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Polarization of the spin-S exchange-interaction model
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The spin-S exchange interaction model of ferromagnetism is studied by the mean-field approximation.
This model has 4S(S+1) order parameters, and has infinitely many ground-state configurations. We
define a single polarization parameter to describe the ordering of the system. Thermal variation of the

polarization q(T) is determined for various spins. The phase transition is first order (except for S = ~)

with phase transition temperature kT, /Jz=(2S —1)/(4Sln2S), where z is the coordination number,

and the discontinuity of q at T, is q, =(2S —1)/2S.

I. INTRODUCTION

The exchange operator was studied by Schrodinger 50
years ago. ' The exchange operator Pj has the property
that it permutes the spin coordinates of S; and SJ, which
have the same spin multiplicity. That is,

P;, l~&;IP&, =IP&;l~&, , (1)

where ~a&; and ~P& are eigenstates of S;, and S„with
eigenvalues a and P, respectively. Schrodinger showed
that Pj can be expressed as a polynomial of degree 2S in

(S; Si},
2s

( I P n

P; =(—1} 1+ g g [2S; S +2S(S+1)
(n!)

proaches, such as the high-temperature series expan-
sions, quantum Monte Carlo simulations, and real-
space renormalization-group methods. These studies,
however, did not investigate thermal variations of order
parameters of the EI model. For systems which contain
the nonlinear interaction (S; S )", there are higher-order
moments besides the dipole moments S„,Sy, and S,. To
study thermal variations of various moments, it is more
appropriate to express P; in terms of spin tensor opera-
tors rather than (S; S )".

For spin S=
—,', the EI model is identical to the Heisen-

berg model. When S=1, the traceless EI model has been
expressed as

gS;Q + Q QtpQ p
p

m(rn ——1)]

2S= g A„(S)(S; SJ)", (2)

where S~ are the three dipole operators Sz Sy and S,
and Qp are the five quadrupole operators

Qo=~3[S, —S(S+I)/3],
n=0

where the coefficients A„(S) can be obtained by expand-
ing the products and rearranging terms. The exchange
operator had been used to construct a spin model, called
the exchange interaction model (EI model), ' two de-
cades ago to study the effect of nonlinear terms (S; S.)"
on the critical properties of spin systems. The EI model
is of theoretical interest and has received attention recent-
ly. The Hamiltonian of the EI model is given by

%=—J g PJ.
(ij )

or, in the traceless form,

&=—J g [P, —(2S+1) '],
(ij )

(3a)

(3b)

where J is the coupling constant and the summation is
over all nearest-neighbor pairs of sites.

For a system of N spins, the exchange operators P;~
form elements of the symmetry group of degree N. By
using permutation properties of P;1, the EI model for gen-
eral values of spin has been studied by several ap-

Qi =S„—Sr,
Q„y =S„Ss+SrS„,

Q„,=S„S,+S,S„,
Q, =S S,+S,S

Thermal averages of the dipole operators (Sa & and the
quadrupole operators (Qp & for the spin-1 EI model [Eq.
(4)] have been investigated by the mean-field approxima-
tion, ' Green's function theory, and a constant-coupling
method.

When S) 1, there are higher-rank multipoles (spin ten-
sor operators) besides S and Qp. The expression of P;
in terms of products of spin tensor operators [similar to
Eq. (4)] has not been given before. Studies of thermal
variations of order parameters of the EI model for gen-
eral spins are not yet available even in the simplest
mean-field approximation. The spin-S EI model has
4S(S+1}order parameters (we can eliminate three of
them by choosing the coordinates). It is difficult to study
the thermal behavior of all order parameters for S ~

—,'.
The purpose of this paper is to present a mean-field
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theory of the EI model for general spins. In Sec. II we
describe some properties of the Hermitian tensor opera-
tors Q'". The exchange operator is expressed in terms of
products of these operators. In Sec. III we briefly discuss
the mean-field approximation and present some general
properties of the EI model. Because of the symmetry of
the exchange operator, we assume that all order parame-
ters (Q'") have the same temperature dependence and
define a single polarization parameter q(T). Thermal
variations of q ( T) and the phase-transition temperatures
are determined for various spins. In Sec. IV we discuss
the physical meaning of the assumption that all order pa-
rameters have the same thermal behavior and show some
numerical verifications of this assumption. A summary
and discussion of our results are also given in this section.

