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The excitation spectrum of the spiral state of a doped quantum antiferromagnetic is discussed. It is

shown that the low-lying spin excitations are strongly mixed with the transverse fluctuations of the dipo-

lar polarization field associated with the vacancies. It is argued that for a certain range of phenomeno-

logical parameters these transverse fluctuations could lead to the destruction of the long-range order at

T =0.

I. INTRODUCTION

r, a, cr r, a

where c, is the electron-annihilation operator con-

strained to single occupancy and s=—2c r .c ~ is the

spin. The sums are over all sites r on one sublattice of a
two-dimensional (2D) square lattice and a=Ex, ky are
the nearest-neighbor vectors.

The spiral AFM state is metallic with the carriers
filling up the pockets near k =(Sir/2, Sir/2) in the ex-
tended Brillouin zone. It is characterized by the presence
of a certain fermionic "polarization" order parameter'
(P, ), which is a vector in both spin and lattice spaces
and which is accompanied by the appearance, in the
ground state, of a "twist" (QXB,Q)%0 (also a vector
both in lattice and spin spaces), in addition to the local
staggered magnetization Q. Together the two order pa-
rameters, which are orthogonal vectors in spin space,
define a local triad. Consequently, one expects the exci-
tations of such a state to include in addition to the usual
spin-wave modes an extra one which does not exist in the
collinear magnet. This mode, which in Ref. 1 was termed
the "torsion" mode, corresponds to rotation about the lo-
cal direction of the staggered magnetization 0, and
represents the fluctuations of the spiral plane, i.e., of the
direction normal to the plane of the spiral, ( Q XB„Q), in

spin space. Alternatively, the additional mode corre-
sponds to the transverse fluctuations of the vacancy "po-
larization" (P, ), as will be explained below. The "tor-
sion" mode is quite soft, with its energy scale co&- deter-
mined by the inverse pitch of the spiral q, which is pro-
portional to the vacancy density, n «1: coT&qJ (typi-
cally 100 meV). This mode therefore would be rather im-

In this paper we shaH discuss in more detail the spec-
trum of spin excitations for the "spiral" antiferromagnet-
ic state which has been proposed' as a possible ground
state of an antiferromagnet (AFM} with a small concen-
tration of mobile carriers described by the Hubbard-
Heisenberg (or t J}mod-el Hamiltonian

H= t g (c,+, —c, +H. c. )+Jps, +, s, ,

portant phenomenologically. Furthermore, we shall ar-
gue below that the quantum fluctuations of the transverse
component of the vacancy polarization can, in principle,
suppress the static expectation value ( P, ) (leaving

(P, )%0) and lead to the destruction of the AFM long-

range order on the length scale of the spiral pitch

q '-n '. The resulting disordered state is expected to
have a spin gap, of order qJ, but should retain the incom-
mensurate correlation in its finite-energy excitation [i.e.,
the lowest-energy excitations having k lying on a ring
near (ir, m)].

We shall take as a starting point the semiphenomeno-
logical generalized nonlinear o. or CP' model describing
the interaction of long-wavelength (and low-energy) anti-
ferromagnetic spin modes with fermionic vacancies,
which are discussed at some length in Ref. 1 and 4. After
formulating the model in Sec. II, we present in Sec. III
the analysis of the excitation spectrum, calculate the
spin-correlation function, and estimate the effect of the
quantum fluctuations. Section IV is a summary and a
speculation on the nature of a possible disordered ground
state and the relation of the present analysis to the
neutron-scattering observations. '

II. GENERALIZED CP' MODEL

Our point of departure is the effective Hamiltonian
which generalizes the standard nonlinear o model (NLcr )

to include the coupling of the spin degrees of freedom
with mobile vacancies. It is convenient to use the
Schwinger-boson representation in terms of which the
staggered magnetization unit vector is Q=z~z, with z, a
two-component spinor z z =1. The net magnetization
field m is represented as m=Re(i)rz), in terms of a con-
jugate spinor i) (Rei)z=O), obeying the commutation
relations [z„,i) ]=5 —z z and [g,g ]=z q„+ri~„,
which reproduce

[m (r), m~(r')]=ie, ~rm "(r)5' '(r r')—
and

[m (r), Q~(r')] =iE ~rQr(r)5'z'(r r') . —
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P.(k) —= t g»nk. '4k k/24k'+—k/2
k'

(2.3)

Each component of P, is a complex number which
defines a spin space vector perpendicular to local 0
via P,:Tr[R rR—(P,r++P, r )], where

Z1 Z2

Z2 Zl

is an SU(2) rotation matrix relating local Q to a fixed
basis.

