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The Boltzmann equation is solved for a system consisting of a ferromagnetic-normal-

metal —ferromagnetic metallic trilayer. The in-plane conductance of the fibn is calculated for two

configurations: the ferromagnetic layers aligned (i) parallel and (ii) antiparallel to each other. The re-

sults explain the giant negative magnetoresistance encountered in these systems when an initial antipar-

allel arrangement is changed into a parallel configuration by application of an external magnetic field.

The calculation depends on (a) geometric parameters (the thicknesses of the layers), (b) intrinsic metal

parameters (number of conduction electrons, magnetization, and effective masses in the layers), (c) bulk

sample properties (conductivity relaxation times), (d) interface scattering properties (diffuse scattering

versus potential scattering at the interfaces), and (e) outer surface scattering properties (specular versus

diffuse surface scattering). For perfect specular scattering at the surfaces the problem becomes identical

to an infinite multilayer, periodic system. It is found that a large negative magnetoresistance requires, in

general, considerable asymmetry in the interface scattering for the two spin orientations. All qualitative

features of the experiments are reproduced. Quantitative agreement can be achieved with sensible values

of the parameters. The effect can be conceptually explained based on considerations of phase-space

availability for an electron of a given spin orientatioe as it travels through the multilayer sample in the

various configurations.

I. INTRODUCTION

Ferromagnetic-normal-metal superlattices and sand-
wiches' display a number of interesting properties, such
as a varying interlayer magnetic coupling and a giant
negative magnetoresistance (MR) effect. It has been
found that in systems such as (Fe/Cr)„, the magnetic mo-

ments of each Fe layer are arranged with respect to the
neighboring layers either in a parallel fashion, or in an
antiparallel one, depending on the thickness of the Cr
spacers and on the quality of the Fe/Cr interfaces.

When the conditions are such that the consecutive mo-
ments are arranged antiparallel to each other, the appli-
cation of an external magnetic field to the sample results
in two effects: (1) the moments rearrange themselves into
a completely parallel arrangement in fields of the order of
1 T; and (2) the sample decreases its resistance —negative
MR—in all directions (in-plane in particular) by varying
amounts which can be as small as a few percent, and as
large as 50% (for Fe/Cr at liquid-helium temperatures).
This latter is known as the giant magnetoresistance effect
(GMR).

Even though the current knowledge of the MR effect is
incomplete, one fact that has emerged is that spin-
dependent interfacial scattering plays an important role.
Experiments by Fullerton et al. indicate that increased
interfacial roughness enhances the GMR. Baumgart
et al. have found that ultrathin layers of elements (V,
Mn, Ge, Ir, and Al) deposited at the Fe-Cr interface lead
to changes in the MR, which correlate with the ratio of
spin-up and spin-down resistivities arising from spin-

dependent impurity scattering of these elements when al-

loyed with Fe. This result is in agreement with the sug-
gestion of Baibich et al. that the spin dependence of im-

purity scattering at the interfaces is related to that ob-
served in alloyed ferromagnetic metals such as Ni, Fe,
and Co.

By fitting MR data of epitaxially grown
Fe(001)/Cr(001) multilayers to model-calculation results,
Levy, Zhang, and Fert' concluded that the ratio of the
interfacial resistivity to bulk resistivity is 0.83. Further
confirmation of the importance of the interface in the
MR effect was provided by Barthelemy et al. ,

" who
point out that the experimental data they obtained for ep-
itaxially grown Fe(001)/Cr(001) multilayers seem to be in
agreement with the variation of the MR with

exp( —tcR/A, '),
where tc, is the thickness of Cr layer and A,

' is a length of
the order of the mean free path. Such a variation of the
MR with layer thickness is expected from spin-dependent
interface scattering. In contrast with this, if spin-
dependent scattering occurred within the Fe layers, a
variation of the form

exp[ (t„,+2tc, )/A, ']—
would be expected. Barnas et al. ' compared experimen-
tal data with their theoretical model, based on the
Boltzmann transport equation with spin-dependent bulk
and interface scattering, and concluded that the experi-
mental data favor the interface contribution as being the
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dominant one.
Camley and Barnas's model' ' description of the MR

effect, despite being one of the more complete thus far
proposed, makes a number of unsuitable approximations,
in particular with respect to interfacial scattering. They
(a) neglect the difference in phase space available for
scattering of electrons with different spin; and (b) they
neglect the angular dependence of the transmission and
reflection coefficients at the interfaces.

It should be emphasized that it is important to distin-
guish between the concepts of spin-lip scattering and
spin-dependent scattering. The first refers to an event in
which, during scattering, an electron reverses its spin
orientation; such a phenomenon is normally caused by
spin-orbit effects andlor by scattering from impurities
with a localized magnetic moment. Spin-flip scattering is
neglected in this contribution. The second one refers to
the fact that electrons with different spin orientations ex-
perience different potentials and have different phase-
space distributions. Consequently they have very
different scattering cross sections both in the bulk and at
the interfaces. This is extremely relevant for the pur-
poses of this study.

