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We study the elementary excitations for a multilayer of spins represented by a Heisenberg ferromagnet
with nearest-neighbor and next-nearest-neighbor exchange. In addition to the bulk modes, and the usual
monotonic surface ones characterized by an exponential decay of the amplitude of the spin fluctuations,
we find for opportune conditions other localized modes that present a m. phase variation when passing
from a layer to the adjacent one. Furthermore we show that the surface-plane magnetization is much
more affected by the surface modes in a film than in a semi-infinite system. Also the effects of surface
single-ion anisotropies and of dipolar interactions are investigated using the Green s-function method.
Some analytical expressions are obtained for the energy of the lowest mode of the multilayer, which
makes it possible to find the dependence on the number of layers N. Finally, we derive a formal expres-
sion for the magnetization profile which is valid for systems with a nondiagonal quadratic boson Hamil-

tonian.

I. INTRODUCTION

Much attention has been given in recent years to the
development of, and the research on, ultrathin magnetic
films of a few layers thickness. ' The theoretical interest
for these systems is due mainly to two reasons. First, in
the single monolayer limit they are the best realization of
a two-dimensional (2D) Heisenberg model with weak an-
isotropies for which a nonperturbative treatment must be
used in order to explain the experimental results.
Second, for more than one layer the absence of transla-
tional invariance in the normal direction to the film im-
plies a very peculiar behavior, which can be experimen-
tally observed. The clearest evidence is obtained by
means of conversion electron Mossbauer spectroscopy
measuring the magnetization profile, from which it re-
sults that the surface magnetization is smaller than the
inner one.

In order to understand the properties of these systems
it is necessary to determine the elementary excitations
that, of course, in the normal direction to the film have a
standing wave character. Usually this problem has been
investigated using a classical continuum approach
developed in the micromagnetic theory, which gives the
correct results for thick films and for suSciently long
wavelength excitations. ' However, in order to study the
properties of very thin films and to obtain an accurate
definition of the excitations character as well as their
complete dispersion curve in the whole Brillouin zone, a
discrete approach is necessary. In particular, under

favorable circumstances, localized surface modes are
present, and their nature is completely determined only
in a discrete approach. It is well known that in the semi-
infinite limit, for the (100) surface of a simple-cubic lat-
tice, the inclusion of next-nearest-neighbor (NNN) in-
teraction, J2, in addition to the nearest-neighbor (NN)
one, J&, leads to the excitation of a surface spin wave,
even though its presence does not influence the magneti-
zation profile. In this paper we show that for ultrathin
films it is possible to have difFerent numbers and types of
localized modes as a function of three parameters: the
ratio J&/J2, the number of layers N, and the 2D wave
vector k~~. Concerning this problem, the main result of
our analysis is the prediction, for suSciently high wave
vectors, of oscillating surface magnons in addition to the
usual monotonic surface ones. While both of them are
characterized by an exponential decay of the amplitude
of the spin fluctuations, the oscillating ones present a m

phase variation when passing from a layer to the adjacent
one. Clearly such oscillating modes can only be obtained
within a microscopic approach, not limited to the low-k
region. It is worthwhile to note that the surface modes
always have the lowest energies with respect to the
volume modes, and consequently they are very important
for the thermodynamics. For this we have extended the
expression for the surface mode to generic X. Further-
more, contrary to the semi-infinite case, the presence of
the localized surface modes determines a much smaller
surface magnetization. A detailed study of these modes
in the case of films was, to our knowledge, still lacking.
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Moreover, the case J2%0 appears physically interesting:
e.g., for epitaxial thin films of bcc Fe/Au(100), the NNN
interaction is only responsible for the long-range order
observed at room temperature in the monolayer limit.

The general analysis of the properties of the films is
further complicated because, contrary to the usual 3D
systems, it is fundamental to consider the role of the di-
polar interaction. The ground-state configuration is
determined by the competition between the uniaxial sur-
face anisotropy, which favors a spin alignment perpen-
dicular to the film, and the dipolar interaction, which
forces the spins to lie in the film plane. The latter, for an
isotropic model, gives a modification of the spin-wave fre-
quency for low wave vectors, co ~ k', leading to a spon-
taneous magnetization. ' In the case of a thin film with N
layers (see Yafet, Kwo, and Gyorgy" }being based upon
the long-range character of the dipolar interaction, it is
suggested that each plane should equally contribute to
the linear term in the k-dependent dipolar sums, leading
to co (Nk)" ~ '.

In this paper we also present the results, obtained
within a Green's function formalism, for the spin-wave
spectrum and a formal expression for the magnetization
in the presence of a dipolar interaction including the
effect of a surface magnetocrystalline single-ion anisotro-
py always present in real systems. Also in this case we
are able to obtain an analytical expression for the fre-
quency of the acoustic mode of the multilayer, a property
that could easily be investigated experimentally, e.g., by
Brillouin light scattering or ferromagnetic resonance. In
the appropriate limit we recover not only the results of
Yafet, Kwo, and Gyorgy, "but also the expression of the

Damon-Eshbach magnetostatic theory. The results of
the spectrum will be reported, for completeness sake, in a
very concise way because they have already been present-
ed elsewhere. ' It should be mentioned that similar re-
sults have been independently obtained by Erickson and
Mills, ' ' using the method of the equation of motion for
the spin operators.

