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Ground-state phase diagram of the spin- —' ferromagnetic-antiferromagnetic
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The ground state of the ferromagnetic-antiferromagnetic alternating spin- —Heisenberg chain is stud-

ied with Ising-type anisotropy on the ferromagnetic bond. This model tends to the spin-1 antiferromag-
netic Heisenberg chain with on-site anisotropy in the limit of strong ferromagnetic bond. It is found that
the Haldane-gap phase, the large-D phase, and the two types of Neel phases appear as the ground state
of this model. The duality relations between these four phases are proved for several limiting cases. The
string order parameter characterizing the large-D phase is introduced based on these duality relations.
The ground-state phase diagram is determined by the numerical diagonalization of the finite-size system.

I. INTRODUCTION

Haldane's conjecture' opened up an exciting field in
the study of quantum spin systems. ' The concept of
the string order introduced by den Nijs and Rommelse
and later by Tasaki has succeeded in clarifying the phys-
ical nature of this peculiar quantum state which possesses
a hidden long-range "string" order accompanied by the
breakdown of the hidden symmetry. ' The presence of
this order is also checked numerically. ' The exactly
solvable spin-1 model' ' also has this order and the
same symmetry breakdown. ' The experimentally ob-
served edge state with spin —,

' can be regarded as the evi-

dence of the hidden symmetry breakdown. ' '"
These observations suggest that further physical in-

sight into this state might be obtained by regarding the
spin-1 operator as the strongly coupled two spin- —,

'

operators. The author thus introduced the spin- —,
'

ferromagnetic-antiferromagnetic alternating Heisenberg
chain which tends to the spin-1 Heisenberg antiferromag-
net in the limit of the infinite ferromagnetic coupling.
Through the investigation of this model, it is found that
the Haldane phase can be regarded as the special case of
the dimer phase of the spin- —,

' model which also possesses
the extended string order. ' The argument based on the
nonlocal unitary transform by Kohmoto and Tasaki'
and Takada' also supports this conclusion.

On the other hand, in the spin-1 Heisenberg antiferro-
magnetic chain, the on-site easy plane anisotropy is
known to destabilize the Haldane phase, leading to the
so-called large-D phase, while easy axis anisotropy leads
to the transition to the Neel phase. ' ' ' It is the pur-
pose of the present work to investigate the effect of this
type of anisotropy in the spin- —, alternating Heisenberg
chain. We consider the Hamiltonian

N N
H= I g S2;S2;+.1+2J g S2; IS2;

where S;=(S,S~,S;*) is the spin operator with spin —,'.
The sufBx i denotes the lattice point and the number of
lattice sites in 2N. The periodic boundary condition
Sl=Szz+l is assumed. Unless especially mentioned, the
coupling J is assumed to be antiferromagnetic ( &0) and
J' ferromagnetic ((0). For J'= —~, the spins S2;
and Sz; form a local triplet. In this limit, this model
reduces to a spin-1 anisotropic antiferromagnetic Heisen-
berg chain:

X N

H '= g —,'JS;S;+,+D g S (1.2)

where S;(=S2;,+S2;) is the spin operator with spin 1.
Thus the last term of Eq. (1.1) is the counterpart of the
easy plane anisotropy of the spin-1 model. It should be
noted that this term is equivalent to the Ising-type anisot-
ropy 2D g;, S2,S2, , except for the c-number terms.

In the next section, we study the several limiting cases
where this model is treated exactly and the duality rela-
tions hold. Based on the duality relations, we introduce
the string order parameter for the large-D phase. The bo-
sonization calculation for D-2J-2~J

~
is given in Sec.

III. The numerical results are shown in Sec. IV and the
ground-state phase diagram is obtained. The case of anti-
ferromagnetic J'( &0) is discussed brie6y. The last sec-
tion is devoted to the summary and discussion.

II. VARIOUS LIMITING CASES

The present model can be treated exactly for several
limiting cases, where the duality relations hold. In this
section, we study four cases separately.

A. Case D =2(J'~

On the line D = 2~ J'~, the Hamiltonian (1.1) becomes
A'

H= —
2~J

~ g (S2,- )S2, +S2, )S2, —S2, )S2, )

N

+D g (Set i +S2, ) +2J g S2;S2;+, , (2.1)
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(2.2)

(2.3)

omitting the trivial c-number terms. By the spin rotation
around the z axis,

St"=—S)", Si~= —S, for 1=4i,4i +1,
S&"=S&", Si~=S, otherwise,

this Hamiltonian is transformed into the isotropic dimer-
ized Heisenberg Hamiltonian as

N N

H=21J I g Spj —lgpi+2J g S2ts2i+1.