Given the importance of such scattering, it is the aim
of this contribution to present a model that incorporates
spin-dependent interfacial scattering in a more realistic
way. While the model presented here is similar in many
respects to that of Camley and Barnas, it does not suffer
from the same shortcomings in its description of interfa-
cial scattering. Utilization of a more accurate description
of the interface permits a study and separation of the
various scattering mechanisms and their relevance in the
MR effect.

The present model, an extension of the Fuchs-
Sondheimer theory, ' ' uses a Stoner description' of the
itinerant ferromagnetic Fe layers: It introduces different
potentials for majority and minority spins. Band-
structure and electron-density effects are included only by
means of a constant, metal- and spin-dependent potential,
and an isotropic effective mass for each spin in each lay-
er. The different potentials in neighboring layers results
in coherent potential scattering (i.e., refraction) of elec-
trons as they traverse the interface. It has been suggest-
ed that this effect alone could account for the observed
spin-dependent transport properties and the oscillatory
effects with layer thickness. Spin-dependent potentials
are also responsible for different densities of states at the
Fermi level, i.e., different available phase space for the
two different spin orientations. This spin-dependent
scattering mechanism was found to be important to de-
scribe correctly the MR caused by domain-wall scattering
in ferromagnetic materials. ' The angular-dependent
effects are treated by a quantum-mechanical matching of
the electron wave functions at the interfaces. Impurity
scattering at the interface and interfacial roughness are
also a source of spin-dependent scattering, and they con-
tribute to the present model through a single spin-
dependent parameter, in a way similar to that used by
Camley and Barnas.

The model here also permits a comparison between
Fe-Cu and Fe-Cr sandwiches and explains why, although

the two systems have many similarities (e.g. , long-range
oscillatory interlayer coupling), they exhibit a large
difference in MR properties.

The model predicts the dependence of the MR on the
thickness of the layers, on the quality of the samples
(mean free path) and on the quality (roughness) of the
surfaces and interfaces.

In Sec. II a detailed description of the model is given.
In Sec. III results are presented. Section IV contains the
discussion and conclusions.

II. THE MODEL

E

FM Spacer FM

d2 d3

FIG. 1. Schematic diagram of the ferromagnetic —normal-
metal-ferromagnetic metallic trilayer. Axes and thicknesses
are defined.

The in-plane conductivity has been calculated for
three-layer sandwich structures. Figure 1 shows the sys-
tem and defines the axes and geometric parameters. Both
the current and the time-independent electric field are in
the x direction. A sandwich consists of three fat layers
(labeled 1, 2, and 3) of infinite extent in the x and the y
directions of thicknesses d, d2 and d3. The structures
investigated have identical ferromagnetic materials in
layers 1 and 3 and a normal metal in layer 2. The sym-
bols a and P are used to denote the surfaces of layers 1

and 3 with the vacuum, respectively, and A and 8 denote
the 1-2 and 2-3 interfaces, respectively.

For a given sandwich the conductivity was calculated
for both antiparallel alignment, denoted or~~, and for
parallel alignment, denoted o.

&&, of the ferromagnetic
moments of layers 1 and 3. Antiparallel alignment of fer-
romagnetic layers in the absence of applied magnetic
fields has been observed in Fe-Cr and Fe-Cu multilay-
ers ' and is believed to be caused by an antiferromagnet-
ic interlayer coupling. ' Application of a sufficiently
large magnetic field causes the magnetic moments to
align parallel to one another. The magnetoresistance
(Aplp), is defined by

p&~
—

p~~ u~~
—a~~

P P»
where p„„=(0,) '. Note that this quantity varies be-
tween zero and one (or 0 and 100%%uo) whenever the resis-
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f; (v,z)=f; (v)+g, (v,z), (2)

which is independent of x and y by symmetry. In (2), the
first term f, (v) is the equilibrium distribution in the ab-
sence of an electric field, and g; (v, z} is the deviation
from that equilibrium in the presence of the electric field.
For an electric field of magnitude E in the x direction, the
Boltzmann equation in the relaxation-time approxima-
tion reduces to

r)gtn gi~ ~e~E ~f+
Bz 'r;~v» Ni;~v» Bv»

(3)

where ~; is the relaxation time in layer i for spin cr, and e
is the charge of the electron. The second-order term,
proportional to (E Xg; }, has been discarded since non-
linear effects (deviations from Ohm's law} are neglected.
The Lorentz-force term, proportional to (vXH/c), has
also been dropped from the Boltzmann equation since it
gives an effect which is orders of magnitude smaller than
those considered here. '

Because of the boundary conditions it is useful to
divideg; into two parts: g; (v, z) if v, Oandg; (v, z) if
v, (0. The general solution to Eq. (3) takes the form

/e/r, E ufo „

m(e i3V»

tance decreases upon the application of an external mag-
netic field. '

The conductivity for both alignments is obtained by
adding the contributions of the spin-up and the spin-
down electrons, calculated separately. This is the two-
current model, which provides a good description of
electron transport in magnetic 3d metals. As mentioned
in the introduction, spin-flip processes, which mix the
two currents, are neglected. It is known that their effect
is small at low temperatures.

