levels
outside the circle contribute negative amounts to b, A (see
Fig. 4). Now, by increasing the magnetic field, all the
Landau levels move to the right on the real energy axis:
Near the left edge of the circle, the internal level moves
away from the edge, while the external one moves toward
the edge, both leading to a monotonic decrease in hA.
Near the right edge of the circle, however, the internal
level moves toward the edge while the external level
moves away from the edge, leading to a monotonic in-
crease in hA. As soon as a level crosses a circle edge,
there is a jump in the integral associated with the pole of
the corresponding integrand. For the left edge, the corre-
sponding jump in AA is positive since the level is enter-
ing the circle, while for the right edge the jump is nega-
tive since the level is leaving the circle. The remarkable
aspect of this intriguing behavior (see Fig. 5) is that the
rate at which levels cross the circle at the right edge is
different from that at the left edge: The crossing rate at
the right edge (i.e., above the Fermi energy) is

I+irk' TD/E~ times larger than the crossing rate at the
Fermi energy (i.e., the dHvA frequency), while at the left
edge (i.e., below the Fermi energy) the relative crossing
rate is 1 n.kz TD/E~. —

All these lead to two beat frequencies in the dHvA os-
cillations of the condensation energy, associated with the
presence of the cutoff in the pairing energy spectrum (see

t~
Cl

I, &llgg/Iffff///////// //////

0.20
50 Tp Bo loo

FIG. 5. Magnetic field dependence of the correction, 4A,
which should be introduced to the exact quantum-mechanical
eigenvalue AM after transferring the cutoff from the imaginary,
thermal frequencies to the real energy spectrum. The values of
the relevant parameters are Ez =2029 K, m. TD = 1640 K.

Fig. 5). The corresponding structures are temperature in-
dependent since the position of the levels with respect to
the cutoff circle is independent of the temperature. They
appear totally sharp since the cutoff in the simple BCS
model used here is sharp.

One should keep in mind, however, that the nature of
the cutoff depends on the pairing mechanism, and in any
case cannot be totally sharp. For the conventional pho-
nonic mechanism it is far from being sharp. Thus the
jumps should be smeared out in this case. Smooth oscil-
lations, which refiect the entrance of Landau levels into
the interaction region (the slow beating oscillations) may
still be observable, however, at sufficiently high fields.

The frequencies of these oscillations are determined by
the ratio m.kii TD /EF of the cutoff energy to the Fermi en-

ergy: Larger cutoff energies make the fast oscillations
(with respect to the dHvA oscillations) faster and the
slow oscillations slower. A very large EF makes the two
beating frequencies closer to the central dHvA frequency
(and to each other) and thereby leads to cancellations of
the contributions from the incoming levels by those of
the outgoing levels. Thus in the limit of a very large Fer-
mi energy b, A goes to zero. Note that in Eq. (73) c„
varies between —EF and + ~. This electron-hole asym-
metry shifts the average value of 6 A from zero to some
positive, nearly constant value when EF is assumed to be
a finite value. The zero-field limit EAo of AA is there-
fore not zero. Both our semiclassical expression A„[Eq.
(29)] and the exact quantum-mechanical expression, Eq.
(11),for A yield, however, the correct zero-field (classical)
limit (37). Since A „is equivalent to the asymptotic limit
of AM [see the paragraph that follows Eq. (37)], it is
surprising that the zero-field limit of the latter does not
coincide with the BCS result (37).

This "paradox" can be resolved by noting that in deriv-
ing Eq. (19) for the single-electron Green's function the
lower limit, —no, of the sum over the Landau levels [Eq.
(16)] is replaced by —ec. Clearly, for vanishing magnetic
field no =[nz] tends to QD. However, the order in which
one takes the limit turns out to be important: Keeping



de HAAS-van ALPHEN EFFECT IN THE SUPERCONDUCTING. . . 8371

the lower limit at —no and then taking the zero-field lim-

it yields a result which is smaller than the zero-field limit
of (29) by the additive constant b, Ao.

Thus our simple semiclassical expression for the con-
densation energy, Eq. (29), unlike the corresponding
quantum-mechanical result (69},has the correct zero-field
limit, and should be corrected only for the small quantum
structures associated with the presence of the cutofF.
This may be done by adding 6A to A „and subtracting
the average of hA over the period of the slow oscilla-
tions. Since this average is almost constant, very close to
EAO (see Fig. 5), the corrected semiclassical condensa-
tion energy can be written as