In order to obtain a greater comprehension of the
properties of ultrathin films and to have the largest
analytical development, we have studied a simple-cubic
lattice. In particular, we solve exactly the case N=2,
and we are able to extend the analytical expression for
the acoustic mode to generic N. Furthermore, for ther-
modynamical properties such as the magnetization
profile, we expect that the qualitative behavior does not
depend on the details of the structure.

The paper is organized as follows. In Sec. II the inves-
tigated model is introduced. In Sec. III the results con-
cerning the elementary excitations in a system with only
NN and NNN exchange interactions are presented, while
the pertinent prediction for the magnetization is shown in
Sec. IV. The effects of the surface anisotropy and the di-
polar interaction on the same quantities are reported in
Sec. V. Finally in Sec. VI the conclusions are summa-
rized.

II. THE MODEL

We want to describe a thin ferromagnetic film of thick-
ness L consisting of N layers (L =Na, with a lattice con-
stant} parallel to the (010) surface of a simple-cubic lattice
assuming the following interaction Hamiltonian between
spins localized at sites i:

%=—
—,
' g J(~i—j)~)S; S; gynH QS;——A, g'(SI') +—,g . , S; S;—3

1 g Pa a3 [S; (t —3)][S;.(i—3)]

where we have taken the y axis to be perpendicular to the
surface, while in the xz plane —the film plane —we have
translational invariance. For the exchange interaction
J((i—j~ }we assume

I

transition metals or rare earths, and the use of a localized
model can be questionable. However, as shown by Lu-
chini and Heine this description is well justified, at least
in the ordered phase. '

J(~i—j~)=J, for i and j NN

J(~i—j~)=J2 for i and j NNN

J(~i—j~)=0 otherwise

(2)

III. EXCHANGE INTERACTION ONLY:
ELEMENTARY EXCITATIONS

A. Equation of motion

with J„J2&0. The single-ion surface anisotropy A, ,
which favors the alignment along the y axis, is assumed
to act only on the surface spins [primed summation in
Eq. (1)]. In the case, usually studied, of epitaxial thin
films of transition metals, the strengths of the dipolar in-
teraction w =(gp~ ) /a and the surface anisotropy A, are
much smaller than the exchange interactions and conse-
quently one can assume a collinear ground state. We
define the following constants: A =SA,(N)/N and
h =gp&H, where A,(1)=A, and A,(N) =2k, for N ~ 2. The
total number of spins is Nz. =NN~~, where N~~ is the num-
ber of spins in each plane.

The real systems usually investigated are generally

In this section we report the results for the elementary
excitations in a system with Hamiltonian (1) but without
surface anisotropy and dipolar interaction; e.g.,
A, =w =0. We begin studying this simplified model in or-
der to have a better comprehension of the role of the ex-
change interactions.

Furthermore, a thermodynamical property as the mag-
netization is usually measured in a temperature region
where it is mainly determined by the exchange constants
because in the real systems we have A,, w &&J;. The pres-
ence of an external magnetic field is insignificant giving
only a shift for the frequency.

We assume the magnetization to lie along the z direc-
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AS (I)= g 3 (I,m )S (m ), (3)

where

A(l, m)=H' (I)5i~ —SJ(k~~, l —m) (4)

is a real symmetric tridiagonal (N XN) matrix. We have
introduced

H' (I)=h+Sg J(~l —m~),

(kll'I m g J(~I —m~)exp[i(III mll)'kll] ' 6)

II

For the effective field H'~(I), we distinguish between a
surface plane and an inner one; for the simple-cubic
geometry one has

h +(SJ,+8J2)S=H„ I =1,—N (7a)
H' I='

h +(6J, + 12J2 )S:H;, I =2, —. . . , N —1,
(7b)

while for the 2D Fourier transform of the exchange in-
teraction we obtain

J (k~~, O) =4J 1'y &+4J2yz
and

J(kii, 1)=Ji+4Jzyi
with

y, =
—,
' [cosk„+cosk, ],

y2=cosk„cosk, .

B. Eigenvalues and eigenvectors

The eigenvectors of the matrix A have defined parity

S(I)=+S(N+1—I), I =1,2, . . . , N, (8)

i.e., they can be symmetric (+) or antisymmetric ( —)

with respect to the center of the film. From Eq. (3), with
I =2, . . . , N —1, we see that S(I}must be of the form
S(I —1)+S(1+1)~ S(I},which is satisfied if S(I)=x'.

Requiring the eigenvector to have defined parity, if we
k

introduce the variable k~, through x =e ', we have

S (I)=exp[ iki(l —1 }]—+exp[ ik~(N —I)], —

ci&=H J(k~['0) J(k~~' 1 )[e +e ']
(9)

(10)

tion in the xz plane parallel to the surfaces, and we linear-
ize the Heisenberg equations of motion for the transver-
sal components S and S" of the spin operators in the
free-spin-wave approximation. Owing to the translation-
al invariance in the xz plane Sf'"=S"—"(I,t) has a plane-
wave-like dependence on Il ——(I„,I, ):