II. SPIN TENSOR OPERATORS

The unnormalized tensor operators 0'"(S„S ) are
defined by the generating function"

m=1
0'"(S„S )=( rs—+—+2S, +S t ')' . (6)

The normalization is chosen so that, in the classical limit
[S,=S cos8, S—=S sin8e*'", and S(S+1)=S ))1],

0'"(S„S*)=S'&4m/(21+1)Yi (8,$),

=i/3Q~, /2, Q2 '=&3Q, /2, and Q' &=v 3Q /2.
The inner product of the Ith-rank spin operators at

sites i and j is defined as'

C, (S, S, )= y (
—1)-O'"(S,„S,-+)O'".(S,„S;+) .

As Q'" are traceless, orthogonal, and Hermitian, if a
Hamiltonian contains a term g&,1 ) Ci(S; Si ), the thermal
averages of Q'" are the order parameters of the system.

The nonlinear term (S, S )" can be expressed as a
linear combination of C&(S;.Si) for I &n Th. erefore the
exchange operator P; can be expressed as linear com-
bination of C&(S; S ) for I & 2S. It can be shown that'

2S

P; = g A(S, I)ci(S, S ),
1=0

(15)

where A(S, I) are given by Eq. (9) and C&(S; SJ) by Eq.
(14). From Eqs. (14) and (15), we see that there are

3+5+7+ +(4S+1)=4S(S+1)

(13)

In terms of the Hermitian operators Q' ', Ci(S;.SJ ) is
given by

I

c,(s, s, )= y Q'"(s,„s,+-)Q'"(s„,s,-') .

where YI are the spherical harmonics. The explicit
form of 0'" for l(6 have been given by Smith and
Thornley. ' The operators 0'" are traceless for 1%0 and
are orthogonal in the sense that

Tro'"0" ' =( —1) 5, , 5 /A(S, I), (8)

where 51 I and 5 are Kronecker delta functions and
the constants A (S,I) are

order parameters ( Q'" ) for the spin-S EI model.
Some expressions of P," are

Pg2C1+ 2
for S

P;~
=—', C2+ —,'C1+ —,

' for S=1,
(16)

A (S, I) =2 '(21+1)(2S—I)!/(2S+1+1)!. (9)

The operators 0'" are non-Hermitian for m@0. Ex-
pectation values (or thermal averages) of these operators
are complex numbers in general. We define the Hermi-
tian operators Q +' as linear combinations of 0'+' .

where Ci are shorthand notations of Ci(S; Si). The
equation for S=

—,
' is well known. For S=1, this result is

the same as Eq. (4), but with difFerent normalization of
(2)

Q

2

for m )0, and

2

III. MEAN-FIELD APPROXIMATION

For a lattice of coordination number z, the mean-field
Hamiltonian' per spin &M of the traceless EI model is

2S I

A~ = —Jz g g A (S,I )( Q'")Q'"
~ (I) —g (I)

0 0

It is straightforward to show that the Hermitian tensor
operators Q' ' are also traceless (IAO) and orthogonal.
That is,

1=1m= —I

2S I

+—' y y A(s, l)(Q„'")'
I=l m= —1

and the Gibbs free energy per spin F is

(17)

TrQ =(2S+ 1)5i 0

TrQ'"Q". ' =5i i.5 /A (S, I ) . (12)

The first few Hermitian tensor operators are Qo
' =1,

[Eq. (5)], Qo& '=v'3QO/2, Q', '=&3Q„,/2, Q' ',

P/Jz =—ln Tr exp—( &~/kT), —1
(18)

where K =Jz/kT is the inverse temperature. The second
term in Eq. (17) is a constant operator, which may be
neglected if one is not interested in calculating the energy
of the system. It is necessary to include this term to ob-
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ly, )= g a, la),
a= —S

(20)

where la) are eigenstates of S, with eigenvalues a and

a; are constants subject to the normalization that

tain the correct energy, free energy, and specific heat.
The order parameters &Q'") are determined by the

conditions that BFjB&g'")=0, which give the well-

known equations

Trg
' "exp( A—M Ik T )

Tr exp —
M kT

The above self-consistent equations may have many
different sets of solutions I &g'")), and the one which
has the lowest Gibbs free energy [Eq. (18)] describes the
equilibrium state of the system.