The electrons involved in transport are regarded as
free-electron-like with spherical Fermi surfaces. Within
each layer the electrons move in a constant potential V;,
which depends on the particular layer i and the spin o. of
the electron.

The electron distribution function within each layer i
and for each spin cr is written in the form

gz =sz Rz3 gz+ +sz T3z g3 at z=d&+dz,

g3 SJ R3z g3 +Sg Tz3 gz at z =d) +dz

Here Sz and S~, which vary between zero and 1, are
factors that indicate the degree of potential scattering at
each of the interfaces A and 8 for spin o.. The scattering
follows the reflection-refraction laws when S =1 and is
completely diffusive when S =0. The notation used for
the transmission T and the reflection R coefficients is the
following: T; =— probability for an electron of spin o. in

layer i to be transmitted (refracted) into layer j; Ri, &

=—

probability for an electron of spin o. in layer k with a ve-

locity directed towards layer I to be reflected back into
layer k. The equations and boundary conditions as writ-
ten satisfy all the necessary conservation laws.

The functional dependence of the coefficients was
determined by matching the free-electron-like (plane-
wave) functions and their derivatives at each interface.
The solution to this problem, which is identical to that
encountered in optics for an interface between two media
with different indices of refraction, is shown schematical-
ly in Fig. 2. The reflection R and transmission T
coefficients take the form

R," (E,H)=
1 —

h;, (E,H}

1+h 1 (E,H)

4 Re[h;J~(E, H}]
T; (E,H)= =1 R, (E,H) . — "

I+h;J. (E,H)

Here 8 is the angle of incidence, measured with respect to
the z axis, of an electron of energy E =

—,'m, . v + V; in

layer i with spin o and velocity v moving in a constant
potential V; . The scattering is completely elastic, i.e.,

tional dependence of the distribution functions g; has
been dropped.

The boundary conditions for the potential
(nondiffusive) scattering at the interfaces A and B take
the form

g] =S„R]zg] +S~ Tz] gz at z =d],+

g ztT
=SpaR z ~~g ztT +Sp a T

& za g ]o. at z =d»+ +

where the functional form of F; (v) is determined by re-
quiring the electron distribution function to satisfy the
boundary conditions described below.

At the two outer surfaces, a and P, the boundary con-
ditions are

g~+ =P g, at z=o,
g3 =PI3 g3+ at z=d,

Vacuum Metal

(a)

P

S

Metal 1 Metal 2

where d =d ] +dz+d3 is the total thickness of the
sandwich. The specularity factors, P and P& for the
respective surfaces and for electrons of spin o, take
values between zero (completely diffusive scattering) and
1 (completely specular scattering) and provide a measure
of the surface roughness. In Eq. (5},and in the boundary
conditions at the interfaces in (6) below, the explicit func-

FIG. 2. Schematic diagrams of the scattering processes at (a)
the vacuum-metal free surface and (1}the metal-metal interface.
The parameters P and S define the fractions controlled by the
potentials. In (b) S R is the probability of specular scattering;
S T is the probability of transmission (refraction) into the other
metal. The isotropic, diffuse scattering parts are (1—P) and
(l —S ), respectively.
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the energy of the electron is a constant of the motion.
The symbol Re means "the real part of"; the function
h;~ (E,O) has the form

)

3 1 —
&

—z/1, . uJ„,(z)=o - E 1+— F, (u)(1 —u )e ' du

h;, (E,O)=

E —V —sin 0
io

cosO

where the Fermi velocity UF,. is given by

2(EF V,
—

)

(8)

The transmission and reflection coefficients appearing in
Eq. (6) are related by

RJ (E,O;)=RJ; (E,O, ),
T; (E,O;)=Tj; (E, OJ. ),

where

sinO;

sine.

E —VJO'

E —V;

where h is Planck's constant. Substitution of Eq. (4) into
Eq. (7) and the use of Fermi-Dirac statistics yields

this is a consequence of the principle of (optical) reversi-
bility.

