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Stability of current-carrying states in Josephson-junction arrays
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Analytic and numerical calculations are presented for current-carrying states in frustrated Josephson-

junction arrays. In particular, we study a family of states which are a generalization of the "staircase"
states proposed by Halsey. For the fully frustrated case, it is possible to obtain exact analytic solutions

explicitly in terms of the net supercurrent orientation. We 6nd states that carry currents up to critical
values of I, &

which are larger than the intrinsic critical currents I,o obtained previously by other authors.
However, an analysis of the stability of these new states shows that they are unstable to fluctuations in

the phases of the superconducting grains.

I. INTRODUCTION

g yj= g (8;—8.—A;. )
ij Gn ij Gn

= —2srf (mod2n )

=2m(v„f ), . —

where v„, the vorticity of the plaquette n, is an integer or
zero.

The ground state of the system is the configuration of
phases [8;] which globally minimize the Hamiltonian (1).
This is one of the stationary points of &, i.e.,
configurations [8;] from which small deviations leave %f
unaltered. At rational fields f=p/q, the lowest-energy
state is spatially periodic, with a q Xq unit cell, in which
unit vorticities are arranged in a regular superlattice. '

Two-dimensional Josephson-junction arrays have been
a subject of extensive experimental' and theoretical
studies. In the simple model generally used to describe
these systems, the Hamiltonian is the sum of individual
Josephson-junction energies,

%=—J g cos(8, —8, —
A;~ ),

&ij )

where 8, is the phase of the complex order parameter of a
point superconductor at the site i, A;1 =(2n'/4&) j A dl
is the integral of the vector potential A from site i to j,
and 40 is the fiux quantum.

The Josephson tunneling current between two sites is
given by the relation

I; =(2e/fi)J sin(8; —
81

—
A;1 ) .

In the limit where the magnetic field induced by super-
currents Sowing in the array is negligible compared to the
uniform external field H, the sum of the phase factors A;~
around a plaquette is equal to

2n (Ha /4o) =2m f,
where f is the number of flux quanta through each pla-
quette, and a is the lattice constant. The sum of the phase
differences around a plaquette n is

In particular, for the "staircase" states proposed by Hal-
sey,

' vortices lie along diagonal lines (in the [11]direc-
tion).

One issue of particular interest is the critical current in
these systems. The zero temperature, or "intrinsic" criti-
cal current I,o of an array is the largest supercurrent for
which a metastable state exists. ' A prominent feature
of an array of discrete superconductors is the reduced
symmetry compared with an isotropic continuum super-
conductor. The critical current, for example, is an aniso-
tropic quantity. Apart from presenting numerically
determined values of I,o in arbitrary directions, Halsey
also gave an analytic argument for its value in the direc-
tion along the lines of vortices. This energy difference ar-
gument shows that staircase states are unstable to small
phase deviations if the phase differences on any staircase
are beyond the range [ m. /2, n./2].—This sets a limit on
the maximum current that a metastable state can carry.
More recently, Benz et al. presented exact calculations
for the critical currents in the [10] direction, for f=
and —,'. These agree with previous numerical simulations.

In this paper, we present analytic and numerical solu-
tions of current-carrying states, which are a generaliza-
tion of staircase states. These encompass the results of
both Ref. 10 and Ref. 5. In addition to the states ob-
tained in these references, we have also found families of
higher-energy states which can carry larger super-
currents, up to "upper" critical values of I,&. Following
the procedures of Benedict, ' we analyzed the stability of
these "generalized staircase" states.

Throughout this paper, the effects of thermally activat-
ed vortices, domains, and other defects are neglected.
This is justified at temperatures far enough below the
transition temperature of the array, such as in the experi-
mental condition adopted by Benz et al.