In this case, the shift of the site index by unity causes
the duality transform resulting in the interchange of J
and IJ'I. The region J& IJ'I=D/2 continues to the
point D =J'=0 where the ground state is the trivial as-
sembly of the complete local singlets. This state is known
to continue to the Haldane phase. ' Therefore the region
D & 2J belongs to the Haldane phase. The corresponding
string correlation function is defined as

0„,(i —j}= 4(S—2;exp{in(Sz;+, +Sz;+2+ +Szj 2)JS2i i ) (a=x,y, z) (2.4)

in terms of the original spin S; before the rotation. ' ' The dual string correlation function 0„,(i —j) which character-
izes the region D &2J is

0,'„(i j}=——4(S;, ,expji~(S;, +S;,+, + +S», )jS»),
0„,(i —j}=4' '+'(S2; iS2;Sz;+i+ S2J iSzj )(a=x,y),

(2.5}

(2.6)

also in terms of the unrotated spin. The corresponding
string order parameter is given by the limit Ii

—j I
~~ of

Eqs. (2.5} and (2.6}. The phase for D &2J belongs to the
large-D phase, because this phase persists to the point
D =2IJ'I —+ ~ which belongs to the large-D phase of the
spin-1 Heisenberg chain. Therefore we expect the order
parameter 0„,to characterize the large-D phase. This is
verified also in another limiting case in the next subsec-
tion and numerical results also support this notion. Thus
the transition between the Haldane phase and the large-D
phase takes place at

I
J'I =Jon the line D =2IJ'I.

B. Large-D limit

which transforms the Hamiltonian as

N

Hr = —g (41J'I T,"T +, +JT,") . (2.1 1}

Therefore the transition from the ferromagnetic (in
terms of T spin) state to the disordered state takes place
at J=2IJ'I. The ferromagnetic state corresponds to the
Neel state in terms of the original spin with the spin
configuration 1 $ f $. We call this type of Neel state the
"Neel I" state to distinguish it from the "Neel II" state
with spin configuration 1fl$ which appears for large
negative D (see Sec. II D). Here, the Neel I order param-
eter 0&& defined by

IG[a;:i=i &j &= g la;&;-il —a;&2; (2.7)

In the limit D~ ~, the ground states are 2 -fold de-
generate as

0,(i —j )=(S S, )( —1)'

Ozi = lim Ozi(i —j) (a=x,y, z )
)i —J)~ oo

(2.12)

(2.13)

2i —1 ~ 2i ~ i (2.8)

where
I
cr ); denotes the state with spin o ( = 1 or $) on the

ith site. The degeneracy is removed by the application of
J and J' terms within the subspace spanned by the above
set of states. In this subspace, we can map the present
model onto the one-dimensional ¹iteIsing model in the
transverse magnetic field by the correspondence

remains finite. On the other hand, the disordered state
continues to the large-D phase of the spin-1 antiferro-
magnetic Heisenberg chain for the large- IJ I limit. By
the above duality relation, however, this disordered phase
can be mapped onto the ferromagnetic phase in terms of
the T spin. Therefore we can regard the ferromagnetic
order in terms of the T spin as the order parameter which
characterizes the large-D phase. This can be written in
terms of T spin as

Denoting the newly introduced spin- —,
' operator by T;, the

resulting Ising model is
OT = lim OT(i —j),

/i
—ji~ a)

(2.14)

N

Hr = —g (2JT;T;+, +21J'I T,") . (2.9)
where

Or(i j)=4( T,'T') =2J—'+'( T,"T.
, +i . . T"). (.2.1.5).

It is well known' that this model can be mapped onto
the two-dimensional Ising model at finite temperature
and satisfies the duality relation with respect to the trans-
form of the spin variable to T; defined by

Using the relation

2Sp; i2S2;la));=2Sp; i2S2;Io )q;, I cr)2;—
2i (2.16)

T;=—,
' g (2T"}, T,

"=2T,'T,'+, , .
j=1

(2.10) it is easily verified that 0"„,defined by Eq. (2.6) coincides
with OT in this limiting case.
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C. IJ'l«J, D&0

In this case, the ground state can be constructed only
from the states It')z;Il)z;+, and

I l)z;It)2,.+, for the
2ith and (2i+ 1)th spin as

(2.17)

due to the following reason.
Even in the absence of the xy component of the Jbond,

the ground state consists of the above set of states (the
Neel I state) for J'=0. If the xy component is finite, the
It)z;Il)2;+, state is mixed up with the Il)2;It)2;+,
state and lowers the energy, while inclusion of

I

1' )2, I t )2, +, and
I l )2, I 1 )2, +, states provides no way to

lower the energy. It should be noted that this does not
work unless J' is small enough, because appropriate in-
clusion of such a configuration can lower the energy by
the contribution from the xy component of the J' bond.