We first consider the ground-state property of %M. At
the zero temperature T=O, the system is in a ground
state. The wave functions of a spin-S particle have the
general form

2S 1

y ~(s, l)&yklg.'"l(r}k &'=1 .
1=0m = —1

(23)

Therefore any pure state

leak

) has the same ground-state

energy
—Jz 2S

2 2S+ 1
(24)

The EI model has infinitely many ground-state
configurations. (Some of them are equivalent so that they
can be transformed into one another by rotations of coor-
dinate axes.}

At finite temperatures, the system is no longer in a
pure state. There exists a set of 2S+1 orthogonal wave
functions i/0), lg, ), . . . l((}, ), . . . lgzs). (There are
infinitely many different ways to select the set of 2S + 1

wave functions. But different sets of wave functions are
transformed into one another by unitary transforma-
tions. ) The system has the probability p, to be in the
state lP, ) (p; are proportional to the Boltzmann factors),
and the thermal averages are

S
&P;lP, )= g a a, =1.

a= —S
(21} 2S

g'" = X p; ((};lQ'"((;
i=0

(25)

The ground state of the EI model is the wave function

leak

), which minimizes the energy

—JZ 2S 1

y ~(s, l)&yklg'"leak&',
1=1 m = —1

where & Pk lg'"leak ) are the expectation values of Q'" in

the state l(j}„).
For different leak ), & $k lg'"leak ) are different. But we

show in the Appendix that, for any state

leak

),

Equation (25) is the same as Eq. (19). In general, the set
of 4S(S+1) coupled equations has infinitely many sets of
solutions (similar to the case T=O). It is impractical and
not meaningful to study all the solutions. We will only
investigate their common properties.

If there is a second-order phase transition at the tem-
perature To, near this temperature, &Q'") ((1. By ex-

panding exp( &MlkT) i—n power series of&g'"), Eq.
(19) becomes

2S 1'

& Q'") =(Trl )
' Trg'" I+K g g A (S,l') & Q" ' )Q" '+

1'=1 m'= —1'

(26)

From the orthogonality relation Eq. (12), we have

& Q'") =
& Q'") + for all l (%0) and m .E

(27)

Equation (27) means that all nonzero order parameters
&
Q'" ) occur simultaneously at the temperature

kTo/Jz =(2S+1),if the phase transition is second or-
der. We have calculated the free energies numerically for
some solutions near To. Our results, however, show that
the phase transitions are first order except for S=

—,'.
To study thermal variations of the order parameters

&Q'") associated with a given ground state leak), we
write

& Q' ') =q' '(T)&pk lg' 'leak ) for all I (%0) and m,
(28)

with q' '(0)=1. In general, different values of l and m

q'"(T)=q(T) for all l (%0) and m . (29)

Physical meanings and some numerical verifications of
Eq. (29) will be discussed in Sec. IV.

The function q(T) describes the degree of polarization
of the system. In general, q(T) may depend on the state

leak ). We will see immediately that all leak ) have the
same q(T}. From Eq. (23},

2S 1

4(S l)&~ lg'"l~ )'=
2S+11=1m= —I

I

will lead to different functions q'"(T). Moreover, the
solutions q'"( T) may be different for different pure states

lP„). For the spin-1 EI model, it has been shown that
q'"(T) are the same for all values of l and m, and for all
different ground-state solutions. ' It has also been proved
by the high-temperature series-expansion method that
thermal fluctuations of the 2S independent multipoles
have the same temperature dependence for all spins and
for all lattices. ' It is reasonable to make the assumption
that
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Substituting Eqs. (28)—(30) into Eq. (17), we obtain

%—~/kT=Kq( T)pk — [1+Sq(T)],Kq(T)
2S+1

where

2S I

I=pm = —I

(32)