II. ANALYTIC RESULTS FOR f =p/q

Stationary states of the Hamiltonian (1) satisfy current
conservation at all lattice sites. ' Staircase states are an
ansatz for the phase configurations which satisfy this con-
dition. Here, we consider a slight generalization of the
staircase states. Suppose that on each staircase running
in the [11]direction, the phase differences on all the hor-
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izontal links y; are equal, and likewise for the vertical
phases y';, while these two may be diff'erent (Fig. 1).
Again, we assume a spatial periodicity of q X q plaquettes.
With a change of variables, the phases can be written as

JE= g (cosy, +cosy,')
i
——]

g cosa;cos5; .

y, =a,-+5, ,

y,'=a, —5, ,
(3)

where i =1,2, . . . , q. a; is the average phase on the ith
staircase. The requirement of current conservation readi-

ly leads to

For a given vorticity configuration [ v„ I, where

n =1, . . . , q, all the phases u s and 5 s can be expressed
in terms of a, and 5„according to (4) and (5). a, and 5,
then play the role of two adjustable parameters that vary
the magnitude and direction of the net current. Here, we

study two special cases.

cosa, sin5, =cosa2sin5z= =cosa sin5 =C,

where C is a constant.
Now, from Eqs. (2) and (3), the phases a; satisfy

a&=a&,

a2=a, +n f—nv, ,

a3 =a2+ vf rrv2—
=a, +2m f m(v, +v—~),

(4)
A. Net current in the [11]direction

In this case, I„= Ii, an—d so C=O. Then, Eq. (4)

means that either cosa, =0 or sin5; =0 for i =1, . . . , q.
First, consider sin5;=0 for all i. The solutions then

reduce exactly to staircase states. The zero current
ground state is given by'

0 for q odd
up=

n. /2q q even

ao = [aoi+(n —1)rrf ]—m nint[a, +(n —1)ref ],
q

—1

a =ai+(q —1)nf ~ g v; .

Using the definition of the change of variables (3), the
horizontal and vertical components of the net current per
junction are, respectively,

'cpI„= g siny,
q

and

l p=Ci,o+ g sina, cos5;q,
(6)

I =
V

l p g siny,
'

l p=Ci,o 'g—sina, cos5;,

I"Y
I

I
7q if

7& i p 72

FIG. 1. Phase differences for the generalized staircase state.

where i, o2e /JA is the single junction critical current.
And so, I&+I,=2Ci,o. Likewise, the energy per lattice
site is given by

where nint(x) is the nearest integer function. This fixes
the vorticities in (5), and ensures that all the phases lie
within the range [—~/2, m. /2]. Among the q diiferent
ground-state phases, for every ak, there exists another
phase ak. such that O.k= —ak. . In other words, the
phases are "balanced" sym. metrically about the a =0 axis.

States carrying a nonzero current in [11]direction are
obtained by incrementing all a; from a; by the same
amount e. If all the phase di6'erences are limited to lie be-
tween —m/2 and m/2, i.e., within the limits of stability
according to Halsey, then the maximum current is
reached when e=~/2q, for which the intrinsic critical
current I,o([11])=v 2i,o/q

Here, we aim at obtaining the full solutions of the
problem, leaving the analysis of the stability of each solu-
tion till Sec. V. So, if the bound on the phases is disre-
garded, then the maximum current occurs when e=m/2.
At this value, the phases are balanced symmetrically
about the a=a. /2 axis. Using the results of Ref. 10, we

obtain the "upper critical current" as

&2i„
I„([11]) = csc

2q
(10)

Since the energy contribution of each phase difference,
namely, its cosine, is proportional to the projection of
each point in the phase diagram onto the a=0 axis, the
symmetry of the points means that the total energy sums

to zero.
Now consider the other possibility, that for some j,

cosa~ =0. In this case, 6 can take on any value. From
(8), the energy is the same for all these values, while the
net current varies according to (6) and (7). This corre
sponds to a horizontal line in the energy-current relation,
as observed in the numerical solutions described in Sec.
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IV. In general, since there are q di8'erent a s, there will

be q such constant energy lines.

B. Net current in the [11]direction

In this case, I„=Ih. Equations (6) and (7) imply that

I& =Ci,o and

q

g sina;cos5; =0 .

Ih = i,pcos+h sinph,

I, =i,osinyh sing„,

where (14) has been used to obtain the last expression.
The orientation of the net current 0 is thus

tan8=I„lIh =tanyhsinp, /sinph .