S"'~(l, t) =4"'~(I,
k~~ ) exp[i cot i 1

—
~~. k~~ ),

where I =
(1~~,I„) and k~~ =(k„,k, ) with n./—a

(k„k, ~ n./a. From now on, for brevity's sake, we put
a =1, l~ =l, and we omit the explicit k~~ dependence. Put-
ting 4"(I)=S"(I),Ã(I) =iS~(I), taking into account that
from the symmetry of the problem S"(I)=S~(l)=S(I) we
obtain

and imposing that (x+x ') be real, we obtain three
different solutions: (a) k~ = —Ia corresponding to mono-
tonic (M) surface magnons, (b) kj = i—a+a correspond-
ing to oscillating (0) surface magnons, and (c) k~ =a cor-
responding to the usual bulk magnons. The value of a
must be determined as a function of k~i and the parame-
ters (J„J2,N) of the system, using the boundary condi-
tion given by the equation of motion for a surface spin.
The latter can be written as

where

H, —H, J&+4J2
Jkf, (k(() = J (k((,'1) Jq +4J2y (

V(ki) = — +(x +x ')
S(1)

JQ

J +4J

The explicit forms for P(k~) in the different cases are re-
ported in Appendix A.

For J2 =0, having JK(k~~):—1, we recover the results ob-
tained by Doring we have only bulk magnons with
eigenvectors given by

S ( I )=cos[a ( I —
—,
'

) ]
7T

with c7 =m —(m =0, 1, . . . , N —1) . (14)

For the energies we have

co(kl, a )=2J,(1—cosa )+4J, (1—y, ) . (15)

which represents the energy mode with wave vector
(k„,O, k, ) for a 3D system.

(b) If J(k~~', 1)(0 as localized modes we have only oscil-

lating rnagnons with energy lower than the bulk ones.
(c) Finally, we can have at the most two surface mag-

nons (one symmetric and one antisymmetric).
In Fig. 1 we represent schematically the evolution,

within the first Brillouin zone, of the number and type of
surface excitations for different values of N and of the ra-
tio r=J, /4J2. In correspondence to the kl values for
which J(k~~, 1)=0 (solid line) a~ ~, i.e., the two surface

modes are completely localized at the first and the last

plane and the surface magnons change their character
from monotonic to oscillating. The volume modes are lo-

calized in the other N —2 planes; in fact, in this condition
the different planes are decoupled and the matrix A is di-

agonal with only two distinct frequencies

It is worthwhile to note that for any k~i we have always

the uniform solution a=O which corresponds to the
acoustic mode: i.e., co~0 for k~~~O.

In the general case J2%0 and for any value of k~~, we

must have N values of a for which Eq. (11) is satisfied.
The results can be briefly summarized.

(a) If J (k~~, 1) & 0, it is possible to have only monotonic

surface magnons in addition to the bulk ones and the lo-

calized modes are the lowest energy ones. The separation
edge between surface and bulk excitations is

cos —B k~~ H
t~

2J k

=4J )(1—y ))+4J2(1—yz)+ 8Jz(1 —y, ), (16)
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[J(ki, l)=0]=A„=A =H. —J(ki, 0)=J +4Ji(1 yi)+4Jz(1 'Y2»

~a[J(ki, 1)=0]=/22= ~ ~ ~ ——g~ $ ~ $

——H, —J(ki, O}=~ +4J](1—y/)+4/2(1 —y2) .

(17a)

(17b)

sos is twofold degenerate, while co& presents an (N —2)
degeneracy of the bulk excitations.

In Fig. 2 we show the effect of NNN exchange on the
dispersion curves of a multilayer (N =5): the curves are
no more parallel as in the Doring' case (Jz=O). The
value of k„, for which a~00, is clear from the figure,
and we have only two different eigenvalues.

It is possible to obtain the expression for the mode with
lowest energy in the N~ ao limit (for the details see Ap-
pendix B}that with k, =0 is given by

+8J 1 ——(1—y).1

N
(21)

For the eigenvectors we have

Of course, in the N»1 limit Eq. (20) gives the frequen-
cies of the excitations with k=(k~~, a ) of the three-
dimensional system. For the surface mode we have

~s«i) =— 4Ji(1 —yi)+4J2(1 Y2}
kII 0

J2
cps(k„, 0)=co, (k„,O) —16 sin (k„/2)

JQ
(18)

S(I)=2 a(N ——1) finite N,
S(I)=1—a(/ —1) N~oo, and small l.

(22}

(23)

with penetration length (for ~ki~-0)

1 J 1d= (19)
J2 k2II

i.e., we recover the results for the semi-infinite system ob-
tained by Mills and Maradudin.

It is also possible to obtain an analytical expression for
the energy of the localized excitation and the 1V —1 bulk
modes for ki-0 (from Fig. 1 we can see that in this limit

we always have only one surface magnon). In order to
determine a, this limit is equivalent to the J2 —+0 one be-

cause both give At(ki}-1 and the localized character is

lost. Consequently, for kII~O the allowed values of a are
the a defined in Eq. (14). As shown in Appendix B the
frequencies of the bulk modes are

co~(ki) —= 2J'[1—cosa ]+4J&(1—y, )+4Jz(1—y2)
II

gz(l}S(l}
1z(k~}= QS(l)

(24)

where the next-nearest neighbors in different planes are
dynamically weighted by the eigenvectors. The meaning
is particularly clear for the acoustic mode: in this case
the magnon is localized on the surface planes and conse-
quently they must have a larger weight. We observe that
when expression (24} for z is put in (21) instead of
8(1—1/N), we obtain an exact expression for co@(k~~).