A"'=A +hA —hA, . (74}

V. NUMERICAL RESULTS

The formalism developed in Secs. II—IV enables us to
compute any observable which is a functional of the su-
perconducting order parameter near the upper critical
field. In particular, one may wish to compute the average
magnetization per unit flux area, M, —=Bf, /BH, due to
the induced supercurrent, as a function of the magnetic
field H. Since the Gorkov expansion is carried out
around the normal-super conducting phase boundary,
there is a significant zeroth-order contribution f„ to the
total free energy f=f„+f, associated with the normal
electrons. The corresponding contribution, M„, to the
magnetization can be calculated analytically in the low-
temperature (or high-field) limit, when only the two Lan-
dau levels adjacent to the Fermi energy are partially oc-
cupied. ' The resulting expression for the magnetiza-
tion has an amplitude of the order of E~/Po, so that the
dimensionless quantity PoM„/EF is of the order unity in
this limit. The corresponding superconducting part of
the magnetization may be written in this unit system as

Po ~Is
(0}B(a /28)

(75)
EF BH ' BH

where H, z(0) is the zero-temperature upper critical field
defined in Eq. (33). This result indicates that at fields H
close to H, z(0) the superconducting and the normal parts
of the magnetization are of the same order of magnitude.
Our numerical results, shown in Fig. 6, confirm this con-
clusion. Since the magnetic field dependence of these two
parts is quite different, it may be possible to distinguish
between them. Thus measurement of the magnetization
below H, z(T) at sufficiently low temperatures may be
used as a tool for detecting quantum oscillations in the
superconducting order parameter.

It should be noted here that under a strong magnetic
field the chemical potential in systems, where the number
of electrons is fixed, is not field independent. ' In the
3D case the oscillatory part of the chemical potential has
a prefactor of the order 1/n~ (Ref. 31) and is, therefore,
small. In the 2D case, however, the oscillations may be
quite strong, and should not be neglected. Their
influence on the magnetization, as well as on other ob-
servables, such as the spin relaxation, has been investigat-

5.0

oo ~Illlllll /ill//(/
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I

35 40

5.0
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g oo-l //////////,

-5.0
25

I
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I

35

FIG. 6. (a) The superconducting magnetization oscillations
in the limit of fixed number of electrons. The normal-electron
part of the magnetization is shown in the lower right corner
(shifted downward for clarity). The selected values of the pa-
rameters, i.e., T, =87 K, E~/k~=2029 K, may characterize
Bi&CaSr&Cu&08+„. The mass ratio m, /mo=2 (second spin
splitting zero), and m. Tz =1093 K. The temperature is T= 1 K.
(b) The total (superconducting plus normal-electron) magnetiza-
tion oscillations.

ed in detail in Refs. 28 and 32. In real 2D systems the
strong oscillations of the chemical potential are, usually,
damped due to various reasons, most of them are materi-
al dependent, and as such are very difBcult to control.
For example, the presence of a reservoir of electrons in
localized states (e.g., in heterostructures), the existence of
charge transfer between the intercalant and the conduct-
ing layers in some of the graphite intercalation com-
pounds, or the presence of several sheets in the Fermi
surface, which is typical of most metals, strongly reduce
the oscillations in the chemical potential. Furthermore,
even when all these extrinsic factors are not present, the
number of electrons cannot be assumed to be constant
when Cooper-pair condensation takes place. A con-
sistent calculation of the order parameter and the chemi-
cal potential is beyond the scope of this paper.

Thus, in the absence of a comprehensive scheme for
calculating the chemical potential, it seems reasonable to
examine the two extreme limits: (1}The limit when the
number of electrons in Landau levels are fixed, and (2} the
limit when the chemical potential is fixed. It is remark-
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I.O
(a)

-I 0
30.0

I

50.5
H {T)

31.0

able that in both extremes we have found basically the
same result; that is, in spite of the fact that many Landau
levels are involved in the pairing, the superconducting or-
der parameter is a strongly oscillating function of the
magnetic field.

Figure 6 shows both the normal and the superconduct-.
ing parts of the orbital magnetization below H, 2( T= l K)
in the case when the number of electrons is fixed. The
selected values of the parameters used in the calculation

may characterize the highly 2D Bi(2:1:2:2)oxide super-
conductor. As expected, it is seen that the envelope of'

the superconducting magnetization oscillations decreases
with the magnetic field. What is remarkable, however, in
this figure is the significant difference in the shape of the
envelopes: While the normal magnetization envelope is
seen to increase weakly with H in this field range, the su-

perconducting magnetization envelope decreases ex-
ponentially with increasing magnetic field. This exponen-
tial behavior contrasts with the mell-known linear de-
crease of the superconducting magnetization in the
Ginzburg-Landau theory. There are also differences in
the fine structures of the oscillations, which become very
significant at lower temperatures (see Fig. 7).