Now, with (14), Eq. (15) gives

tanyh =cos4„/cosA

(16)

(17)

(18)
The total net current is then I=&2Ih =&2Ci,o.

Now, suppose all the phases a s take on the ground-
state values of a;. As mentioned previously, the phases
occur in pairs, with ah= —ah. Equation (4) then re-

quires 5h=5h. It is clear that such a combination of
[a;] and [5;] will satisfy the condition (11), in which the
terms in the sum are again balanced about zero. Hence,
for a state with a net current in the [11]direction, a, =a;
for all i, and the magnitude of current varies according to
the 5 s.

The maximum value of C, and hence I„([11]},can now
be determined by considering Eq. (4). Obviously, the
largest value of cosa, sin5; for each i occurs when

sin5; = l. And so, the maximum value of C is limited by
the smallest of the q values of cosa;. From (9), this
occurs at a; =n/2 n. /2q. , —giving C,„=sin(n /2q ).
Hence, the "upper" critical current in the [11]direction is

Substituting this in (17) then leads to

tan8=sin(2$„)/sin(2$h ) .

Hence,

p„=—,'arcsin[tan8 sin2$h ]

or

(19)

(20)

p„=n/2 —
—,'arcsin[tan&sin2$h ] .

The two solutions in (20) correspond, respectively, to the
"lower" and "upper" branches described in the next sec-
tion.

With a fixed current orientation 8, (14), (18), and (20)
constitute a full solution to the problem, with ph acting as
the adjustable parameter that determines the magnitude
of current.

I,i([11])=~2i,csin(m. /2q ) . (12)
IV. NUMERICAL RESULTS FOR f =

2i AND 3

III. ALTERNATIVE ANALYTIC SOLUTIONS
FOR f=2i

r l Xh +Ah r2 Xh +Ah

rl=x. —4. rl= —x.—4.
(13)

ph and p„are now the average phase differences on the
horizontal and vertical junctions, respectively.

The procedures are similar to those in the last section.
With a "staircase-state-like" checkerboard vortex super-
lattice, ' '

+X„=m/2 .

The current conservation requirement leads to

singhcosPh =sing, cosP, .

(14)

(15)

The horizontal and vertical components of the net
current are, respectively,

In the previous section, analytic solutions are given for
the phase variables [a;] and [5;],as defined in (3), for a
general field f=p/q. a; is the average phase on the ith
staircase. That makes it easy to utilize results derived for
the staircase states by Halsey.

For the fully frustrated case, f= ,', it is also poss—ible to
obtain exact analytic solutions given explicitly in terms of
the net current orientation 8. For that purpose, it is more
convenient to use a new set of variables defined as follows:

Since stationary states of the Hamiltonian satisfy
current conservation, they can be represented by systems
of "loop currents" flowing around in every plaquette.
The equations which determine these loop currents may
be derived from Eq. (2), by noting that,

where the two terms on the right-hand side denote the
loop currents (in units of i,o) to the left and right of the
link ij. This leads to

g arcsin(I„I~ }=2m (v„—f ), — (21}

I(x +I„,y ) =I(x,y) L„I„, —

I(x,y +L ) =I(x,y)+L Ih,
(22)

where I„and I& are the average vertical and horizontal
components of the net current per junction. More details
of the numerical method and the loop current formalism
will be given in another pubhcation.

Figures 2(a} and 2(b) show the energy-current relation
for numerical solutions of (21}, for f=

—,
' and —,

' and the
same vortex pattern [v„J as the corresponding staircase

where the sum is over plaquettes neighboring to n. In this
equation, arcsin is a multivalued function, and its range
extends from —00 to + 00.