Substitution of Eq. (4) into the boundary equations (5)
and (6) yields unique solutions of F,+—(v }. The form of the
boundary conditions is such that these functions depend
only on the magnitude of the velocity v and the cosine of
its angle with respect to the z axis. Therefore, the func-
tions can be written as F;*(v,cos8} where the plus sign
corresponds to 0 & 8 & m /2 and the minus sign corre-
sponds to m/2&8&m. .

The current density along the electric field in each lay-
er i for electrons with spin 0. is given by

'3

J„,(z)= —
~e~

' fU„g, (v, z)d'v, (7)

for an electron with the Fermi energy Ez. The mean free
path k; is defined by k; =U~, ~, The bulk conductivi-
ty of electrons from layer i of spin o is denoted by o;
and is given by

'3

o; =—~ex;(m;)

The function F; ( u ) is defined by the equation '

F;+(uF;,u) if u &0,
F, (u)= '

F; (uF, , u) if u &0 .

Physically the first term in Eq. (8) corresponds to the
current in a solid of infinite extent with no surfaces or in-
terfaces. The second term is a measure of the deviation
in the current caused by the presence of surfaces and in-
terfaces. Plots are shown below which show how the
current is distributed throughout the trilayer. In order to
obtain the MR, one requires the effective conductivity,
which is found by averaging over the whole film

l =3
o = g g fJ„,(z)dz .

i=1 0= f', J,

Integration yields

i =10=7,$

dI

d
3 ~io

u 1 —u ug. u
4 d

(9)

where zo =0, z, =d „z2=d, +d2, and z3 =d. The first
term in Eq. (9) can be interpreted as the bulk conductivi-
ty of each layer weighted by its relative thickness. The
exponential factors in Eqs. (8) and (9), which go to
infinity as u~0, are compensated by the prefactor
F, (u), which approaches zero rapidly enough in the
same limit to insure integrability.

The MR, (hp/p), is found by calculating independent-
ly the conductivities o.

&&
and o.

&&. Although in some
cases the ferromagnetic layers may be different, in all re-
sults presented here it was assumed that the ferromagnet-
ic layers 1 and 3 are composed of the same material with
identical bulk properties. This assumption reduces the
number of parameters necessary to characterize a struc-
ture. Associated with the electrons in layers 1 and 3 are
the minority (denoted using a small subscript m) and the
majority (denoted using a capital subscript M) spins with
effective masses m and mM, relaxation times ~ and

'TM and potentials V and V~. The spin-up and spin-
down electrons in layer 2, which is the normal-metal or
spacer layer, move in a potential V, with an effective
mass m, and relaxation time ~, . At the outer surfaces a
and P of the ferromagnetic layers 1 and 3, respectively,
the surface scattering parameters for the majority and the
minority spins are described by P ~, PI3~, P, and P&
At the 1-2 and 2-3 interfaces A and B, respectively, Sz~,
Sz~, S~, and Sz describe the interfacial scattering of
the majority and the minority spins.

The values of the potentials are determined by treating
all of the valence s and d electrons as being in a single
free-electron-like band with an isotropic effective mass.
The effective mass is, in general, taken to be larger than
the electron mass, since the d electrons, which contribute
to the density of electrons, are in narrower bands than
the free-electron-like s electrons. Within the ferromag-
netic layers I and 3, the bands for the minority and the
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majority spins are shifted by a k-independent exchange
potential, yielding two different spin-dependent, constant
potentials, V and V~. The value of the exchange split-
ting is chosen so that the difference in the density of the
majority and the minority electrons yields the net mag-
netic moment of the bulk ferromagnetic material.

III. RESULTS

VM V~ VM

EF 0

Vm

V

:EF=O

Vm

The theory, as developed thus far for a sandwich of
two identical ferromagnetic metals separated by a layer
of a normal metal, includes 20 parameters: three effective
masses mM, m, and m, ; three constant potentials VM,

V, and V„'three relaxation times ~M, ~, and ~„three
thicknesses d&, d2, and d3', four free-surface scattering
parameters P ~, P, P13M, and P&, and four interface
scattering parameters S„M,S„,S~~, and S~

The results presented here include only the cases for
which the relaxation times are identical ~=—~ =~M =~, .
(The mean free paths of the minority and the majority
spins within the ferromagnetic layers 1 and 3 and for the
spacer metal are still different, however, since the Fermi
velocities are different. ) The discussion of the results is
also confined to the situation dF—:d, =d3 and d, =d2,
since this is the most common case. At the outer surfaces
all P's are taken to be identical P—:P M
=P =P&M=P& . The spin dependence of these pa-
rameters is caused mostly by magnetic impurities, which
are taken not to be present at the outer (identical) sur-
faces. The interfaces are also assumed to be identical
SM =S~~—S~~', S~ =S~~ —Sgm'

Results are given for two different multilayer systems,
Fe-Cr and Fe-Cu. In these three metals the isotropic
effective mass is assumed to be independent of the materi-
al and spin orientation with a value m~ =m
=m, =4.0X free-electron mass. With this effective mass
the potentials, with respect to the Fermi energy Ez
chosen to be at EF=0, are

VM= —8.23 eV, V = —5.73 eV for Fe,

V, = —5.77 eV for Cr,

V, = —8.54 eV for Cu .