Thus we can again map the present model onto the
one-dimensional S-site Ising model in the transverse
magnetic field by the correspondence

which belongs to the Haldane phase. On the other hand,
the Neel II state with 1 1 1 1 1 1 1 1 structure is realized for
D & —2J+IJ'I. This continues to the Neel state of the
S=1 Heisenberg model for large negative D. ' The
Neel II order parameter ON» is defined by

0 (l J )=(S;S )( —1)'

with i'=[(i —1)/2], and j'=[(j—1)/2],

ONn = hm ONn(& —J) (a=x,y, z),
II —jl

where [ ] denotes the Gaussian symbol.

(2.22)

(2.23)

III. BOSONIZATION FOR J= IJ'I,
D =2IJ'I

+(2D+4J') g Sz;,S~;, (3.1)

After the spin rotation (2.2), the Hamiltonian (1.1) is
rewritten into the form

N N
H=2J' g S~;,S~;+2J g S2;S2;+,

2i + 2i+1 + i (2.18)

Denoting the newly introduced spin- —,
' operator by T,', the

resulting Ising model is

by the transform Eq. (2.2). In the neighborhood of
J=

I

J'
I
=D /2, it is convenient to rearrange the terms as

N

HI= —g [2(D+J')T;"T;"+,+2JT") . (2.19)

2N

H =2J gO[(S,"S,"+, +S, S, +, +hS S + ] )

Introducing the dual spin operator T; defined similarly
to T; as in the preceding subsection, the Hamiltonian is
transformed as

+ [5„(S,"S;"+,+S~S~+, )

+5,S S +i ](—1)'], (3.2)

N

HI = —g [4JT T +, +(D+J')T ] . (2.20)

Therefore the transition from the ferromagnetic (in terms
of T' spin) state to the disordered state takes place at
D+J'=2J. The ferromagnetic state corresponds to the
Neel I state in terms of the original spin.

On the other hand, the disordered state continues to
the complete local singlet phase at D =0 which is known
to continue to the Haldane phase of the spin-1 antiferro-
magnetic Heisenberg chain in the large-J' limit. ' This
phase can be mapped onto the ferromagnetic phase in
terms of the T' spin. In a manner similar to that in the
preceding subsection, it is easily verified that the x com-
ponent of the string order parameter (2.4} is mapped into
the ferromagnetic order of T' spin.

where

J+ IJ'I
2

Xg
0

2J0

D —21J'I
2J0

J0=

(3.3)

Thus this model can be regarded as the weakly dimerized
anisotropic Heisenberg chain. The spin- —,

' operators
are transformed into the spinless fermions by Jordan-
Wigner transform and further transformed into the boson
field P taking the continuum limit.

The bosonized Hamiltonian M is given by '

The discussion of this regime proceeds in a way almost
parallel to the preceding subsection, except that the
ground state is constructed from the states If )2, I1)2;+,
and

I $ )2,. I 1 ) 2, +, for the 2ith and (2i+ 1)th spin as

H= dx 3 +Bp +CIcos 2

—CDcos(P )+E cos(P)P

with

(3.4)

(2.21) [p(x ),P(x') ]= —i5(x —x'), (3.5}

The phase boundary lies at D = —2J+
I

J'I and the re-
gion D & —2J+IJ'I continues to the point J'=D=0

where p is the boson field operator. The spatial variable
is changed from the discrete variable i to the continuous
variable x. For 5) 1, Inagaki and Fukuyama deter-



46 GROoUND-STAT E PHAS DIAGRAM OF

C

THE SPIN

4

DIj
Neel

mined the paramparameters A 8
i the exact solut"n '" th b

mparison
of d

=1). Other s

ows:
b ransform ' as fol-

2 ~ ~ 8271

Joa
(1+a&6,—1

8 =sr'JJ,a(1 —a&a——1),
m Jo

PI 1+a'(&6——l)I,
2J05„y

(3.6)

c
2J05,aE=CD=

tivel c

A~A+
y change as

E(cosg), C~~C (3.7)

where a
'

7T

a is the lattice co sta

whi

g

e determ~~~d
se num

o unity

ical const
g 1scussion.