It is interesting to note that the quantity 8(1—1/N) in
Eqs. (20) and (21}, represents the average number z of
next-nearest neighbors in different planes for a simple cu-
bic lattice. This quantity is obtained as kII~O limit from
a more complicated expression

1 1+8J(1—y } 1 ——cosa m (20)
IV. EXCHANGE INTERAC. 1'IONS ONLY:

MAGNETIZATION PROFILE

k, k, 1 M

i2 M

1&~&N

In the preceding section we have studied the elementa-
ry excitations of a system in presence of only exchange
interactions, using the method of equation of motion for
the spin operators because of its remarkable simplicity.

k, 30.0

k,

2 M

1 M

1/N&~& 1 ~&1/N

20.0

1 0.0

k, k, 0.0
0.0 0.5 1.0

FIG. 1. Schematic plot for the kII dependence of the number
and type of surface modes (M =monotonic, 0 =oscillating) for
diferent values of N and ~=J&/4J2. Along the solid line,
a~ ~, and there are only two distinct frequencies.

k,a=k,a (unita of m}

FIG. 2. Dispersion curves for N =5 J& = 1 J2 =1~ 5.
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1/2

S+=&2S 1—
2S a, (25a)

a~aS =V2Sa 1—
2S

1/2

S'=S —a a . (25c)

In order to study the thermodynamical properties, more
accessible from the experimental point of view, it is op-
portune to carry out a boson transformation of the spin
operators.

Because of the dimensionality D =2, long-range order
is forbidden by the theorem of Mermin and Wagner, ' so
we introduce a small magnetic field h that, in the free-
spin-wave approximation, works like a uniaxial single-ion
anisotropy.

Let us start from the well known Holstein-Primakoff
transformation:

k, i X Ulbk, l
II'

I II

ak i
—g Uilbk l

II
'

I
'

ll
'

so that

2 Aij (ki ) y Uil Ujm bk, lbk, m

'J

with

A,"(kii)U,.lU. =[UTA(ki)U]

=~,(k„)bl

The diagonalized Hamiltonian is

&—g gall(ki)bk ibk l .
I k

II'

II

(29a)

(29b)

(30)

(31)

(32)

Owing to the translational invariance in the xz plane
and to the absence of this symmetry in the y direction, it
is necessary to use a mixed representation for which

(26a)
kll

al=N~~
' gak l exp( —ik) li) . (26b)

The Hamiltonian is diagonal in ki (from now on we
drop the y subscript)

%= g A,"(ki) „~~,akim
j, (27)

11J

where

(akim

iak~(,
. ) = g Ull U;111 ( bk~~ lbk~~ 111 )

l, m

il k((, I —ki, I (33)

where

(btk„, lbk, , ~=5l exp
col(k) —1

T

The matrix U has elements given by

For the thermal average of the magnon number opera-
tor we have

A,j(ki) =5 jH"(i)—SJ(k„;i j)—(2&) Ul=Sl(r =i), (34)

is, of course, the matrix A defined in Eq. (4) using the
method of the equation of motion for the spin operators.

The matrix A is real and symmetric; it is diagonalized
by a orthogonal matrix U( U = U '). This assures the
conservation of the boson commutation rules for the new
operators bk, , b k,

I

i.e., U;I represents the amplitude of the oscillation on the
ith plane when the Ith mode is excited, provided that the
eigenvector is normalized to one.

For the thermal deviation 6;(T) on the ith plane we

have

6;(T)=S —(S'(r~ =i)—) = g (2m. ) f dk~~Sl (ki', r~ =i) 'exp
I

col(ki)

T
(35)

h(T)=N 'g 6;(T) (36)

being g; U;l = 1, we have

From Eq. (35) it is apparent that the inagnetization
profile is also determined by the eigenvectors. For real
systems such a property can be measured by means of
conversion electron Mossbauer spectroscopy. In order
to have the deviation per spin of the multilayer

In the presence of a NN interaction only Sl (i }=N
for the acoustic mode and Sl (i)=2N 'cos [ai(i —1 j2)]
for the optical ones. It is apparent that the acoustic
mode gives a uniform spin deviation. Furthermore, it is
easy to note that, while all modes contribute to the sur-
face (i = 1) spin deviation, the spin deviation of the cen-
tral layer (i =N/2) is given only by the symmetric
modes. Quantitatively, for ultrathin films and very low
temperatures with respect to Jwe have that the spin devi-
ation is determined only by the acoustic mode,

) 'f dki 'exp
I

col(kii ) —1
T

(37}

b, ( T)=— —in[1 —e ] —— —ln
1 1 T P/T 1 1 1 T T
N4m J T»aN 4m J h

(38)
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0.3 0.014

I-
4

0.2

0.1
0.007

0.0—
0.0 0.2 0.4 0.6 0.8 0.000

0.00 0.05 0.1 0

FIG. 3. Temperature dependence of the thermal deviation on
the central plane of an N =3 film. Crosses: numerical values;
solid line: Eq. (38). J,s=J, +4J2(1—1/2N), as follows from
(47).

