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We study a class of lattice interacting-spin systems evolving stochastically under the simultaneous
operation of several spin-flip mechanisms, each acting independently and responding to a different ap-
plied magnetic field. This induces an extra randomness which may occur in real systems, e.g., a magnet-
ic system under the action of a field varying with a much shorter period than the mean time between suc-
cessive transitions. Such a situation—in which one may say in some sense that frustration has a dynami-
cal origin— may also be viewed as a nonequilibrium version of the random-field Ising model. By follow-
ing a method of investigating stationary probability distributions in systems with competing kinetics [P.
L. Garrido and J. Marro, Phys. Rev. Lett. 62, 1929 (1989)], we solve one-dimensional lattices supporting
different field distributions and transition rates for the elementary kinetical processes, thus revealing a
rich variety of phase transitions and critical phenomena. Some exact results for lattices of arbitrary di-
mension, and comparisons with the standard quenched and annealed random-field models, and with a
nonequilibrium diluted antiferromagnetic system, are also reported.

I. INTRODUCTION

The study of nonequilibrium steady states, phase tran-
sitions, and critical phenomena in well-defined
interacting-particle or -spin lattice systems attracts con-
siderable interest nowadays. This is partly due to the fact
that systems in which non-Hamiltonian constraints
prevent the realization of the thermodynamic equilibrium
state are good models for many situations in physics and
other fields. For instance, driven diffusive lattice gases
may model solid electrolytes,1 and reaction-diffusion Is-
ing systems are relevant to population genetics, spin
diffusion in magnets, and chemically reacting systems. >
Nonequilibrium systems are also interesting because they
undergo a rich variety of phase transitions and exhibit
critical phenomena where one may explore the extension
of the established concepts and techniques of equilibrium
theory. As an example, a claim which deserves scrutiny
and confirmation is that, unlike the practical situation for
equilibrium phase transitions, relevant and marginal pa-
rameters (using renormalization-group language) may
rather frequently exist in systems far from equilibri-
um,*”% thus making the comparison between related
models and the definition of universality classes more in-
triguing. By and large, one also hopes that the investiga-
tion of general questions in specific nonequilibrium sys-
tems will provide hints for the extension of the Gibbs en-
semble theory to a variety of fascinating phenomena.
The study of nonequilibrium steady states and phase
transitions is even more appealing when the system under
analysis involves microscopic disorder inducing random-
ness and frustration. In fact, a notable outcome of the
comparison between the behavior of standard (equilibri-
um) disordered model systems and existing related exper-
imental data, often involving observations reported as be-
ing unusual, is the recognition that the macroscopic be-
havior of real systems may be dominated by kinetics and
certain nonequilibrium features. ¢

That situation is the main motivation of the work re-
ported in this paper, where certain techniques, such as
those in Refs. 7-9, are applied to a class of interacting-
particle or -spin, Ising-like models with competing kinet-
ics that involve random external magnetic fields, thus in-
ducing disorder and dynamical frustration. In a sense
this study is parallel to previous ones on two different lat-
tice systems with competing kinetics,*> though the
respective physical situations and resulting macroscopic
behaviors differ. Also, the existence of a distribution of
applied magnetic fields makes the present model
mathematically more involved. The latter fact notwith-
standing, we report here the exact solution of a class of
one-dimensional model systems endowed with that kind
of disorder and frustration, and some partial exact results
for lattices of arbitrary dimension. In addition to the fact
that our model represents a nonequilibrium situation,
which may, in principle, be implemented in the laborato-
ry, as discussed later on, the study in this paper may bear
some relevance to the theory of disordered systems, e.g.,
in relation to some of the peculiarities detected in the be-
havior of random-field systems (and dilute antiferromag-
netic systems under a uniform field), a topic where exact
results are scarce. In fact, even though familiar models
for that kind of situation only involve quenched disorder,
one may argue that some of the reported unusual obser-
vations might also be related to the possible diffusion of
disorder, e.g., caused by a thermally activated, random
atomic migration. That is, one may conceive a kind of
dynamical frustration in real systems, which is in some
way contained in our model system with competing ki-
netics. The present study reveals some interesting
features of nonequilibrium steady states, phase transi-
tions, and critical phenomena, and provides additional
motivation for investigating those versions of our model
whose solution cannot be accomplished by the main
method employed here; in fact, we expect the latter cases
to yield the most interesting behavior and perhaps to elu-
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cidate some features in real systems. A short, partial ac-
count of results from the work described in this paper has
been reported elsewhere. 1°