We note that H, tt of Eq. (2.2) possesses the gauge sym-
metry, z~e ~z implicit in a Schwinger-boson representa-
tion. Under this gauge transformation, P, ~e' ~P, (cor-
responding to f"~e '~g", g ~e'~i)'/ transformations
of sublattice fermions), so that the covariant derivative is
D, =—a, +i2A„with i A, =za, z. The freedom in the
choice of the phase of P, corresponds to the freedom in
the choice of the origin for the polar angle pararneteriz-
ing a vector perpendicular to Q.

Since for low hole concentration the vacancy Fermi
surface consists of two inequivalent valleys,

7T 7Tk=k = —+—
1 2 2

7

2
7

it is useful to define the valley polarization vectors

A B
P(1,2) X 4k' —k/2 Pk'+ k/2

k'=kl 2

in terms of which P
&

=P1+P2. We also introduce

Z A A B B
(1,2) z X [fk' —k/24k'+k/2 4k' —k/2 Pk'+k/2]

k'=k1, 2

which allows one to derive the approximate commutators

[P„'(r),P„.(r')] =P„5„„,5' '(r —r'),

[P„(r), P„(r) ] = 2P„'5„„5''( r r'), — (2.4)

of the NLo. model. The NL0 Hamiltonian
H~L =m +c (a, Q) is rewritten as

H~L =2) (5 „—z z, )21„+ca, z (5, z—z )a,z

(2.1)

where c is the spin-wave velocity and the energy is in
units of inverse susceptibility, i.e., is scaled with J.

The generalized hamiltonian that we consider has the
form

H, =H „—[gP, ~ a, „+H.c]+ lD, Pbl +V(P),

(2.2)

where the second term represents the coupling [g -O(1)
in units of J] of the magnetization current to the dipole
polarization field of the vacancies, P„'the third term is
the stiffness for the P, field with covariant derivative D,
defined below, and V(P) is an effective potential. Vacan-
cy polarization in terms of sublattice fermion fields g" ~

is expressed in momentum space by

a.z.(5.,—z.z.)a.z.= l..~.a.z„l',
to rewrite Eqs. (2.1) and (2.2) as

H, tt=ri (5 „zz,)ri„+c ls ~—a,z„cgP,—l

gc P,—P, +)(:lD,Pbl +V(P) .

(2.5)

(2.6)

The form of Eq. (2.6) suggests a mean-field solution with
nonvanishing Q, =(s ~ a,z ) and (P, ):

Q. =c 'g(P, ), (2.7)

which is a classical ground state provided that
g )c gz '. The magnitude (P, ) is determined by V(P)
and, in the simplest case of fully polarized valleys, is fixed
by density of holes: e.g., P =

l (P, ) l

=
l ( P2 ) l

=n l4, cor-
responding to the spirals in (1,0) or (0, 1) directions on the
lattice. The amplitude of this order parameter deter-
mines the wave number of the incommensuration,

where p labels the valleys. These commutators combined
with H,z describe the long-wavelength, low-frequency
dynamics of the polarization field P„.Such a coarse-
grained description is plausible on length scales larger
than the intervacancy distance, I »kF '-n ', with P„
interpreted as the total pseudospin magnetization of a re-
gion containing nl »1 holes.