1.50—

1.00 ==

As shown in the Appendix, pk is the density matrix of
the pure state

~ Pk ). The density matrix pk has 2S+ 1 ei-
genvalues; one of them is 1 and the others are 0. There-
fore

0.50—
I

(,) M

and

Trexp[Kq(T)pk]=e ~+2S

I'/Jz= ——ln(e ~+2S)+K (1+S )

K 2S+1

(33)

(34)

We see that I'/Jz is the same for all states ~Pk ) and so is
the polarization q( T), which is determined by BE/Bq =0.
That is,

0.00
0.00 0 20 Ko K, 0.40

eKq

Kq+ 2S
(35)

0.06—

Consider the spin- —, system for illustration. Figure 1

plots the free energy [Eq. (34)] for S=—', and for several
temperatures K '. The values of q which have the zero
slope are the solutions of Eq. (35). When
K '(Ko ' =(2S+1) ', the free energy has only one
minimum at q &0. This solution corresponds to a point
on the line AB in Fig. 2. For K '&K '=0.310680, a
minimum of F occurs only at q =0. When
K p (K (K ', a free-energy curve has two minima

FIG. 2. Polarization parameter q(T) for S= ~. The corre-

sponding temperatures at points O(B ), M, and C are Ko ' = 4,
K '=0.310680, and K& '=0.303413, respectively.

and one maximum. The maximum, which gives an unsta-
ble solution, corresponds to a point on the line MO in
Fig. 2. One of the minima occurs at q )0 (a point on the
line section BM); and the other at q =0. For
K ' (K, ' =0.303 413, the q & 0 solution has the lowest
free energy, while q =0 has the lowest free energy when
K ' )K, '

(q )0 is metastable). The system exhibits a
first-order phase transition at the temperature
kT, /Jz =0.303413.
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FIG. 1. Gibbs free energies as functions of q for S=
~

and

for temperatures {a) K ' =0.33, {b) K, ' =0.303 413,
(c) K ' =0.28, and (d) K ' =0.24. A constant
Fo/Jz = —K 'ln(2S+ 1) is subtracted from Eq. (34).

FIG. 3. Polarization parameters q(T) for various spins: (a)
S= ~, (b) S=1, (c) S=—,', (d) S=2, (e) S=5, and (f) S=10. The

dashed lines are metastable or unstable solutions.
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For general spins the polarization parameters q as
functions of K ' [Eq. (35)] are shown in Fig. 3. We see
that dq/dT)0 for q «1 and for SA —,'. This indicates
that the EI model undergoes a first-order phase transition
for S ~ 1. The first-order transition temperature E, can
be obtained from the condition that the free energy of the
order phase [Eq. (34)] is equal to that of the disorder
phase, Fo /Jz = —K 'ln(2S+ 1). Let 5F be the
difFerence between Eq. (34) and the disorder free energy;
the temperature E, ' and discontinuity of q at E, ',
denoted q„are determined by Eq. (35) together with
SF=0. They can be solved analytically. For general S
we obtain q, =(2S—1)/2S and K, '=(2S 1)/—
(4S ln2S). The solutions of q( T) which are metastable or
unstable are indicated by dashed lines in Fig. 3. From
q(T}, the internal energy E= —JzSqz/(2$+1) = Eoq-
and the specific heat C=dE/dT=kEOK (dq /dK) can
be determined easily.

IV. SUMMARY AND DISCUSSIONS

We have studied the EI model in the mean-field ap-
proximation for general spins. We first expressed the ex-
change operator in term of Hermitian tensor operators
Q~" [Eq. (15)]. Thermal averages of these operators,
(Q'"), are order parameters of the system. In general,
there are 4S(S+1) order parameters (some of them can
be eliminated by proper choice of the coordinate axes).
Any pure state Igk ) [Eq. (20)] has the same lowest free
energy [Eq. (24)]. The EI model has infinitely many
ground-state configurations. As the temperature in-
creases, the order parameters (absolute values) decrease.
From an exact series-expansion result that all multipolar
phase transitions of the EI model are exactly degenerated
with the dipolar transition' (thermal fluctuations of all
multipoles have the same temperature dependence), we
assume that