A similar effect can be seen in the oscillations of the
mean-square order parameter (Fig. 8). The value of the
cyclotron effective mass selected in this figure (i.e.,
m, /mo =2) corresponds to zero spin splitting (see later).
It is seen that by lowering the temperature the regions of
large superconducting order expand, as expected, but
also get Qatter and eventually develop dips in the middle.
The reason for this behavior can be understood by con-
sidering separately the corresponding oscillations of both
a and 8 [see Fig. 8(b)]. Since b,o is proportional to the ra-
tio a/B, it is clear that any sharp change in a is compen-
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FIG. 7. (a) shows the same data as Fig. 6(a) within a small
window of magnetic fields. The normal-electron part is
represented by the dashed curve. (b) and (c) are plots similar to
the superconducting part (solid curve) shown in (a) but with
temperatures T=0.7S and O.S K, respectively. Note the Aatten-

ing of the superconducting magnetization at low temperatures.

FIG. 8. (a) The mean-square order parameter within the

same field range as in Fig. 7, and for the same set of parameters.
The dashed curve is for T=1 K while the solid one is for
T=O. S K. (b) exhibits the condensation energy a (solid curve)

and the pair-pair interaction factor B (dashed curve), corre-
sponding to the data presented in (a).
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sated by the corresponding sharp change of B. This is a
negative feedback effect on the sharp change of the densi-

ty of states at the Fermi energy, which is associated with
the interaction (quartic) term in the free energy (64). In
other words, any sharp increase (decrease) in the density
of states at the Fermi energy, which follows a variation in
the magnetic field, leads to a sharp increase (decrease) in

the condensation energy while also leading to a sharp in-
crease (decrease) in the vortex-vortex repulsion. Thus the
feedback is always negative and its strength increases
with decreasing temperature since the interaction term
varies with the square of the two-particle oscillation fac-
tor q„[see Eq. (63)], while the condensation energy term
is only linear in this quantity.

Figure 9 exhibits data equivalent to Fig. 7 in the oppo-
site extreme case when the chemical potential rather than
the number of electrons is fixed. In contrast to Fig. 7, the
regions of smooth variation correspond here to regions of
low density of states [and low superconducting order; see
Fig. 8]. Note that the oscillations exhibited in Fig. 9 are
significantly smoother than the corresponding ones
shown in Fig. 7. The sharp variation of the latter is re-
stricted to certain narrow regimes, where the chemical
potential changes rapidly between two adjacent Landau
levels, and is the direct consequence of this motion.

Thus the dHvA oscillations arising solely from the
Landau quantization of the pairing energy spectrum (and
not from the oscillations of the chemical potential) are
reflected in the magnetization curve of Fig. 9. They are,
therefore, significantly smoother than the corresponding
normal dHvA oscillations. This remarkable difference is
due to the fact that the cooperative process of pairing in-
volves many Landau levels around the Fermi energy,
while in the normal state of our 2D system the presence
of magnetic gaps in the single-electron spectrum makes
the contributions of distant Landau levels exponentially
small with A'ro, /k~ T. Quantitatively speaking, the
thermal damping of the oscillating factors, q„[Eq. (24)],
in the superconducting condensation energy, varies with
exp[(2/k~ T/%co, ) ~2v+1~ ]. This is the usual Lifshitz-
Kosevich factor, which characterizes Landau-quantized
systems without magnetic gaps (e.g., three-dimensional
systems).

O. I
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75 125
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I75 225

0.0550

The oscillations in observables, which are functionals
of the order parameter, are further smoothed out by the
negative feedback effect discussed above. Nevertheless,
at reasonably low temperatures the oscillations are quite
strong, and persist well below H, 2, even in the usual situ-
ation, when the Zeeman spin splitting leads to pair break-
ing effect (see Fig. 2 in Ref. 13). Such large oscillations in

kp around H, 2 may lead to periodic disappearance and
reentrance of superconductivity with 1/H, which may re-
sult in a significant smearing of the transition to the su-

perconducting state.
The oscillations enhance dramatically under the reso-

nance (spin splitting zero) condition, when m, /mo be-
comes close to an integer. The possibility of controlling
experimentally the cyclotron mass to achieve such a reso-
nant condition is unique to highly 2D electron systems; it
can be done by tilting the magnetic field with respect to
the axis normal to the conducting planes. Indeed, very
recently Wosnitza et al. reported measurements of the
dHvA effect in organic superconductors, in which they
determined up to four spin splitting zeros in the dHvA
signal. Under such a resonant condition, the enhance-
ment of the density of states at sufBciently high fields can
be so large that the resulting increase in the supercon-
ducting condensation energy can compete with the in-
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FIG. 9. (a) shows the superconducting magnetization oscilla-
tions, as in Fig. 7, but in the case when the chemical potential is
fixed. The solid curve is for T=1 K, while the dashed curve is
for T=0.5 K.

FIG. 10. (a) The superconducting magnetization and (b) the
mean-square order parameter, for the same parameters as in

Figs. 7(a) and 8(a) but in an extended field range up to 240 T.
Note the considerably smaller amplitudes of the oscillations in

the reentrance region.
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crease of the pair kinetic energy, thus leading to a
dramatic reentrance of the superconducting state well
above the classical Ginzburg-Landau phase boundary.