A net current can be imposed to flow across a periodic
system of L„XL„plaquettes, with the following twisted
periodic boundary conditions:
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states, namely with unit vortices along diagonal lines
([11]).The graphs are symmetric about the E =0 axis,
and only the lower halves are shown. At every orienta-
tion of the net current, there exist two branches. The
"lower" branch [for example, curve ACD on Fig. 2(a)]
corresponds to solutions obtained in Ref. 5, and is re-
sponsible for the intrinsic critical current I,o. The
"upper" branch (curve DEG) consists of higher-energy
states with currents extending up to a maximum of I,j.
The high-energy end of the lower branch is degenerate
with the low-energy end of the upper branch. For clarity,
some of the zero current states are shown in Figs. 3 and
4. Another general feature is that for a current in the
direction of the lines of vortices, i.e., 0= —0.25m. , the
low-energy branch joins on smoothly to the high-energy
branch as current is increased from zero.

-0.2

(c)

FIG. 3. Some zero current metastable states for f=
—,'. +

denotes unit vorticity (or a "charge" of 1 f), and ——denotes

zero vorticity (or a charge of f). Th—e arrows indicate the

phase differences on the junctions: -. : m. /4, — =:: m., o: 0.
(a) is the ground state [point A in Fig. 2(a)], while (b) and (c) are

two degenerate excited states (point D).
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f= ,' is specia—l in that at this value of the magnetic

field, I,&(8) is equal to 1 Oi, c .for all 8. Furthermore, all

the states are degenerate at I„.
Polar plots of I„(8)are shown in Fig. 5 for f= ,' and—

3
The plots of I,o are also included for comparison .

Both plots are symmetrical about the [11]and [11]axes.
The f=

—,
' curves, in addition, are symmetrical about the

[10] axis. In the case of f= ,', the asymm—etry about the

[10]axis is very slight for I,u, but is quite apparent for I„.
The plot of I,o for f=

—,
' is identical to that obtained by

Halsey. ' However, there is a discrepancy in the f=
case, in that our result indicates that I,o in the [11]direc-

tion, i.e., perpendicular to the vortices (0.462i, o), is slight-
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FIG. 2. Numerical results of the energy-current relation in

the frustrated Josephson-junction array, calculated for various

current orientations. Lines of vortices are parallel to the [11]
diagonal (8= —0.25m. ), and the current orientations are denoted

by (a) f= z, 8=0 (o ), 0.20m {dashed); 0.24m (dotted), 0.25m.

(plain curve); (b) f= —', 8=0 {o),0.25m. (plain curve), —0.25vr

(dashed curve).

FIG. 4. Some zero current metastable states for f= ,
' The-.

phase differences are indicated by —+: m /3,
n/6, o: 0. (a) is the ground state [point A in Fig.

2(b)], while (b) and (c) are two degenerate excited states (point

D).
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+ A„~„(5„„5~

y
—5„„+15yy)

+B+y 1(5 5y y 5 5yy —1)

+B„+ (5„.„5 ~

y
—5„„5yy+, ) j . (26)

CX1]

0.4

0.2

I„(f= &I2)

For a magnetic field f=p/q, the phase differences are
periodic with a q Xq unit cell, and so A,-+ = A;, and

B;+q =B;.
The eigenvalue equation for the stability matrix is

0
0 0.2 0.4

L

0.6 0. 8 1 1,2

or

x',y'

FIG. 5. Polar plots of the critical currents I,o (plane curve)
and I„(dashed curve) for f=

—,
' (open circle) and f=

—,
' (closed

circle). The units are 2eJ/A' or i,o.

ly smaller than in the [11] direction (I,o(f=
—,',

[11])=0.47li, o), while the opposite is obtained by Hal-
sey. We believe that in this matter, our numerical
method is more accurate than the instability method that
Halsey used.

s=x —y, t=x+y .

In the new coordinates, the eigenvalue equation (27) is

(28)

As —1(Vs, s "s—l, s —1)+As(vs, s v+s1, +s1)

x+y —1(Vx,y Vx —l,y)+ x+y(Vx, y Vx+1,y)

+B„+y,(v„y v„y,—)

+B„+y(v„y—v„y+1)=(ro/J)v„y . (27)

Because of the particular structure of the Hessian, it is
convenient to employ a change in coordinate variables;

V. STABILITY OF THE CURRENT-CARRYING
STATES

+Bs 1(Vs, s —"s+1,s —1)

+B,(v, , —v. . .+, ) =(r0/J )v, , (29)

Benedict' carried out a stability analysis of the zero
current staircase states.