The paper is organized as follows. In Sec. II, we define
a class of model systems with random-field competing ki-
netics and discuss their possible physical relevance. In
Sec. III, we distinguish a subclass of (actually, one-
dimensional) systems that may, in fact, be solved by
finding explicitly their corresponding effective Hamiltoni-
ans, and familiar transition rates are classified according
to their implications on the resulting expression for the
latter. The study of the macroscopic behavior of that
class of systems is initiated in Sec. IV, and Sec. V reports
on the resulting thermodynamics, including critical be-
havior, for some specific field distributions of interest; we
also consider, in particular, a distribution that involves
strong fields freezing the spin configuration with a given
probability. Section VI contains a comparison with some
related systems. Section VII is devoted to the case of ar-
bitrary dimension. Some concluding remarks are drawn
in Sec. VIII, which contains a summary of our main re-
sults.

II. DESCRIPTION OF THE MODEL

Consider a regular d-dimensional lattice €2, and denote
by s={s,=*1;r€Q} any spin (equivalently, particle)
configuration that is in contact with a heat bath, by
S={s} the set of possible configurations, and by P(s;t)
the probability of s at time ¢. The system evolves in time
according to a homogeneous Markov process, as implied
by the master equation,®!!:1?

aP(s;1) /3= [c(sls')P(s';t)—c(s'|s)P(s;1)]

s'ES

(2.1

where c(s|s’) are positive-definite rates per unit time for
transitions from s’ to s. A main distinguishing feature of
the model of interest is that c(s|s’) involves a simultane-
ous competition of independent (random) spin-flip (or
creation-annihilation) mechanisms, each of which pro-
ducing, as in the so-called Glauber dynamics,!! the
change s, — —s, of the variable at site r. This generates a
new configuration, s’ or s, from s, with a probability per
unit time which may be written as

cls)=KeslsN= [ “drphe(sIs;h) . @2)
Here, h represents the random applied magnetic field (or
chemical potential) having a normalized distribution
p(h), and each elementary Glauber mechanism driven by
c(s'|s;h) is assumed to satisfy individually a detailed-
balance condition, i.e.,

c(s’ls;h)=c(s|s";h )exp[ —BAH, ], 2.3)
with B=1/kyT and AH,=H(s;h)—H(s;h), with
respect to some specific Hamiltonian, which we shall take
to be

H(s;h)=—J 3 S,S.~h3s, (forallh), (2.4
NN r

where the first sum is to be taken over nearest-neighbor
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(NN) pairs of sites. Note that some of the qualities of the
model, particularly the choices (2.3) and (2.4), are includ-
ed here only for the sake of simplicity and concreteness
and that one may easily devise more general conditions.

The situation depicted by Egs. (2.1)-(2.4) deserves a
comment. The spin system has an effective kinetics that
may be interpreted as consisting of a simultaneous com-
petition of independent (Glauber) canonical mechanisms,
each acting with probability p(h) as if the strength of the
applied magnetic field had a given random value A over
the whole system. In other words, the model is precisely
the Glauber or kinetic Ising model with nonconserved
magnetization, !! except that the applied magnetic field is
here assumed to change randomly at each kinetic step ac-
cording to distribution p(h). Clearly, this may represent,
for instance, the case of a magnetic system under the ac-
tion of a magnetic field varying according to p (k) with a
period shorter than the mean time between successive
transitions modifying the spin configuration. Even
though one may expect this time interval to be relatively
short in general—e.g., the Larmor precession of a nu-
cleus in the field of its neighbor, which may be taken as
an order-of-magnitude estimate of the relevant time
scales, is typically around 1073 sec—chances are that
such a model situation can actually be implemented in
the laboratory. (Note, however, that the condition here
essentially differs from a more familiar case!® in which a
system is periodically driven by the action of a field be-
tween two ordered phases.)