0.009

similarly to the monolayer system. The result (38) has
been experimentally observed by Paul, Taborelli, and
Landolt for Fe/Au(100). ' In Fig. 3 this quasilinear T
dependence is shown for a film with N =3 layers. J2 is
different from zero but for such a small value of N the lo-
calized character of the surface is not important (a «1).
This quantity, as the other thermodynamical properties
shown in this section, has been calculated introducing a
very small magnetic field, h =10, in order to avoid the
usual 2D infrared divergence. In the N &)1 limit with
Si(1)=(2/N)[1 (lrr/N) —/2] and at low temperatures
(so that we can put ez ——Jk

~~

) we have
II

(T) 2ba(T)+O(T/J)s (39)

[where b,~(T) is the spin deviation for a 3D system]. For
EN&2(T) the summation in Eq. (35) is restricted to N an
even integer, and consequently

&Ngg(T) =&)(T)/2=&a(T) . (40)

The expressions (39) and (40) are the well-known results
obtained by Rado' and Mills and Maradudin for the
semi-infinite system.

In Fig. 4 the crossover between the quasilinear T
dependence (dashed line) and the T ~ law (solid line)
with increasing T is shown for the surface and central
planes in an N =21 film. At very low temperatures only
the acoustic mode statistically weights and h,.(T) follows
a T lnT law; instead at higher temperatures we have to
invoke a T ~ law. The comparison of b, &(T) and

bN&2(T) shows that all the modes are important for the
former but only the even ones for the latter. So, we have
to take into account a much larger number of modes to
reproduce h, (T) than those necessary for the central
plane. However, while analytically a T law results
from an infinite number of modes, Fig. 4 shows that a
rather small number of modes ( -5) is suKcient.

The results obtained for the spin deviation in the pres-
ence of the NNN interaction J2 are shown in Figs. 5 and
6. In the former it is reported the normalized quantity
[6; b,~&2]/h~z~ vs the—plane index i at fixed T and
N =43. For comparison, also the result obtained in the

0.006

0.003

0.000 '

0.00 0.05 0.10

absence of NNN interaction is shown. In order to put
into clear evidence the effect of the surface modes, we
have chosen an effective stiffness in the second case.

Generally, we have a fast decrease of spin deviation to-
ward the central plane value, but in the presence of a
NNN interaction we have a stronger effect on the surface
plane. In Fig. 6 we report the ratio between the surface

7=0.5
J,=O.S

d NN only
o NN and NNN

5
6 6 ~ h Cl A A A A A A

I

FIG. 5. Effect of the surface modes on the magnetization
profile of an N=43 multilayer. Triangles are calculated for
Ji =~.a.

(TiJ )*"
FIG. 4. Thermal deviations on the first and central plane of a

film (N =21). Crosses: numerical values; solid line: T' law;
dashed line: contribution of the acoustic mode ( ~ (1/N) T lnT);
short-and-long-dashed line: acoustic mode plus first optical
mode; dotted line: acoustic, first and second optical modes.
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2.2

2.0 ——————p. CL ——
ppp

p

imental studies.
Using the transformation (25) we obtain the following

boson Harniltonian:
1.8

1.6
4 14-

4

1.2

p
p

p nh
0

h
p

p~
T=0.75
J,=0.5

NN only
0 NN and NNN

1.0
50 100 150 200

(42)

number of planes N

FIG. 6. Effect of NNN exchange on the ratio between
thermal deviations on first and central planes. Again, triangles
are calculated for J& =J,&.

plane spin deviation and the central plane spin deviation
vs the plane number of the multilayer. It is well known
that for 1V~ ~, in the temperature region in which the
Bloch law holds this ratio must tend to 2 for any value of
J2. For the multilayers, it is apparent that with JzAO
we have a much quicker rise. The values greater than 2
reported for N & 65 seem to suggest that for JzAO this
ratio shows a maximum, indicating that for an intermedi-
ate region of X there is a very important contribution of
the surface mode.

In conclusion, it is important to understand what is the
temperature region in which it is simple to observe the
contribution of the localized modes to the magnetization
profile. At very low temperature only the acoustic mode
is excited but for kll ~0 the factor a in the eigenfunction
S(l)=exp[ —a(l —1)] is very small and consequently this
mode is not much localized. It is necessary to increase
the temperature, so that greater kll are important, but
without a sensible increase of the optical modes contribu-
tion which have bulk character.

V. BIPOLAR INTERACTION
AND SURFACE ANISOTROPY

In this section we report the results obtained for the
spectrum and the magnetization profile for the complete
Hamiltonian (1): i.e., A, , w+O.

where only quadratic terms have been retained and i,j
denote the plane indices. The matrices A and B and their
properties are defined in Appendix C. Now we develop a
Green's function formalism in order to find both the
spin-wave frequencies and the magnetization profile. We
define the Fourier transformed retarded Green's func-
tions

Gr (k~~, E)= &{atoll'r' (43a)

(43b)

Their equation of motion in terms of (NXN) matrices
are

[ A (k„)—EI ]G(k„)+B(kl)G'(k„)= — I1
(44a)

B( kii)G(kii)+ [ A(kl) EI ]G (kii) 0 (44b)

A (kl) B(k~~}

B(—
kii)

—A (kii)
T(k )= (45)