Here, we apply a straightforward extension of that
analysis to include the current-carrying states described
in the previous sections. This involves finding the eigen-
values of the stability, or Hessian, matrix which has ele-
ments

(30)

The Brillouin zone is defined by

k]] E [ 1r/2, 7r/2]—,
(31)

Furthermore, the periodicity of the Hessian means that
the eigenfunctions have the form

x',y', x,y ~e ~ex',y' x,y
(23) [ n/q, m/q] —for q even,

k e
[—lr/2q, m/2q] q odd .

We denote the phase differences on horizontal and vert-
ical links as follows:

yx, y, x',y' x, y ~x', y' Ax, y;x', y' ~

The Bloch function C, has period q, and satisfies the re-
duced equation

( A, 1+ A, +B, 1+B,—ro" /J)C, '"'

X
yx, y yx, y;x+1,y

yx, y yx, y;x,y+1

(24) e ~(As, , ll+Bs,, ll)C

'(A, e' ll+B e
' ll)C(v) =0 . (32)

X —X X
yx, y yx +y, O= yx +y

yx, y yx+y, O= yx+y
(25)

Defining the variables A; and B; as the cosines of the
phase differences, A; =cosy";, and B; =cosyy, the Hessian
matrix (23), when evaluated for a generalized staircase
state, gives

For the generalized staircase states, these satisfy the rela-
tions

Since A; and B; have a period of q, it follows then that
both co' ' and the C,' 's are q valued, as indicated by the
q-valued "band index" v.

In general, the reduced equation (32) can be solved nu-
merically to obtain the eigenvalues. For f= ,', in addi-—
tion, exact diagonalization can be done analytically. In
that case, there are two distinct values for A,- and B;.
Some manipulation gives the eigenvalues as

co'*'/J = A, + A, +B,+B,M IDI,
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The + sign corresponds to the two "bands" of eigenval-
ues.

This is shown for a few cases in Fig. 6. There, the ei-
genvalues are evaluated at various orientations and mag-
nitudes of the net current, using the analytic expressions
of Sec. III. One common feature shared by all the graphs
is that there always exists a zero eigenvalue at the zone
center f'(0, 0). This corresponds to a Goldstone mode in
which all the phases rotate by the same amount. Figures
6(a) and 6(b) show the results for a few points on the
lower and upper branches, respectively, at 8=0. On the
lower branch, the eigenvalues are non-negative, whi1e
negative eigenvalues exist for the whole of the upper
branch. The negative eigenvalues label those modes of
fluctuations which cause instability. Hence, all of the
solutions belonging to the upper branch are in fact unsta-
ble, while the opposite is true for the lower branch. This,
together with the results of the previous section, confirm
the values of the intrinsic critical current I,o obtained by
other authors.

However, it may be argued that in a current-biased set-
up, only those fluctuations that do not change the net
current should be allowed. The type of fluctuation con-
sidered by Halsey in the argument leading to the bounds
of the phase differences, for example, does not conserve
the net current. Therefore, we proceed to investigate the
effect on the net current of each of the fluctuation modes.

For f= ,' there are two dis—tinct Bloch functions C, and

C2. Corresponding to the eigenvalues given in (33), they
are

( (+)'
1

C(+ ) + Z —1/2( Z» )
1/2

2

(34)

where (+ ) and (
—) are the band indices, E is a normaliza-

tion constant, and

Z =e ( A &e'"ll+B&e '"l~
)

Writing Z =!Z!e '", then the eigenfunctions (30) are

(35)

where

lDI = A ) + A 2+B', +B', +2( A, B,+ A,B,)cos(2k~~ )

+2( A, B2+ A2B, )cos(2k')

+2 A t A icos(2k(~ +2k& )+2BtBzcos(2k~~ —2k~ ) .

(33)

p

X2

CO

~ M

+I
p3

X2

3

0
~ &

1

Q(+I

3

Xg

4;
J

0
3

2

(b)

/

/
X

/
X

/
X

\

X) W X2

J ! M 4 W M M 'l!I!