The model also admits a different interpretation; that
is, given that the elementary Glauber processes are
local—i.e., transitions just involve in practice a local,
small domain of the lattice—so is the resulting effective
rate (2.2). Consequently, one may presume that only the
field acting on the sites in a neighborhood of the spin
whose flip is implicated by each transition [in fact, only
the field on the involved spin when one is restricted to
Hamiltonian (2.4)] is randomly changed at each Kkinetic
step to have a value h chosen from p (h). Thus, starting
from an arbitrary spatial distribution for the fields, say
po(h), kinetics will soon establish a random spatial distri-
bution p/(h), which is a realization of the given p(h).
Consequently, under that interpretation, the system may
be described (at each time) by the single Hamiltonian

H(s;h)=—J ¥ s,5,,— X h,s, , 2.5)
NN r

h={h,}, where h, is spatially distributed according to
pi(h). This is the familiar random-field Ising model, '* ex-
cept for the fact that p(h) keeps continuously changing
by kinetics in such a way that it always maintains itself as
a realization of p(h). This system may be viewed as a
nonequilibrium random-field model (NERFM). In fact,
as argued before, chances are that the involved (dynami-
cal) frustration, which essentially differs from the ones
occurring in the (equilibrium) quenched and annealed
random-field cases (cf. Sec. VI), may bear some relevance
in relation to the macroscopic behavior of the familiar
random-field class of (natural) systems.

The a priori similarities and differences between the
NERFM and the former interpretation, or magnetic sys-
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tem under random field (MSURF), deserve further com-
ment. This may be first illustrated by considering the
method one would employ to simulate the dynamical pro-
cesses by the Monte Carlo method. That is, given that
one is, in general, dealing with nonequilibrium states, one
should bear in mind that these may depend even quite
strongly on details of the kinetics. Consequently, it is not
equivalent a priori to choosing at random a rate c(s’|s;h)
with probability p(k) than to compute first the effective
rate ¢(s"|s) according to (2.2). The latter procedure is the
one corresponding to the MSURF model definition. On
the contrary, when simulating the NERFM, once a site r
is selected at random, one would compute the probability
of flipping s,, which only depends on T and on

2Js > s, tih

fr—r'|=1

r

where £ is to be sampled from p(h).

In practice, however, it seems that only the energy is
essentially biased by any changes concerning the applied
magnetic field, and the only significant differences be-
tween the NERFM and the MSURF refer to the ampli-
|

[<< [2 s ]2» va [<<h2 [Z 5, ]2» Lv+2( 2

where ( - ) represents the stationary average and
u={h). More generally, the two interpretations will
differ with respect to any function that is nonlinear in A
(cf. Sec. V). Otherwise, phase diagrams and critical be-
havior, which are our main concern here, seem to be the
same. Consequently, most results below refer to both
cases.

Concerning the nature of the model, one should also
remark that both interpretations of the model, NERFM
and MSURF, have two simple well-known limits for
p(h)=8(hth,), respectively, where & is the Dirac §
function and h represents a positive constant. That is,
within any of those two limits, any spin-flip rate satisfy-
ing (2.3) will drive the system to the (unique) Gibbs equi-
librium state corresponding to temperature 7" and energy
H(s;*+h,). For more general distributions p (h), howev-
er, the situation will be more involved. In fact, the com-
petition between several field values will, in general, cause
the system to tend asymptotically towards a nonequilibri-
um steady state, as if it were acted on by some external
non-Hamiltonian agent, whose explicit dependence on
p(h), T, J, and c(s'|s) is unknown. This is the case in
general, even when the interest is in the simplest field dis-
tribution describing a crossover between those two limit-
ing conditions, say when

p(h)=q8(h—hy)+(1—q)8(h+h) .
The model system may then, in principle, allow one to

analyze a variety of nonequilibrium phase transitions and
critical phenomena, and, as indicated above, chances are

tude of the energy fluctuations, which are anomalously
large in the latter interpretation given that any field
change then affects the whole system. That is, the energy
is naturally defined for the MSUREF as a double average
of (2.4), namely,

=[(HsN =3 PUs) [ Tdhp(h)H(s;h) ,
S

NS
(2.6)

where H(s;h) depends on two random variables and
P*'(s) is the stationary solution of (2.1), and the corre-
sponding mean-square fluctuations are

oy =[K{H(s;R)=UPN ], -

Energy and fluctuations for the NERFM, on the other
hand, are defined by the same double average except that
dh p(h) and (2.4) are, respectively, replaced by dhp;(h)
[or TIxdh;p(h;)] and (2.5), the latter depending on
N +1 random variables, with N denoting the number of
lattice sites. It then follows, in particular, that a term
[(KRr%S,s,)* M ],, enters 0% for the MSURF, while this
is replaced for the NERFM by

(<h2>>)< s s,sr,> : @.7)

r#r’

that some version of it may be pertinent to understanding
some of the reported peculiarities of frustrated systems.
In particular, our selection of distributions p(4) is dictat-
ed by a search for both simplicity and some relevance in
relation to the study of random-field and other impure
systems.