The efFective potential V(P) can be determined by es-
timating energy cost of polarizing the pth Fermi sea; e.g.,
for the simplest case of a circular valley with n pseudo
spin up (down) populations, P'„=—,'(n+ n—), the total
energy is

E„=n/'m (n+ +n ) =2m Im l P„l+~I2mN„,
where m -O(1) (in units of J ') is the effective mass of
the carrier and 1V„—:n++n is the total occupancy of
pth valley. [The energy here was written in terms of the
polarization vector lp„l =(P„')+ ,'[P„,P„—]under the
assumption of isotropy. ] Clearly, the magnitude of the
polarization is bounded by the density of holes in the val-
ley, lP„l& —,'N„.This constraint can be built into the
effective polarization potential by defining

v(P, )—=gq 'lp,
l

+n/'2m(N, +N2)

for partially polarized valleys lp„+P»l

& ,'N, 2 and-

infinite otherwise. In the above formula we have
identified the coefficient of the quadratic term as the uni-
form dipolar susceptibility of the vacancies, y~ =m /m.
[Note that V(P) can be readily generalized to include
other nonlinear effects such as interaction between
different valleys as well as anisotropy, e.g., (P;) term. ] In
addition to V(P), H, tt of Eq. (2.2) includes the polariza-
tion "stiffness" a, which assigns energetic cost to a spa-
tially nonuniform distribution of P, . On dimensional
grounds we expect ~-kz m ' with the Fermi wave
number kF-~n While t.his "stifFness" term incorpo-
rates the wave-number dependence of the static dipole
susceptibility, more generally one may attempt to include
the correct frequency dependence of yz( k, co).

The mean-field ground state of H,z is found by using
the identity
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q, =2l Q, l, and the phase fixes the direction of the vector
normal to the spiral plane in spin space. Thus, for exam-

ple, Q, =ix,q/2 defines a spiral in the (xy} spin plane
with inverse pitch q:

(i /2)qx

—(i/2)qxe

which corresponds to Q(r) =(cos(qx), sin(qx}, 0).

(2.8)

III. EXCITATION SPECTRUM
AND SPIN-CORRELATION FUNCTION

To facilitate the mode analysis, we use the decomposi-
tion

z =(1—
—,
' lu l'}w +u e,w „', (3.1}

A, = tzB,z—=a, +2Im[Q, u ], (3.2)

where a, —= —iwB, w is the background gauge field (which
vanishes for the planar spiral state) and

e ~ B,z„=Q,—[B, 2ia, —2i Im—(Q, u)]u . (3.3)

The fluctuations of P, are conveniently parametrized
by exploiting an apparent anisotropy which suggests the
use of Villain-like representation for valley polarization

p (p2 2)l/2e' p (3.4a)P

P„'=mp, (3.4b)

with [m„,O„.]=i5 ~ (where p is the valley index). Ex-
panding P„in the coupling term gP&e ~ B„z„for
6 «p about the mean-field value [i.e.,
( 8& 2) = ( m'& 2) =0 for the x spiral] generates a quadratic

I

with the static spinor field w, w w = 1,
e „w B,w„=Q, describing the spiral state, and the com-
plex field u parameterizing deviation away from it. The
gauge transformation (GT) z~~e'&z is implemented by
w ~e'&w, u~e ' &u. Note that the twist order pa-
rameter Q, transforms into e' ~Q, under a GT. We have
explicitly

+Kp lB 8—2A, l +Kp'(B.y) (3.5)

Note that angle P here describes the fluctuations of the
spatial orientation of polarization field,
P„„=2pe'(i cosP, sing), while angle 8, which is not

gauge invariant, rotates P, about Q in spin space. The
fluctuation Lagrangian can now be derived from Eq. (2.2)
by observing that the g term leads to the kinetic energy
lD, zl and combining Eqs. (2.2), (2.5), and (3.1)—(3.5).
After some algebra one arrives at

L = lB,u l
+a '(B 8} +a '(B P)

+Kp'(B, {j))'+Kp lB, O —2a, —4Im(Q, u )l

+c lD„u+i2gc pe' cosP Q„l2-
+c lD~u+2gc pe' sing Q l— (3.6)

For a spiral in the x direction, we identify
Q„=i(2g/c )p=i(q/2) and Q„=O; let a, =O and ex-
pand assuming P, 8« 1. The quadratic Lagrangian
describing fluctuations about this spiral state becomes'

+c IB u I'qOI +c lou+2'qual

+a '(B,O) +a '(B,P)