X) W X2

~ ()

,e'

/o

)OOOOGGOGGOi . '' X

I

7(
8''G.

/ CI ' O(WW%&&&&%&j 'O

"-j.
W

( )—,
s, t

i ( k!!s +k ~ t )
Ke odd t

i(k!!s+k~t —
vy)+Ke even t .

(36)

This means that different values of 3; and B;, and hence
different magnitudes and orientations of current, only
change the eigenvectors by a constant phase factor.

Suppose the phases for a generalized staircase state are

I 8, , I. The currents on each horizontal and vertical link

are then

FIG. 6. Eigenvalues of the stability matrix evaluated along
four line segments of the Brillouin zone, for f= —'. The points

(k!! kg ) are labeled as X2(0,~/2), r(0, 0), X, (m /2, 0), and
8'(m/2, m/2). The curves correspond to the following points
labeled in Fig. 2(a): (a) 0=0, "lower" branch, A, $„=0 (plain
curve), B, Pz =0.2m (dashed), C, $„=0 3m (dotted). , D, Pq =0.5m

(crossed); (b) 0=0, "upper" branch, D (crossed), E (plain), I'

(dashed), G (dotted); (c) (9=0.25m. , 3 (plain), H (dashed), I (0), J
(dotted), G {crossed).
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h( } t 0 t (8 t +1 t +1 A t; +1 t+1)0

I„(s,t)=i,osin(8, t
—tt, . t+) —A. t. , t+)) .0 nO

(37)

5Ih(s, t)-i,ocos(8t t 8t+1.t+1 As t.s+I t+I

X(58, , —58, +, , +, )

=&,oAt(58. , t 58.—+i, t+i } (38)

Upon small changes 58, , in the phases, the currents will
change by

and

5I„(s,t) —i,ocos(8, t
—8o, , +,—A. .. , , +, )

X(58 58 ] +])

=i,oBt(58, t
—58, ) t+, ) (39)

to first order. If the fluctuations are given by the real part
of (36), then (38) is of the form

5I„'+'(s, r) =

5I„'-'(s, t) =

i,oAt2K cos(k~~s+kjt+g&leos(g&} odd t

i,o A—,2K cos( k
~~

s +k~ t +g, }cos(gz } even t,
i,oAt2K isn(k~~s+k tj+g&) isn(g&) odd t

i.o A 22K sin(k ~~s+ k, r +41)sin((2) even

(40)

where g, and $2 are constant phase terms. Expressions
for 5I„'+' and 5I,' ' are similar.

Thus, deviations in the current components are period-
ic in s and t. It can easily be shown that on summing
these deviations over a period, the result is

sr'+'=
h

Ki,o( A, —A z ) for k = (0,0)

0 otherwise,

and

5Ih '=0 all (k~~, k ),
(4l)

Ki,o(B, B2) for k=—(0,0)
Si'+'=

0 otherwise,

5I„' '=0 all(kll'kj. )
(42)

Hence, to first order, apart from the (+) eigenvector at
the Brillouin zone center I'(0,0), the current is un-
changed in all the fluctuation modes. It is thus con-
clusive that even under the condition of a fixed current
bias, all the states in the "upper" branches in f= ,' are-
unstable to phase fluctuations. We expect that this is
representative of the behavior of any other value of the
field f.

VI. CONCLUSION

We have studied current-carrying states, of the frus-
trated Josephson-junction array, that have a "staircase-
state-like" vortex superlattice. Comprehensive analytic
and numerical solutions are presented. These extend the
work of other authors to cover the whole range of orien-
tation of the net current. The current orientation is par-
ticularly simple to impose in the numerical calculations
using the "loop current" formalism. We found states
which carry currents up to an "upper" critical value I
which is higher than the intrinsic critical value I 0. A
stability analysis is carried out in detail for f= , . It is-
shown that these states are in fact unstable to fluctuation
in the phases, even under the condition of a current bias.
The stable solutions are those studied by Halsey and Benz
et a/. The values of I,o obtained previously are thus
confirmed, and in some cases more accurately deter-
mined.
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