. EF 0 — EF=O

VM V,

FIG. 3. Schematic diagrams of the potentials for the spin f
and spin $ electrons in the parallel (f f} and the antiparallel

(t $) configurations of an Fe-Cu-Fe trilayer.

face parameters P, SM, and S, and a relatively weak
function of the thicknesses and the mean free path. For
example, as P, S~, and S vary between 0 and 1, the cal-
culated (bp/p) varies between 0 and 92.7% for Fe-Cr tri-
layers and 0 and 94.4% for Fe-Cu trilayers, when values
of d~=d, =10.0A and v=5.0X10 ' s are chosen. Fig-
ures 4 and 5 show the regions in this three-dimensional
"surface and interfacial" parameter space where (bp/p)
is greater than 20% for these values of dF, d„and r.
With this choice of r, the mean free paths are: (i) 4 250 A
for the majority-spin and 3540 A for the minority-spin
electrons in Fe; (ii) 3 560 A for electrons in Cr; and (iii)
4330 A for electrons in Cu. These values correspond to
all mean free paths that are orders of magnitude larger
than the film thicknesses, i.e., the clean-film limit, where
surface and interface effects are supposed to be
paramount.

Some of the interesting results of the calculations are
illustrated in Figs. 4-11. It was found in general that:

(a) (hp/p) increases with increasing values of P, except

Figure 3 shows the potential energies: V~, V, and V,
for Fe-Cu for the spin-up and spin-down electrons for
both the parallel and the antiparallel configurations.

The parameters that remain to be specified for each
case (Fe-Cr and Fe-Cu) are altogether six: (a) two
geometric parameters dz and d„'(b) one relaxation time
r, which depends on bulk sample properties; (c) one
outer-surface scattering parameter P (the roughness of
the outer surfaces); and (d) two interface scattering pa-
rameters S~, S (diffuse scattering versus potential
scattering at the interfaces for the majority and the
minority spins, respectively).

Even with these specifications, the phenomena under
consideration are complicated functions of the six vari-
ables, and the task of describing these dependencies is not
simple. In general terms, and with exceptions, it is found
that (bp/p) is a strong function of the surface and inter-

FIG. 4. The region in three-dimensional parameter space
(P,S, S } where (hp/p}) 0.2 for the parameters correspond-
ing to Fe-Cr and dF=d, =10 A, and ~=5.0X10 ' s. The
three parameters vary between 0 and 1.
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Pj'
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Sm 00
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FIG. 5. R5. Region in three-dime ns&onal parameter space
~ ~

(, M, S ) where (Ap/p) &0.2 for the parameters correspond-(P S
ing to Fe-Cu and dF=d, =10 A, and ~=5.0X10 " s. The
three parameters vary between 0 and 1.

IQ. 7. Variation of (4p/p} as a function of S for the pa-
rameters of Fe-Cr, ~=5.0X10 " s d+=d =10 A and fourF s 7

different values of SM and P: (1) chain-dashed curve SM = 1 and
P =0.5; (2) dashed curve SM=1 and P =1; (3) chain-dotted
curve SM =0.5 and P = 1; and (4) solid curve SM =0 and P = 1.

in the region where SM =S = 1 (see Fig. 6).
(b) (b p/p) is in general small (only a few percent) when

SM =S, except when both parameters are very close to
1 (see Figs. 4, 5, and 7).

(c) (bp/p), as a function of dF, exhibits a variety of be-

haviors which include (i) a monotonic decrease with in-

creasing dF', (ii) an initial increase followed by a decrease
(a single maximum); (iii) a decrease, followed by an in-

crease and a subsequent decrease (a minimum followed b
a maximum); in all cases the asymptotic value as dF ~ ~
is zero (see Fig. 8).

(d) (bp/p), as a function of increasing d„exhibits ei-

ther (i) a continuous monotonic decrease, or, most com-
monly, (ii) a single maximum at a value of d of the or-

$

der of dF,' the asymptotic value as d, —+ ~ is also zero (see

Fig. 9).
(e) (b,p/p), as a function of the relaxation time r, either

(i) increases monotonically and saturates at a maximum
value, or, most commonly, (ii) increases to a maximum,
and then Very gradually decreases (see Fig. 10).

0

0.0
I

50.0 100.0 150.0 200,0 250.0

dF (A)

0

FIG. 8. Variation of (Lp/p) as a function of dF for the pa-
rameters of Fe-Cr, d, =10 A, ~=5.0X10 " s and three
difFerent values of SM, S, and P: (1) chain-dotted curve

SM=S =0.8 and P=0; (2) dashed curve SM=S =0.8 and

P =1;and (3) solid curve SM =S =1 and P =0.