It is easy to demonstrate' that T(kl), —T(kl), and
T( —kl) have the same eigenvalues; consequently half of
the 21' eigenvalues are positive and half negative, with
the same absolute value:

where I and 0 denote the unitary and zero matrix, re-
spectively. The spin-wave frequencies are obtained from
the poles of G(kl) as the eigenvalues of the nonsymmetric
(2N) X(2N) real matrix T:

cor+rv(k(() = —
d'or(k(() (1 =1,2, . . . , N) . (46)

A. The spectrum

g =—w & A =SR(N)/N,3 2)(N)
4

(41)

where the dipolar summation 2)(N) is defined in Appen-
dix C. The assumptions of a collinear structure and the
spins in the film plane are in agreement with many exper-

We assume that the dipolar interaction prevails over
the uniaxial surface anisotropy and consequently a col-
linear ground state with the spins in the surface plane xz
results:

For the monolayer case (N =1 } A and B are scalar quan-
tities, and in the continuum limit, kll~0, one recovers
the result first found by Maleev' for h =0, A, =O. Also in
the case of a bilayer (N =2), it is possible to obtain the
explicit expressions for the acoustic and optical modes in
the limit m/J (&1 and klla &(1. Both these results are
reported in Appendix C.

For the multilayer case with generic 1V, one must resort
to numerical methods. However, it is possible to general-
ize the results obtained for X= 1 and 2 in order to obtain
an expression for the acoustic mode (k—:lk~~~ and q&k is
the angle between k~~ and the z direction) in the limits

w, A, «J and for small wave vectors (ka) « 1,
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a)~(k )=(A~ B—t, )(AI, +B~ )
II II II II

8-2= ~ hN 2—m 6(N)w (ka)+ w (ka}z+SJ,s(ka)2

2

X h +2mw sin q&ke(N)ka — (1+6sin |pk)w(ka) +SJ,s(ka)
8yp

(47)

where

and

J,s = [Ji+4J2(1—1/2N)]

Q(N) = [1—exp( —Nka)]/[1 —exp( —ka)] .

The quantity (h hN )'~, with

bN=h —2S f, +—wy,
2A, 3

represents the gap of a multilayer of N planes.

f, =(1—1/2S) is the kinematic factor necessary for a
correct quantum treatment of the single-ion anisotropy.

yp and y are some of the numerous dipolar sums shown in

Appendix C. For Nka «1, (N)~N and the terms in
w(ka) can be neglected, so that the dipolar interaction
contributes to the squared frequency of the acoustic
mode with a term linear in k and in the number of planes.
This is exactly what was suggested by Yafet, Kwo, and
Gyorgy. " It is clear that with increasing N, the region of
validity of such behavior becomes more and more limit-
ed: this is consistent with the fact that in three dimen-
sions the dipolar interaction does not give a term linear in
k, even for very low wave vectors. '

In Fig. 7 we report co„(ki) vs (k„a) for low k, for
different values of the number of planes N and h =A, =O.
For comparison we report, in the case N = 15, the predic-
tion by Yafet, Kwo, and Gyorgy" in which the k expan-
sion for the dipolar sums is limited to linear terms. We
see that no gap is present and for Nka && 1 the dipolar in-

I

teraction gives rise to a (Nka)'~ behavior. Increasing k
and N, expression (47) results in closer agreement with
the numerical results than the prediction of Yafet, Kwo,
and Gyorgy.

It is worthwhile to note from Eq. (47) that we recover,
in the limit N —+ 00 and a ~0 and for very low wave vec-
tors, the result of the magnetostatic mode theory" for the
frequency cos(ki) of the surface mode of a ferromagnetic
slab of finite thickness L =Na. With kII along the x direc-
tion perpendicular to the magnetization sos(ki) is given
by

~m
s(k )= coo+

II 2

2 1/2

4
exp( 2kL)— (48)

with cop=—h and co =—4n.gp&Mz =4~w. co+ is found to lie
above the k independent frequency of the bulk mode
COo

= [COO( COO+ CO }]

B. Magnetization profile

Using the spectral theorem the magnetization profile
can be obtained from the diagonal elements of the matrix
G

Im« a„,;at, ))
&ae Ia„,I)=—2f dE (49)

exp E) 1—
so that h&(T)=N ' gz &az la& I). In order to calcu-

late 6I &(ki, E) let us first observe that the system (44a)
and (44b) can be rewritten as

[T(ki EI ]F(ki) L1
(50)

0.06
in terms of the matrix T and of the (2N X2N} auxiliary
matrices F,L defined as

0.04
Q

G(ki) 0 I 0
F(kll)= 6(k) 0 L= 0 0

J

(51)

0.02

0.00
0.0C

ka (units of m)

0.05

Denoting by P(ki) the real nonunitary matrix, which
diagonalizes T(ki ),

T'(ki) =P '(ki)T(ki)P(ki), (52)

we obtain, multiplying Eq. (50) by P '(ki) on the left and
P(ki) on the right:

FIG. 7. Dispersion curve of the acoustic mode of a multilay-
er (N =1,4, 7, 11,15) in presence of exchange (J,I=1)and dipo-
lar interaction ( w =0.01). Solid line: analytical expression (47);
dashed line: numerical results; dotted line: prediction of Yafet,
Kwo, and Gyorgy (Ref. 11).