ants are uni n o

ukuyama used
d

aanoandFuk, tet
e, our model is eequivalent to th

e 1 state p s
at of

e re

appears

f
, t isisnot

D effec
erm of Eq. (3.4) is

Haldane

I

2

I
&'lJ

I

FIG. 1. The r - eg ound-state r - e p ase dia
'

gram on the J'-e '-D plane

Nl

0. 1

The fi

N k o dan Fukuyama
CD is

atter h
also srn 11a. W

of

d'

h C'si eratio

cu
r o unity. I

isanum '
s an

t case 5 = „ ich

a ica factor an
th
pos unim

h
D

mes important ev
e Neel h

q
pp

0. 09

0. 08

os
str

8 10

C(D —21J'I
m —C

(3.8) 0. 5

in teterms of the ap

d

e momentu

tion.

y comparisono wit the
merical diiagonaliza-

0. 4

IV.. NUMERICAAL DIAGONAL

secti

A LIZATION

In this
define

on, we c

b th
th

rder param
st t ofth

gonalizat
rawn bas

rs are estimated b
mer-

y the

FIG. 2. Th
h N1I

elo -1

order
e syste e en

, and(b) th strie stri parame-

1( ), 23&(0) a
1'"'n fn rom the daata for N=4 nand



8272 KAZUO HIDA

(i) Neel I phase:

ONt, Ostr, Ostr+0

(ii) Neel II phase:

0Nn, 0str, 0 str %0,

(iii) Haldane phase:

Ost, %0 (a=x, y, and z),

(4.1)

(4.2)

(4.3)

value of the corresponding correlation function at the
distance I =(2N)/2. They are calculated for %=4, 6, 8,
and 10. The numerical diagonalization is performed us-
ing the program package TITPACK version 2 developed by
Nishimori.

The order parameters are plotted versus the system
size and the phase boundary is determined by the point at
which the log-log plot is best fitted by a straight line. The
phase diagram is shown in Fig. 1. The three phases are
characterized as follows:

(iv) large-D phase:

0„„%0 (a=x, y, and z) . (4.4)

Other order parameters vanish in each phase. These
conditions are the same as the spin-1 case except those
which contain 0„,. The error bars show the points at
which the numerical calculation is made. The size depen-
dencies of the order parameters near the phase boundary
are shown in Fig. 2 ( point A), Fig. 3 (point 8), Fig. 4
(point Cj, and Fig. 5 (point D) for the relevant order pa-
rameters. Actually, there is a slight discrepancy between
the phase boundaries estimated from diferent order pa-
rameters. This is due to the limited system size. This
causes the error bars in the phase diagram.

The bosonization argument in the preceding section
suggests that the Neel phase persists to the infinitesimal
neighborhood of the point J=

~

J'~ =D/2. According to
the numerically obtained phase diagram, the Neel phase

D=3. 0 J (a)
0;„

0. 4

0. 1

0. 09

0. 3

0. 08

8 10
0. 2

8 10

0;„
D=3. 03

0;„

0. 4

0. 5

0. 4

I

10 8 10

FIG. 3. The log-log plot of the system size dependence of (a)
the Neel I order parameter 0» and (b) the large-D string order
parameter 0„,for D/J=3. The values of ~J'~/J are 0.62 (~),
0.63 (o ), 0.64 (~), 0.65 (01, 0.66 (4), 0.67 ((&), and 0.68 ( A ).
The solid lines are linear extrapolation from the data for N=4
and 6.

FIG. 4. The log-log plot of the system size dependence of (a)

the string order parameter O,„ofthe Haldane phase and (b) the

string order parameter 0„, of the large-D phase for
J'/J= —1.5. The values of D/J are 1.58 (~), 1.60 (o), 1.61
( ~ ), 1.62 (Cl), 1.63 (11, and 1.65 (01. The solid lines are linear
extrapolation from the data for N=4 and 6.
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0;„
D=3. 0 J

0. 5

0. 4

0. 1-
0. 08-

8 10 N
10

0. 2

ONII J' =-1. 5 J

FIG. 6. The log-log plot of the system size dependence of the

energy gap hE for D/J=3. The values of
~

J' ~/J are 0.62 (0),
0.63 ( o), 0.64 ( ~), 0.65 (0), 0.66 (4), 0.67 (0), and 0.68 ( & ).
The solid lines are linear extrapolation from the data for N=4
and 6.