In Fig. 10 we exhibit numerical results for the magneti-
zation M, and for the mean-square order parameter over
an extended field range up to 240 T, and for T=1 K.
The mass ratio in this plot is 2. The remarkable feature
of this plot is the reentrance of the superconducting
dHvA oscillations above 120 T, well above the classical

phase boundary. Note, however, that the osci11ation am-
plitudes in the reentrance region are much smaller than
in the conventional superconducting region. The corre-
sponding phase diagram is shown in Fig. 11(e). The criti-
cal point for the backbending of the phase boundary is
found at about T=0.8 K and H=50 T, which is within
an experimentally accessible range of fields and tempera-
tures. This is a dramatic raanifestation of the two-
dimensional dHvA effect since the critical temperature
for the backbending in three dimensions is several orders
of magnitude lower. ' For comparison, the phase dia-
grams for higher-order spin splitting zeros are also shown
in Fig. 11: The critical temperature seems to be indepen-
dent of mass ratio, whereas the critical field increases
linearly with it. It should be noted, however, that a small
deviation from zero spin splitting is suScient to diminish
this reentrance effect [see Fig. 11(d)].

The extraordinary aspects of the 2D dHvA effect pre-
dicted in this paper are all expected to be washed out by
sufficiently strong impurity scattering. This will take
place by smearing the oscillation factors q in the same
way as in the ordinary dHvA effect. This smearing effect
can thus be estimated in terms of a Dingle temperature.
The thermal broadening of the oscillations, calculated in
this paper, indicates that such a Dingle temperature
should not exceed a value of about l%%uo of T, to avoid
smearing the main oscillations' effects.

Fluctuations pose another challenge to the observation
of the predicted effects. The ordinary amplitude and
phase fluctuations of the order parameter should be
strongly quenched by the low temperatures (and high
fields) to be employed. The effect of vortex-line fiuctua-
tions is far more difficult to estimate. Physically speak-
ing, ho~ever, the oscillations considered here originate in
the underlying single-electron quantization structure near
the Fermi surface, which is not expected to be strongly
affected by spatial variations in the (small) order parame-
ter near H, z. Furthermore, the remarkable decoupling
found in Sec. III, between the oscillatory part of B and
the part associated with the vortex lattice, may indicate
that vortex-line motion should not strongly affect the os-
cillations in ho.

l80- (e) VI. CONCLUSION

I 30-

80-
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0.0 l.o 2.0 3.0 4.0 5.0

FIG. 11. Phase diagrams around the critical points for reen-
trance superconductivity for three spin splitting zeros: (a)
m, /ma=2, (b) 3, and (c) 4. (d) A similar plot for nonvanishing
spin splitting (m, /m0=2. 22). The chemical potential is fixed
in these plots. (e) The same as (a) but with the number of elec-
trons fixed.

In this paper we have studied the extremely type-II su-
perconducting state of a 2D electron gas under high mag-
netic fields near H, 2, focusing on the calculation of physi-
cally measurable quantities, such as magnetization oscil-
lations. In addition to the physical predictions of this pa-
per, we have gained a deeper insight into the behavior of
2D superconductors in magnetic fields. We have found
that the conventional picture of pairing is not drastically
changed under the inhuence of a strong magnetic field,
provided that the number of occupied Landau levels is
large: As long as this number is not too close to unity,
the pairing coherence length is much shorter than the cy-
clotron radius of an electron at the Fermi energy, and the
dominant pairing processes take place between electrons
of approximately equal and opposite momenta. The
single-electron states involved in pairing originate in
many Landau 1evels around the Fermi energy, and they
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efFectively appear as a thermally broadened energy shell
around the Fermi energy. Pairing at low but finite tem-
peratures should therefore be regarded as both intra- and
inter-Landau-level processes.

Contrary to the analysis of Ref. 15, we have found that
the crossover between the semiclassical and the quantum
regimes is quite smooth, and that "semiclassical pairing"
remains an appropriate picture rather deep inside the
quantum regimes. This result may have important impli-
cations in related areas. For example, very recently
Dukan, Andreev, and Tesanovic' considered the quasi-
particle excitation energies in the quantum limit (i.e.,
when pairing is restricted to a single Landau level) and
found that, due to the vanishing of the order parameter
at the reciprocal lattice points of the vortex lattice, this
energy spectrum is gapless. Since in the low-field limit
the spectrum has a gap, it is clear that the inclusion of a
sufficiently large number of Landau levels (i.e., off'-

diagonal terms} in the Bogoliubov —de Gennes equations
should eventually reopen the gap in the quasiparticle en-
ergies. On the basis of our results it is therefore expected
that the crossover from the conventional superconduct-
ing state to the very high-field gapless state would be
quite smooth.
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