& g'"& =q(T)&g. lg.'"IP. & (36)

for all values of l(%0) and m, and for any pure state

The above assumption can also be considered in the
following way. Since any pure state is a ground state, the
Hamiltonian is isotropic in the (2S+1)-dimensional vec-
tor space. If any pure state is selected, a particular direc-
tion is singled out, but the other 2S-dimensional subspace
remains isotropic. Therefore, if the system is in a state
I Pk ) at T=0, we can select 2S other states such that the
set of 2S+ 1 states are orthonormal (they form a basis set
of the space). At a finite temperature T, the system will
have an equal probability p(T} to be in any of the 2S
states. Then the probability that the system remains in
state Igk ) is 1 —2Sp(T). Equation (25) gives

&Q'"&=[1—2$p(T)]&0 lg'"lg &

+ y p(T}&y, Ig.'"Iy, &

iWk

2S

g (P, IQ'"IP,. )=0 for all lAO and m,
i=0

(38)

where the summation is taken over any set of (2$+1)
orthonormal states. Equation (37) is the same as Eq. (36}
with q

= 1 —(2S+ 1)p.
Equation (29) is obvious for S=—,', and it has been

shown numerically for S=1.' We have also considered
some pure states and verified this property numerically
for S=

—,'. Consider the pure state
Iy&=(l-', &+I ——', &)/~2, for example. There are only
two nonvanishing moments ( pI Q ~3

'
I p) =( ~4' )'~z and

(PIQO 'IP) =—', . If we allow these moments to have

difFerent thermal behaviors, Eqs. (18), (19), and (28) give
the coupled equations

q' '=1—25 'exp( Kq' '—/2),

q 3
' =5 'sinh(Kq 3 '/2),

(39)

with

b, =exp( Kq 0
' l2—) +cosh(Kq ~3

' l2 ) .

Numerically, we find that the only non-negative solution
of Eq. (39) is qo'=q3'=q(T) [q(T) is the solution of
Eq. (35) for S=—', ]. For the pure state IP) =

I —,
' ), the non-

vanishing moments are ( ((}I Qo
'

I P ) =
—,', ( Q I Q 0

'
I ((}) =—,',

and (QIQO" Ip) =
—,'. Numerical calculations also show

that the only set of non-negative solution is

qo
' =qo ' =qo" =q( T). The above calculations only give

numerical checks of the validity of Eq. (36). A rigorous
proof of this property is desired.

For a system with a set of order parameters [ (Q~") ],
the polarization q(T) can be calculated from Eqs. (30)
and (36):

2S+ 1q(T)= g g A($, 1)(Q'")
2S )=) m=

1/2

(40)
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APPENDIX 2S,,
= y y ~(s, i)(y, lg.'"ly, &g.'". (A4)

=Cl /A(s, l) . (A2)

Here we have used Eq. (12). Substituting Eq. (A2) into
Eq. (Al),

2S I

g (S i )( g(l) )g(l) (A3)
1=0m = —I

For a pure state
l P; ), ( Q'" ) = ((I); l

Q'"
l P; ), the corre-

sponding density matrix is

Any matrix of a spin-S system can be expressed as a
linear combination of the (2S+1) tensor operators Q'".
A density matrix p can be written as

2S I

p=X X (Al)
1=0m = —1

where Cl are constants. The ensemble average of Q'" is

(g(l)) —T g(l)

2S I'

Trg (l)g (l')

I'=0 m'= —I'

Trp, - =1,
2S I

Trp', = y y ~(S,i)(y, lg")ly, &'.
1=0m = —I

(A5)

(A6)

The density matrix of the pure state lP; ) can also be
expressed as p;= l(I);)(P;l, which has the well-known
feature

Pi =Pr ~ (A7)

Equation (23) follows from Eqs. (A5) —(A7).
For a set of 2S + 1 orthonorma1

p, l@, &=ly, )(y, ly, )=~,, y, &.

states

(A8)

Therefore the density matrix p; has one eigenvalues A. = 1

(with eigenvector l P; ) and 2S degenerate eigenvalues
A, =0 (with eigenvectors l PJ. ), i Aj ).

1=0m = —I

This is Eq. (32) in the text. From Eqs. (11) and (12), p;
has the properties
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