III. CLASSIFICATION OF KINETICS

The class of model systems introduced in the preceding
section may be investigated by applying a systematic
method developed previously for finding stationary states
for certain systems with competing kinetics.”® This
proceeds by assuming the existence of a strictly positive
(for all s) stationary solution of (2.1), P*(s), and defining
an analytic object E(s) according to

—E(s)] [ 3 exp[—

SES

Ps(s)=exp| ($)]]7". 3.1)

It follows quite generally that

N
Es)=3 3 JLM.s s, (3.2)

k=1{(r,..., )}

where the summation 3’ is taken over every set of k lat-
tice sites in the system. To be useful, however, E(s)
needs to have some appropriate short-range behavior,
namely, it needs to involve only a finite number of
coefficients J¥), even when it refers to a macroscopic
(N— ) system. Consequently one requires, for exam-
ple,
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JiK.., =0 for all k 2k, , 3.3)

where k,, is independent of N, at least for N > N,. Clear-
ly, one may approach the understanding of a system with
competing kinetics by finding E(s) with property (3.3).
For instance, a one-dimensional system having a well-
defined, short-ranged E(s) may be solved by using the
relatively simple, standard tools of equilibrium theory.

In Secs. III-V, we shall restrict ourselves to systems
satisfying a kind of global detailed-balance (GDB) prop-
erty; such a restriction has an obvious physical meaning,
and it allows us the practical computation of E(s) in
some interesting cases. That is, we shall require that

c(s'|s)exp[ —E(s)]=c(s|s")exp[ —E(s")] (3.4)

for any s and s’, where E(s) is defined by (3.1). This
amounts, in practice, to finding a subclass of our systems
that is characterized by some families of functions
c(s"|s;h) and p(h) in (2.2) implying condition (3.4). Al-
though (3.4) involves a drastic simplification of dynamics,
as discussed below, it still produces an interesting sub-
class; in particular, one thus finds simple explicit expres-
sions for a short-ranged effective Hamiltonian E(s) in the
case of several familiar transition rates and some relevant
field distributions.

The physical situations of interest provide no specific
criteria to determine what transition rates should be
used. Thus, we shall only require that the elementary
processes satisfy (2.3). That is,

c(s"|s;h)=f,(s;h)exp[ —1BAH,], (3.5)

where the function f,(s;h) is analytical, positive definite,
and independent of the variable s,. This is satisfied, for
instance, by the following cases:

(3.6a)
d -1
f+(s;h)=a |cosh(Bh) [] coshK (s, ;+s,_;) ,

i=1

f,(s;h)=a=const ,

(3.6b)

where K =BJ and i represents unity vectors along each
principal direction in the lattice,

f,(s;h)=a[cosh(K)] 2[cosh(Bh)] "', (3.6¢)

f,(s;h)=1alcosh(1BAH,)] !, (3.6d)

fr(s;h)=exp[ —1IBAH,|], (3.6e)
and

f.(s;h)=exp[—|BAH,|] . (3.60

The choices (3.6a)—(3.6e) have been used before in
different problems by van Beijeren and Schulman,!* Lig-
get,’ Glauber,!! de Masi, Ferrari, and Lebowitz,®
Kawasaki,!” and Metropolis et al.,'® respectively; (3.6f)
is a trivial modification of the latter, which induces, how-
ever, a distinct macroscopic behavior.