0. 1
8 10

FIG. 5. The log-log plot of the system size dependence of (a)
the string order parameter 0"„,and (b) the Neel II order param-
eter 0»& for J'/J= —1.5. The values of D/J are —1.06 (),
—1.04 (o), —1.02 (R), —1.00 (0), —0.98 (4), and —0.96 (C').
The solid lines are linear extrapolation from the data for N=4
and 6.

appears around the line J—
~

J'~ =D —2~ J'~, D ) 2~ J'~.
This suggests that the constant C introduced in the
preceding section is close to m/2.

The system size dependence of the energy gap hE is
also calculated. Near the boundary between the Neel
phase and the large-D phase, the lowest excited state has
S,"'=0 where S,"' is the z component of the total spin.

In the Neel states, the gap tends to zero as the system size
becomes large reflecting the degeneracy of the ground
state, while it remains finite in the large-D phase. This is
shown in Fig. 6 for point A. Similar behavior is observed
in the neighborhood of the phase boundary between the
Haldane phase and the Neel I and Neel II phases.

The behavior of the energy gap across the boundary
between the Haldane phase and the large-D phase is
shown in Fig. 7. In this case, the lowest excited state has
S,"'=1. The gap of the finite-size system takes the
minimum around the phase boundary and the gap seems
to vanish in the thermodynamic limit reflecting the
change in the symmetry of the phase.

So far we have only been concerned with the case
J' & 0, because we are mainly interested in the relation of
the present model to the S=1 spin chain. Before closing
this section, however, let us briefly discuss the case J' & 0
(antiferromagnetic-antiferromagnetic alternating chain),
because the phase diagram for this case can easily be ob-
tained by the spin rotation (2.2) from that for J' &0. The
parameters change as J'~ —J' and D ~D+2J' as seen
by comparing Eqs. (1.1) and (3.1). For large enough J',
there appears a new disordered phase where the following
order parameter 0„,remains finite:

0„,= lim —4(S2;,expIim(S2;+S~;+, +. . . +Szj, )IS~~)(a=x,y, z) .
/Z

—j/ ~ oo

(4.5}

We may call this phase the large-J' phase. In the limit of
infinitely large D, the boundary between this phase and
the Neel phase tends to J'=0.5J. For small J', the
boundary between the Haldane phase and the Neel phase
tends to D=2J continuing to the region J'(0. The
overall phase diagram is shown in Fig. 8.

V. SUMMARY AND DISCUSSION

We have studied the ground-state properties of the an-
isotropic alternating Heisenberg chain with spin- —, which
has exchange couplings J()0) between (2i —1)th and
2ith spin and J'( &0} between 2ith and (2i+1)th spin.
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FIG. 7. The smallest energy gap hE for J'/J= —1.5 and
1.0 &D/J & 2.0 for finite systems with N =4 (), 6 (o), 8 (~),
and 10 (0).

FIG. 8. The ground-state phase diagram on the whole J'-D
plane.

The Ising-type anisotropy D is assumed between 2ith and
(2i+1)th spin. This model tends to the spin-1 Heisen-
berg chain with on-site anisotropy D in the limit
J' —+ —oo .

The string order parameter 0„, which characterizes
the large-D phase is introduced based on the analysis of
the various limiting cases and calculated by the diagonali-
zation of the finite-size systems for more general parame-
ter range. The ground-state phase diagram is obtained.
It is also shown that the energy gap tends to zero at the
phase boundary, justifying the relevance of the order pa-
rameters. The presence of the order parameter in the
large-D phase implies that this phase is not a simply
disordered phase but is accompanied by the breakdown
of the hidden symmetry like the Haldane phase. The case
of the antiferromagnetic-antiferro magnetic alternating
chain (J,J')0) is briefly discussed. It is shown that
another type of disordered phase with string order 0„,
appears for large positive J'.

The detailed study of the critical behavior at the phase
boundary is left for future study. The larger system size
is required for the accurate determination of the critical
exponents.

The effect of the anisotropy on the J bond is discussed

by Kohmoto and Tasaki' using the nonlocal unitary
transform introduced by Kohmoto, den Nijs, and Ka-
danoff. This type of anisotropy corresponds to the

Ising-type anisotropy in the spin-1 model. They predict
the presence of the Neel phase, XF phase, and ferromag-
netic phase for J'(0. It should be noted the regime
J' & 0 of this model corresponds to the region J' & 0 of
the present model. The region J' &0 of this model, which
is discussed by Kohmoto and Tasaki, ' has no correspon-
dence with the present model. The numerical study of
this model will be reported elsewhere.

The relation of the present model to the mechanism of
superconductivity should also be noted. Imada suggested
that the superconductivity may arise by the doping of
holes into the dimer-type ground state. In this context,
it might be interesting to study the effect of the hole dop-
ing in various phases of this model.
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