C90

D

SM = 0.2, S = 0.9~~
PJ0

SM Sr
D
D

0.0
I

02
I

0.4
P

I

06
'~

0.8 1.0

FIG. 6. Variation of (hp/p) as a function of P for the param-

eters of Fe-Cr, ~=5.0X10 " s, d+=d, =10 A, and various

values of SM, and S

'~

4

D0 I I

0.0 50.0 100.0 150.0 200.0 250.0

d, (i,I

FIG. 9. Variation of (hp/p) as a function of d, for the pa-
rameters of Fe-Cr, dF=10 A, ~=5.0X10 ' s and three
different values of SM, S, and P: (1) chain-dotted curve

SM =S =0.9 and P =1; (2) dashed curve SM =0.5, S =1, and

P =0.5; and (3) solid curve SM = 1, S =0, and P =0.
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IV. DISCUSSION AND CONCLUSIONS

Figure 4 shows a marked asymmetry in the dependence
of (bp/p) on S~ and S, i.e., the majority- and
minority-spin interface scattering have a very different
effect on the MR. By contrast, a large asymmetry is not
present for Fe-Cu (Fig. 5). Figure 3 shows the potential
energies for Fe-Cu for both the parallel and the antiparal-
lel configurations. It is seen that

0
I l I llllli I I I IIIII} I I I tlul{ t I ) Ifnf} I t f llllll

10 10 10 10 10 10

FIG. 10. Variation of (hp/p) as a function of v for the pa-
rameters of Fe-Cr, d, =d~=10 A, P =1, and three different
values of S~ and S: (1) chain-dotted curve S=0 and
S =0.7; (2) dashed curve SM=0. 5 and S =1; and (3) solid
curve S~=1 and S =0.

Figures 4 and 5 contain information on how, for
specific values of dF, d„and ~, the quality of surfaces and
interfaces influences the MR. As the surface scattering
parameter P increases from 0 to 1, i.e., as the scattering
becomes less diffuse (or, equivalently, the surface rough-
ness decreases} the MR in general increases. It is also
evident from these two figures that the region of large
MR is close either to the plane S~=1, or to the plane
S =1, and away from the plane SM=S . There is a
very large asymmetry between S~ and S in Fe-Cr, but
considerably less so in Fe-Cu.

It is interesting to note that when P =1, the MR of the
trilayer becomes identical to that of an infinite multilayer
or superlattice. A specular-scattering event makes the
electron traverse the same ferromagnetic layer for a
second time in the opposite direction or, equivalently,
"continue" through a mirror image of the film. There-
fore, if for both surfaces P =1, then as far as the MR is
concerned, a trilayer

vacuum~dF ~d, ~d~~vacuum

is exactly equivalent to an infinite, periodic superstruc-
ture

l2dF /d, /2' fd, f2dp /d, /2dF [

As seen above, the MR increases in general with P, be-
cause the number of interfaces where magnetic scattering
can occur "increases" as P increases. When realistic
values are chosen for the parameters, the MR is found to
increase by as much as an order of magnitude when P in-
creases from 0 to 1. This fact can be reinterpreted as an
increase in the MR as the number of magnetic interfaces
encountered by an electron within its bulk mean free path
increases.

Experimentally it is found that the more layers a sam-
ple has, the larger the MR. The (liquid-He temperature)
MR in Fe-Cr trilayers prepared by molecular-beam-
epitaxy methods is found to be a few percent, while the
MR is found to be nearly 50% Fe-Cr in multilayers
prepared by the same method at the same temperature.

On the other hand, the bottom of the band for Cr is lower
than but much closer to that for the minority spins in
iron, i.e., in the Fe-Cr samples

The difference in V, has a large effect on the MR, as can
be seen in the plots of the in-plane current distribution
across the trilayers. Shown in Fig. 11 are the in-plane
currents for the parallel (Pl) and the antiparallel (An}
configurations of Fe-Cr with S~=0, S =1, and P =0.5;
the contributions to the current of spin-up and spin-down
electrons are plotted separately. For the chosen set of pa-
rameters the (lp&) electrons undergo completely
nondiffusive scattering at both interfaces, whereas (iA„)
electrons and the ( f ) electrons in both configurations un-