+Kp [IB,8+2q Reul +(B 8) +(B„P)2+(B$)2]

(3.7)

[n.b. u(r, t) a complex field], which may be rewritten as a
quadratic form (in Fourier space): 5L=@M4, with
4 (k, to)=[(Imu )k „,(Reu )k „,Ok „,t|)„„],and M being

term an„with a=gqp '=g c /2-0(1). Since m„is

conjugate to the angle 0„,the latter term gives rise to the
kinetic-energy term in the Lagrangian: a '(D, O„),
where D, denotes the covariant time derivative. It is con-
venient to introduce 8= ,'—( 8—,+82 n—)a.nd p = —,

'
( 8,—82)

in terms of which the Lagrangian describing transverse
fluctuations of the polarization becomes

Lr=a 'lB, O —2A, l
+a '(B,P)

2+c2k2

2+c2k 2+&q 2

—(c +K)qk„

——(c +K)qk„

—a 'to+ —(Kk +c q )
-i2 & — 2

4

c qky

(3.8)

c qky
—a 'to +—(Kk +c q }

-i 2

4

where we have defined K —=4Kp -O(q). We observe that
the Im(u) mode is trivial and has the spin-wave spectrum
to&=ck. Going back to Eq. (3.1), one may check that it
corresponds to rotating staggered magnetization in the
plane of the spiral. The rest of the spectrum involves the
out ofplane deviation Re(u) c-oupled to the phase fluctua- co'= —'(q'+4k')' ' (3.9a)

tions of the polarization field (8,$). The exact form of
the spectrum is messy, but is simplified for the k =0 line,
where one has, to lowest order in k-q «1 (setting
a=c= 1),
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—1/2
Iq' —k„'I

(q +4k„)'
co4= ,'(q —+Kk )'c

(3.9b)

(3.9c)

x. While the degeneracy is lifted by the stiffness k&0, the
"softness" of the co3(k) mode remains.

Let us now compute the spin-correlation function
S(r, t):—(s(r, t) s(0,0)). In terms of Schwinger bosons,
we have

and, for the k =Oline, (s(r, t) s(0, 0) ) =
—,'( lz(r, t)z(0, 0)l ) —

—,', (3.11}
co =—'(q +4k )'

(q'+ k')'"—1/2

( q 2+4k 2
)
1/2

(3.10a)

(3.10b)

using the parametrization of Eq. (3.1) and taking care to
treat separately even and odd distances r, which involve
spins from the same or opposite sublattices. ' We find

co ——(q +Kk ) (3.10c)

The spectrum is illustrated in Fig. 1. We observe from
Eq. (3.9b) that co3 (k, =+q, k~=0)=0 corresponding to
Goldstone modes associated with the rigid rotation of the
plane of the spiral in spin space. Equation (3.9b) yields
near k =q points the characteristic velocity
2K /&5-O(&q ). Clearly, the two low-lying modes in
Fig. 1 are predominantly the fluctuations of (e,p) and
have the characteristic" energy -O(q). For k ))q,
co2(k)=k, yielding the standard spin-wave dispersion.
Curiously, in the absence of the stiffness term for the po-
larization, i.e., K=O, we would have co3(k„,O) =0 identi-
cally, which physically stems from the existence of a
more general mean-field solution of Eq. (2.6), where the
polarization is an arbitrary function of one variable (i.e.,
x) and thus the plane of the spiral varies as a function of

+ —,
' [(ut(k —q, co)ut(k q, co) —) +(q~ —

q ) ]

+(ult(k, co)ult(k, co)) . (3.13)

The correlation functions in this expression are found in
terms of the eigenvalues coI and eigenvectors g';" of the
matrix M [Eq. (3.8}],My,'"=colg';",

S(r, t)=( —1) "cos(q r)[ —,
' —(lu(0, 0)l )]

+( —1)'"cos(q r( ut(r, t)ut(0, 0) )

+( —1)I'I( ulc (r, t)utc (0,0)), (3.12)

where uz and uz stand for Re u and Im u. The dynamic
structure factor is thus
S((2r, m. )+k, co)

=
—,'[1—4( lu I ) ][5(k—q)+5(k+q)]5(co)