[T'(ki) EI ]F'(ki) = L ',1

where

F'(ki) =P '(ki)F(ki)P(ki)
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and

The matrix [T'(kll) —EI ] is diagonal, so that

5,-
(k„)—Er];, '=

i

giving

(53)

F .(kll) = — g [T'(kll) EI],—i 'L('
1

(54)

and thus

Li'm
F,, (kll) = — g P,, (kll) P, '(kll)sl

II ~ E™g II

II
—4 II jj—

(55)
co&

—E
In conclusion, the imaginary part of the Green's function
((ai, ,ai, J )) . + can be expressed as

II' ll'

2N

ImF;;(E+i0+)= —
—,
' ~ P2(k

1=1
(56)

wherei =1, . . . , N.
The spin-wave magnetization profile is then obtained

integrating

(a&II'»ahull'" ~ «i~)» Pj=& e ' —1

n =1, . . . , N (57)

over the two-dimensional Brillouin zone.
Taking into account the property (46) of the eigenval-

ues, it is possible to separate the temperature dependent
contribution from the zero-point spin reduction

P$ P }
' —P]'P.('

(T)
1 y y J J J J p p —1

exp(P~, ) —1

P11P11 P12P21
1—P12P21'

exp co —1

and T is a (2 X 2) matrix with eigenvalues

Ek +[g 2 g2 ]1/2 +E
II II II

The final result is

(59)

(60)

A„ 1

Ei, exp(PE1, )—1

Ai, —E~
II II

2Ei,
II

(61)

(j'=j+N) . (58)

In the presence of only exchange interactions P(kll) is

an orthogonal (N XN) matrix with Pijpii '=Pij=SJ(l);
in this case, from Eq. (57) we reobtain Eq. (35).

For N =1 we recover the monolayer result. ' '" Equa-
tion (58) becomes

For the spin deviation the temperature dependence is
b(T) ~(T/J) i if T&&w(w/J)' and b(T)
~(T/J) in[(T/w)(J/w)'i ] for T )) w( w/ J)'i2. '

For N & 1, if only the acoustic mode is statistically im-
portant, we can generalize Eq. (61) in a simple way: the
quantities Ai, ,E1, are modified according to (47) and a

II II

factor 1/N, as in (38) is present. Otherwise, if the values
of X and T are not small and more than one mode has to
be taken into account, a numerical diagonalization of the
matrix T is necessary.

An expression analogous to (58) is obtained also for
w =0 but in presence of a single-ion easy-plane anisotro-
py. In this case the nonsymmetric matrix T takes a sim-
ple form, since the matrix 8 is multiple of the unitary ma-
trix. This allows us to obtain analytically the eigenvalues
and eigenvectors of the matrix T with no more effort than
in the case of a model with NN and NNN interactions.
The explicit results will be shown in a future publication,
where the total magnetization of the superlattice
(Fe3/Ag„)s with diB'erent number x of Ag planes will be
investigated.

VI. CONCLUSIONS

We have studied the linear excitations and magnetiza-
tion profile for ultrathin films with a few layers thickness,
and different peculiar behaviors due to the absence of
translational invariance are found. Using a microscopic
approach we have shown that in the presence of NNN
J2, a situation meaningful physically, different numbers
and types of localized modes as a function of the ratio
J2/J, , the number of layers N and the 2D wave vectors
kll, are present. In particular, in addition to the usual
monotonic surface modes, for sufficiently high wave vec-
tors surface modes, called oscillating modes are predict-
ed. These modes always have the lowest energies and for
the acoustic one we have been able to give an analytical
expression. Their effects on the magnetization profile are
very strong, giving for external planes a spin deviation
much larger than the inner ones: in ultrathin films these
effects are much more relevant than in the semi-infinite
case. This behavior has been experimentally observed in
iron ultrathin films using conversion electron Mossbauer
spectroscopy. ' For fixed N, with increasing tempera-
ture it is possible to observe a transition between a 20 re-
gime ( T lnT) and a 3D one ( T3i2).

Also the effects due to the dipolar interaction and a
single-ion surface anisotropy have been considered. Us-
ing a Green s-function formalism, the energies of excita-
tions as functions of a number X of planes and of the
wave vectors kll are studied. In particular, for the acous-
tic mode an analytical expression is obtained improving
the suggestion by Yafet, Kwo, and Gyorgy" about the X
dependence of the kll linear term given by the dipolar in-
teraction. These predictions can be experimentally
verified by means of Brillouin light scattering. For the
magnetization profile we derive an expression valid for
any model depicted by a nondiagonal quadratic boson
Hamiltonian (consequently a nonsymmetric matrix T ).
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APPENDIX A

Using Eqs. (9) and (10) the function P(ki ) is

cos[ki(N + 1 ) /2]
V (kj)= (symmetric)

cos ki N —1 /2sin[kgb

(N + 1)/2]
P (k|)= (antisymmetric) .

(Ala)

(A lb)

For kj =a (bulk magnons} we define S*(a)=P (ki =a}.
For ki= ia—(monotonic surface magnons) we define
%*(a)=9*(kj= —ia) where the functions % (a) are
obtained from the S (a), replacing (sin, cos) with (sinh,
cosh). For the oscillating surface magnons
(kj = ia—+n ), in the symmetric case we find

Substituting in Eq. (9) pertinent to the bulk modes we ob-
tain Eq. (20}. The result is valid also for the antisym-
metric modes.