dergo completely diffusive scattering either at one or at
both interfaces. The current carried by the (J,p&) electrons
is the largest of the four contributions because those elec-
trons are, in fact, never randomized" at the interfaces,
i.e., their current is not degraded by diffusive interface
scattering. The fact that (hp/p) is determined by the
difference of the conductivities of the parallel and the an-
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FIG. 11. Distribution of the in-plane current (J„)(plotted in
arbitrary units) over the thickness of an Fe-Cr-Fe trilayer. The
contribution to the current from the spin-up and the spin-down
electrons is plotted in the parallel and the antiparallel
con6guration of the Fe-layer magnetic moments: (1) solid curve
is the ( lp&) electrons; (2) chain-dotted curve is the (gp&) electrons;
(3) dashed curve is the ($A„)electrons; (4) chain-dashed curve is
the ($A„) electrons. The values of the parameters are
~=5.0X10 ', dF=d, =10A, S~=O, S =1, and P =0.5.
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tiparallel configurations, which are each proportional to
the sum of the currents carried by the spin-up and spin-
down electrons, explains why (bp/p) is large (50.6%) in
this ease.

A fraction of the ($p&) electrons in the Cr layer, those
incident at low grazing angles upon the Fe-Cr interfaces,
are totally internally retlected, since

~ V, ~ (~ V ~. These
electrons scatter diffusively only within the bulk of the Cr
layer and so are able to follow long trajectories (a full
mean free path) before being scattered. This
phenomenon leads to a "channeling effect" within the Cr
layer. It explains why the current carried by the (Tp~)
electrons is larger in the Cr layer than in the Fe layers.

Figure 12 shows how the in-plane current is distributed
across another Fe-Cr trilayer, but for SM =1, S =0, and
P =0.5 of Fig. 4. In this case only the (1'p~) electrons are
scattered nondiffusely at both interfaces. Since

~ V, ~
(

~ VM ~, channeling does not occur in the Cr layer,
and the current is actually larger within the Fe layers.
Channeling can only take place in the Fe layers and only
when P is close to 1. Therefore the regions where the
MR is large, i.e., (hplp) & 0.2, when SM is close to 1, are
clustered around P =1. Even when P is close to 1, the
MR is not very large; channeling occurs in only one of the
Fe layers for both the (fz„)and ($~„)electrons. Thus the
difference (o &&

—o &&) in Eq. (1) for SM=1, S =0, and
P =1 is considerably smaller, (bp/p)=0. 411, than that
for S~=0, S =1, and P =1, (bp/p) =0.927.

In the Fe-Cu trilayer, since
~ V, ~

is greater than
~ VM ~

and
~
V ~, channeling occurs in the Cu layer when either

SM or S are close to 1 for the (t'p&) or the ($p&) electrons,
respectively. Channeling within the Cu layer, for either
SM or S close to 1, leads to a large MR and to the
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FIG. 12. Distribution of the in-plane current (J„)(plotted in
arbitrary units) over the thickness of an Fe-Cr-Fe trilayer. The
contribution to the current from the spin-up and the spin-down
electrons is plotted in the parallel and the antiparallel
configuration of the Fe-layer magnetic moments: (1) solid curve
is the (&pi) electrons; (2) chain-dotted curve is the (fp&) electrons;
(3) dashed curve is the ($A„)electrons; (4) chain-dashed curve is

the ( t A„) electrons. The values of the parameters are:
v=5.0X10 ', dF=d, =10A, S~=1,S =0, and P =0.5.

symmetric-looking plot of Fig. 5.
Interesting surface and size effects occur when both SM

and S are close to 1. The vacuum-metal interfaces now
dominate the scattering processes, and the MR actually
decreases as P increases, as can be seen in Figs. 5 and 6.
For well-formed interfaces, i.e., for S =1, the MR is
enhanced by greater surface roughness. For smoother
surfaces, as P approaches 1, the current within the Fe
layers increases relative to that within the Cu layers. In
the extreme case when all three P=S=S =1, the
current within each layer for each spin is directly propor-
tional to the density of electrons of that spin in that layer,
i.e., to

~ V, ~
. Under these conditions the size effect

disappears, and the MR vanishes. The trilayer becomes a
superlattice with no diffusive scattering at the interfaces.
This result, (bp/p)=0 for P =S~=S =1, is valid for
any combination of materials and for all values of d; and
r (or any other of the geometric and intrinsic metal pa-
rameters of the general model). It follows from the fact
that potential scattering of the electrons at the interface
is completely microscopically reversible, so that the con-
ductivity of the multilayer is equal to the sum of the bulk
conductivities in each layer independently.

In the opposite case, when S =0 for all interfaces (i.e.,
rough interfaces with completely diffusive scattering),
(bp/p) =0 once again, this time regardless of the value of
P, the types of materials in the trilayer, or the values of
any other parameters. In this case there is no coherence
between the ferromagnetic layers. The individual layers
are uncoupled and the conductance of the trilayer be-
comes equal to the sum of the eonductances of three lay-
ers having rough surfaces, P =0 (this is the case obtained
analytically in Ref. 15).