( Iut(k, co)l') = 5(co —co1(k)),
1

2co, (k)
(3.14a)

Ix',"(k)I'
14b)

l=2 3 4 COl

cq

kx

The first term in Eq (3.13) yields Bragg peaks with in-

tensity renormalized by the zero-point motion ( I
u

I )
and shifted away from (2r, ~) by q in the (0, 1) or (1,0)
directions. The presence of these peaks is the conse-
quence of our assumption of the long-range order in the
spiral states at zero temperature. The integrated intensi-

ty, or equal-time correlation function obtained by in-

tegrating S((2r, n)+k, co) over co and shown in Fig. 2, ex-
hibits in addition to incommensurate peaks the "back-
ground" structure centered on the commensurate wave
number, k =0. This commensurate scattering arises
from the inelastic scattering (see Fig. 3) with co near
co3(0) & O(q ).

Let us now examine the effect of quantum fluctuations
and the validity of the assumption of long-range order.
Long-range order (LRO) would disappear if the fiuctua-
tions

cq &(q)=4& lul'oil & =4& f
k

(3.15)

ky

FIG. 1. Excitation spectrum: (a) col(k ) and (b) coI(k„)(for

a=q, +=1).

were large enough. Since the collinear limit q =0 we
know that the AFM state is ordered (at T =0), we are in-
terested in the part of b, (q) due explicitly to the presence
of incommensuration. Observing that for q =0 we would

have co2(k)=co, (k) and y21 '=F12 '=0, yI"=y21 '=1, we

obtain
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co,(k) ~g2 '(k)
~

—c0~(k)
b, (q) —b, (0}=g

co~ k co~ k

(k}~z
+

co((k)
(3.16}

The first term clearly vanishes as q~O. The second
contributes in as much as there is mixing of the modes,
which is confined to small k. In particular, mixing is
strong for ~k~ Sq, in which case y2' '(k)-O(1),
a)3(k)-O(q ), so that

co3 '(k)~y2 '(k)~ -O(q' ),
Ial&q

while, for the ordinary spin-wave dispersion,

co&(k)-k, g co& '(k)-O(q) .
Ikl (q

Hence we expect h(q) —6(0)-O(&q ) and conclude that
the presence of the incommensurate structure leads to an
additive contribution to zero-point motion scaling with

1/2

Similarly, one needs to estimate the fluctuation correc-
tion to the mean-field expectation value of the polariza-
tion In analogy with Eq. (3.15),

Ix~~" I'
( 1

el') =-,' g g ' -O(1), (3.17)
c0((k)

One possible consequence of large transverse fluctua-
tions of the polarization would be the complete suppres-
sion of static spin correlations, i.e., (0)=0, as well as
(P, ) =0, which could occur for sufficiently small polar-
ization stiffness ~. We expect this phase to exhibit finite-
frequency short-range incommensurate correlations aris-
ing from

(P, (r, t)P, (0,0) ) n-e "~~e

with g
' —O(n) and r '-O(nJ). This intuitively corre-

sponds to fairly long-lived regions of incommensurate
"spiral" correlations with the orientation of the spiral
plane varying on the scale of the correlation length deter-
mined by the transverse fluctuations of the polarization
(and therefore controlled by ~). This length has to be
compared to the pitch of the local incommensuration,
controlled by n, with the expectation that when the latter
becomes sufficiently small, the "twist" within the polar-
ization correlation length also becomes small, allowing a
possibility of reentry into the Neel-ordered AFM phase.
The disordered phase with local incommensuration can
be investigated using the effective Hamiltonian of Eq (2.2)

with the rough estimate obtained by taking

(+ak) '-0 -O(1) .

We arrive at the conclusion that, at least for sufficiently
small q, the important fluctuations are those of the polar-
ization field. Depending on the parameters of H,z, in par-
ticular ~, the zero-point motion of the phase of P, can be-
come large enough to suppress (P, ), thus destroying the
LRO even at T=0.

&(o )
~

40

20

10

FIG. 2. Total scattering intensity (in arbitrary units) as a
function of k. The divergence corresponding to Bragg peaks at
k =+qx has been cut ofF.