APPENDIX C

In order to determine the ground state we parametrize
the spins as S=(Ssin8sing, Scos8, Ssin8cosg). The
exchange, Zeeman, and anisotropy terms assume usual
expressions while the dipolar interaction contribution to
the ground state is given by

3Su Nii 2
Wz; (8)=cost — sin 8 g D (I —m ) (Cl)

1,m„

with

—R (a), N =2n
7'(-la+~)= R+( ) N=2 +1

while in the antisymmetric one

(A2) 1 (I;—m;)'
D;;(ly —m )= g 1 —3

ll —ml fl —m/

i =x,y, z . (C2)

7 ( ia+m. )= '—
—R+(a), N =2n
—R (a), N =2n+1 .

(A3) Expression (Cl) is obtained taking into account various
properties of the dipolar summation. Let us write

cos(kii) =H; —J(ki', 0)—2J (kii,'1 }cosha (Bl}

with a determined by Eq. (11). When N ~~ we have

cosh[a(n + 1)/2]/cosh[a(N —1)/2=exp(a) .

Introducing the quantity cos ~(kii), as defined by Eq.
(16},rds(k1 }becomes

cps(kii) =cos —a(kii) —2J(kii, 1)[cosha —1] .

Taking into account that
2cosha=[J'/(J, +4Jzy, )]+[(J,+4Jzy, )/J']

(B2)

and putting k, =O, we obtain the result (18} found by
Mills and Maradudin.

For a finite number N planes we know that for ikiii «1
there is a symmetric localized energy, which has the
lowest energy and N —1 bulk modes. To a certain extent
the kii~0 limit is analogous to the J2~0 case because in
both limits we have At(ki) 1. Therefore for ki 0 we
have that the solutions are very near to the Doring
ones. ' For a~0 (surface mode),

APPENDIX B

The frequency of the acoustic (surface) mode is given

by

Dyy (ly my ) Nay (0)
l,m„

N —1

+ g 2(N —b, l )D (b, ly ) =—$(N)
hl =1

—:(A —W) sin 8—h sin8cosg . (C4)

The quantities A, and Bi (ki) in Eq. (42), are given by

Ai (kii)=5I h' (I)—SJ(kii', I —m)

+—[D„„(ki',I —m)+D„~(ki', I —m)], (CSa}

BIm (kii }=5i mh P( I )

+—[D„„(kii;I —m) —D„(kii;I — )
W

(C3)

where D (0) is predominant: D„(1)= —D „(0)/30.
The ground state is obtained minimizing the energy per

spin

SA(N) 3 2)(N)

SNNii N 4

CXcosh[a(N+ 1)/2]/cosh[a(N —1)/2] = 1+ N .
2

where

+2iD„(kii', I —m )], (C5b)

Consequently cosha = [N —1+JR, (kii) ]/N; in this way we
obtain Eq. (21).

For the symmetric bulk modes, putting a=ca +e, we
can obtain e by means of a development at the lowest or-
der in this quantity

h' (I)=h +hJ~(l)+h' (I)+h g (I)

h (I)=SQJ(1—m),

h„' ( I)= —w g D (I—m }, (C6}

cos[(a/2)(N + 1)]
cos[(a/2)(N —1 }]

(B3)
hP(l)= A,(1)Sf, . —
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We have introduced the Fourier transform

J(kll, l —m)= y J(l —m) exp[ik (lll
—mll)],

II

(C7a)

D &(kll, b, l) is a purely imaginary, odd function of kll and
Al. Consequently, A and 8 are real and their matrix ele-
ments satisfy the relations:

D &(kll', I —m)= gD &(I—m)exp[ikll'(lll mll)]
I ( II) I—( II) —I(

Bi (
—

kll) =B i(kll),

(C8a)

(C8b)

(C7b)

For exchange interactions only J(kll', 0) and J(kll', 1) are
different from zero. The dipolar sums, which is con-
venient to redefine as

which assure the hermiticity of the Hamiltonian (42).
For the monolayer we have for the frequency the well

known result:

D P(kll'b, l)=D P kll '~I)+D )l(ZI)

can be numerically evaluated in a very efficient way,
while the analytical expression for IkllI &(1 are reported
in Ref. 12. We have that D (kll', b, l) are real, even func-
tion of kII and hl, different from zero for kII =0;

I

~ (k )={A,i+wD (0)+S[J k

X {h +wD "ll(0)+S[J(

while for N =2, the frequency of the acoustic mode is

(C9)

[ci)„(kll)] = . 62+w g D "(I)+S g [J(kll=O;I) —J(kll, l)]
1=0, 1 1=0, 1

X . h +w p D "(0)+S p [J(kll=0;I) —J(kll, l)]
1=0,1 1=0, 1

and for the optical one:

[Ct) (+k )l]l= . 52 —2wy i +2S (J, +4Jz )+w g ( —)'D (I)+S g (
—)'[J (kll =0;I)—J (kll', I) ]

1=0, 1 1=0, 1

(C10)

X . h+wy, +2s(J, +4Jz)+w g ( —)'D 'l(l)+S g (
—)'[J(kll=0;I) —J(kll, l)) .

1=0, 1 1=0, 1

+2[wD„,(kll;1)]

where ys&
——D (kll =0;EI). For N )2 we must define y given by y =—yo+(1 —1/N)2y, .

(C11)
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