The experimentally observed values of MR in Fe-Cr
and Fe-Cu multilayers can be matched by the calculation
with a proper choice of the parameters. However, the
model in its present form, which considers all of the
valence s and d electrons as comprising a single band
with a single isotropic effective mass, yields effective
resistivities p&& and p&~, which are about an order of
magnitude smaller than those measured in multilayer
structures. The effective resistivities are too small be-
cause the model has too many free-electron-like conduc-
tion electrons: eight in Fe, six in Cr, and 11 in Cu. Prop-
er consideration must be taken of the fact that, in these
metals, s and d electrons contribute very differently to the
transport properties. The narrow character of the d
bands has been accounted for in the single-band approach
by a single, large, isotropic effective mass, four times
larger than the free-electron mass. A better approach to
the problem would be to include a realistic band struc-
ture with its 12 bands, wide and narrow, as well as the
hybridization and spin polarization. Such a treatment
would make the calculations much more involved, if not
impossible.

%'ithin the eonfines of a single-band model a simple,
natural way to decrease the number of conduction elec-
trons is by reducing the density of the electrons in each
layer by a constant scaling factor y independent of the
material and the spin of the electron. It should be
stressed that the introduction of such a scaling factor



BOLTZMANN-EQUATION APPROACH TO THE NEGATIVE. . . 8295

does not change the form of the results found above. The
number of electrons and the magnetization decrease by a
factor of y. The resistivities pt~ and p&& increase by a
factor of about y, and (bp/p) decreases by a factor of
about y' . A value of y =8 was chosen for making com-
parisons with experimental data. With this value the
number of effective free-electron-like conduction elec-
trons is 1.00 in Fe, 0.75 in Cr, and 1.38 in Cu. Calcula-
tions were able to yield values of the MR and the resis-
tivities, pt& and p&~, similar to those measured experi-
mentally.

In order to model multilayers, which consist of several
layers, the surface parameter P is taken to be 1. Baibich
et al. found that a multilayer of (Fe 30 A/Cr 9 A)6o,
prepared by molecular-beam epitaxy, had (b,p/p) =0.46
and an absolute resistivity change of about 23 pQcm.
With P =1, S =0, S~=1, d~=30 A, d, =9 A, and
7 = 1 X 10 ' s values of p&& =26. 1 pQ cm and p&~ =47.6
pQ cm were calculated, which corresponds to
(bp/p) =0.452 for the MR. When P is set equal to zero,
with the values for the other parameters unchanged, cal-
culations yield p&&=63.5 pQ cm, p&& =74.2 pQ cm, and
(b p/p) =0.144 for the MR. Experimental values of p are
between 20 and 80 pQ cm. With this choice of y, ~, and
effective mass (i.e., an effective mass of four times the
electron mass), the bulk mean free paths are: 425 A for
the majority-spin and 354 A for the minority-spin elec-
trons in Fe; and 356 A for the electrons in Cr.

Petroff et al. ' report that a multilayer (Fe 15 A/Cu 15
A)6o made by sputtering had the following characteris-
tics: p~ ~

=24 8 pQ cm, p& &
=27 8 pQ cm, and

(bp/p) =0.108. With P =1, S =0.72, Sst =0.93,
dF=d, =15 A, and ~=1X10 ' s, values of p&&=24. 1

pQ cm and p& &
=27.0 pQ crn were calculated, which cor-

respond to (bp/p)=0. 107. Here the bulk mean free
paths are: 425 A for the majority-spin and 354 A for the
minority-spin electrons in Fe; and 433 A for the electrons

in Cr.
Calculations predict that a trilayer with completely

diffuse scattering at the surface, P =0, and with atomical-
ly clean interfaces, SM=S =1, can have a sizable MR
(caused by the "channeling effect" discussed above) when
the density of spin-up and/or the spin-down electrons is
greater in the spacer layer than the corresponding ones in
the outer ferromagnetic layers. For example in Fe-Cu,
where the density of electrons is greatest in the Cu layer,
the results ptt=10. 1 pQcm, pt~=16. 3 pQcm, and
(bp/p)=0. 382 were found when y=8, dz=d, =10 A
and &=5X10 ' s.

As clearly seen in Figs. 4 and 5, a large MR requires, in
general, a large difference in interface scattering for the
different spins. When SM =S (with some exceptions, see
Fig. 5 and the size effect discussed above), the MR is
found to be not more than a few percent. Therefore a
large MR cannot be explained as being caused solely by
different densities of electrons with different spins, which
vary from layer to layer. What is required is a spin im-
balance and a spin-dependent scattering mechanism at
the interface, i.e., SstAS . When such a spin-dependent
scattering mechanism exists, for example when magnetic
impurities are present at the interfaces, the MR is pro-
foundly influenced by spatial variations in the density of
electron spins. This is the main cause of the GMR effect
in ferromagnetic multilayers.
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