FIG. 3. Dynamic structure factor S((n., n.)+k~) for several

values of c0: (a) co=0. 1cq, (b) cu=+Ncq (for F=q=0. 1, c =1)
measured with "finite-energy resolutions, " i.e., convolved with
the Gaussian of width 0. 1cq.
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and polarization field dynamics of Eq. (3.4) with further
simplification of the effective potential V(P) replaced by
the magnitude constraint. The magnitude of P together
with its stiffness would then control the phases. This
study, however, is beyond the scope of the present
analysis.

IV. SUMMARY AND CONCLUSION

In the earlier sections we have discussed the general-
ized CP' model suggested by the analysis of a doped
quantum AFM. The essential ingredient of the model is
the introduction of a dipole polarization field P„which
couples to the "twist" e ~ B,z, . This model, at least on
a semiclassical level, is equivalent to a NLcr model gen-
eralized to include the coupling of the magnetization
current 0XB,Q to the spin vector polarization field P, .
We found that the spiral states, which appear as mean-
field solutions, are stable with respect to small deviations.
The excitation spectrum is found to contain three Gold-
stone modes, as expected on general grounds for a non-
collinear state with the spin space triad order parameter.
The "extra" mode is associated with the transverse fluc-
tuation of the P, field, corresponding to rotations about
local Q axis, and fluctuations of the normal to the plane
of the spiral in spin space. The fluctuation spectrum ex-
hibits strong spatial an isotropy for k-O(q} with the
"soft" direction along the incommensuration vector q.
Estimating the order of magnitude of the quantum fluc-
tuation corrections to (0) and (,P, ) suggests that the
long-range-ordered spiral state is possible, provided that
incommensuration is small, e.g., q «1 (so that additional
contribution to the zero-point fluctuation of staggered
magnetization, which scales with q'~, is controlled) and

that the polarization stiffness is large enough, e.g, q~ &&1.
The latter condition is required to prevent the transverse
fluctuations of P, from suppressing the (,P, ) order pa-
rameter. This analysis suggests the existence of two dis-
tinct disordered phases in the vicinity of the ordered
spiral state. The first possibility is the case of strong in-
commensuration, i.e., q —~(P, )~-O(1), with (Q) =0
because of quantum fluctuations. Note that the presence
of the (,P, )%0 order parameter breaks the lattice sym-
metry (as well as gauge invariance). Another and physi-
cally more appealing disordered state could appear for
sufficiently small v and would have (,P, ) =0 as well as
(0)=0, as a result of transverse fluctuations of P, We.
expect this phase to exhibit finite-frequency short-range
incommensurate correlations with the correlation length
g-O(n ') and time 0 '-P(nJ) The. possibility of
such a locally incommensurate' quantum paramagnetic
phase is most interesting physically in connection with
the observation ' of incommensurate inelastic scattering
in the disordered AFM phase of La2 „Sr„Cu04.

Finally, we note that the possible locally incommensu-
rate disordered states were recently discussed by Sachdev
and Read, ' who have arrived at an effective Hamiltonian
similar to Eq. (2.2) from the large-N analysis of a frustrat-
ed quantum AFM. Also, the excitation spectrum
analysis for the "spiral state" similar to ours has been re-
cently performed by Gan, Andrei, and Coleman. '
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APPENDIX

Here we give a more general expression for the spin-correlation function [Eq. (3.11)] in terms of the "slow" and
"fast" fields w and u, respectively, as defined by the parametrization of Eq. (3.1):

2(s(r, t}.s(0,0))+4=—,'[1+(—1)~"~—4( —1)~"~((u(0,0)~ )]((w (r, t)w (0,0)~ )

1+4( 1)l"l()u(0,0)(2}]((w (r, t)e „w„(0,0))2)

+( —1) 'I(u(r, t)u(0, 0))([w~(r, t)w (0,0)] )+H.c. ]

—( —1) " [(u(r, t)u(0, 0))([w (r, t)e „w„(0,0)) )+H.c. ] .

For the spiral state, e.g. w =(1/~2)(e'~ e",e '~ v"), this leads to Eq. (3.12).
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