On the other hand, the application to a one-
dimensional system of the method outlined above makes
it convenient to define the quantities

A =In[ { poexp(Bh) )  poexp(—BR)N '], (3.7)

B=In[ (@ exp(Bh+2K))) (@ exp(—Bh—2K)N '],
(3.8)

and

C=In[{@_exp(Bh —2K) ) { p_exp(—Bh+2K)N '],
(3.9

where @, and ¢, stand for the function f,(s;h) for

5,+;+s,_;=0 and 2, respectively. In fact, one may

then prove after some algebraic manipulations that a
necessary and sufficient condition for the GDB condition

(3.4) to hold when the system evolves according to rates
(3.6) is that

2A=B+C. (3.10)

Moreover, it also follows® that, under the conditions

enumerated before in this section, an effective Hamiltoni-
an indeed exists, as given by

E(s)=—K, 3 S,S,—Bh, 3 s, . 3.11)
NN r

That is, the system may be represented by an effective
Hamiltonian with a simple structure, namely, the struc-
ture of the NN Ising Hamiltonian (2.4) appearing in the
definition of the model, while it involves effective parame-
ters that contain a complex interplay of T, p(h), J, and
kinetics. More precisely, one finds

h,=124+B+CB~', K,=HC—B), (.12

for the parameters in (3.11).

The nature of the resulting description, i.e., (3.1) with
(3.11) and (3.12), which is implied by condition (3.4),
deserves a comment. As indicated by (3.1) and (3.4), the
description has a canonical structure; the effective param-
eters (3.12), however, involve details of kinetics, such as
the transition rates and the disorder distribution. Conse-
quently, as is made explicit later on, the macroscopic
properties of the steady state are influenced, even dom-
inated, by those, let us say, noncanonical details. In or-
der to interpret this kind of quasicanonical situation, one
may imagine the existence of an external constraint on
the spin system that modifies the parameters of the origi-
nal Hamiltonian, (2.4), and replaces the effect of the com-
peting kinetics. That is, even though the model is rela-
tively simple when (3.4) holds, the spin system is subject-
ed to a constraint. Note also that, as indicated in Sec.
VII, the GDB condition (3.4) for the effective transition
rate only holds in some exceptional cases, perhaps only
for some one-dimensional cases, so that the model system
introduced in this paper will, in general, present even a
more complicated (nonequilibrium) behavior than the
quasicanonical version described in Secs. II-V.

We may now analyze the consequences of (3.10) for the
choices (3.6), and the resulting explicit expressions for 4,
and K,. The cases (3.6a), (3.6b), and (3.6¢) imply a simi-
lar behavior to each other. Namely, a system driven by a
competing kinetics of that class, to be identified in the
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following as soft kinetics, satisfies GDB for any distribu-
tion p(k), and one always has K, =K. The competing na-
ture of kinetics and some differences between the rates in
that class are only reflected in the effective field, which is
given by

tanh(Bh, )= {(sinh(Bh))) {(cosh(Bh) ) ~! (3.13)
for (3.6a) and by
tanh(Bh, )= ((tanh(Bh))) (3.14)

for both (3.6b) and (3.6c¢).

The case consisting of elementary kinetical process
driven by rates (3.6d), (3.6e), or (3.6f) will be identified in
the following as hard kinetics. This induces a more intri-
cate situation than the soft case. That is, for J=0, GDB
is satisfied for any distribution p(h), and it follows that
K,=0, and that A, is given either by (3.14) or by

h,=1B " 'In{{(exp[B(h—2|A )] N
X {exp[ —Bh+2[hNIN ™Y},  (3.15

respectively, for (3.6d) and (3.6f). On the other hand, the
more interesting case with J70 only satisfies the GDB

property for field distributions such that p(h)=p(—h),
and one gets h, =0 and either

tanh(2K, )= ((tanh[2K +Bh ) (3.16)
for (3.6d) or
tanh(2K, )= ((exp[ —n|2K +Bh|]sinh(2K +Bh)))

X {(exp[ —n |2K +Bh|]cosh(2K +Bh ) ) !
(3.17)

with n =1 and 2 for (3.6e) and (3.6f), respectively.

Note that the essential formal distinction between soft
and hard Kkinetics, which is responsible for the reported
differences in the parameters of the effective Hamiltoni-
an, is that the function characterizing the former factor-
izes, i.e.,

fr(s;h )= :1)(sr+l+sr~l)fr('2)(h) ’

where f?(h) has no dependence on s, ,, while this is not
an attribute of hard kinetics. The latter case thus re-
quires a condition on p(A) in order to accomplish with
the (strong) GDB property.

Let us now evaluate the effective parameters 4, and K,
for some specific field distributions of interest. We first
note that a system driven by soft kinetics in a sense
reduces (only) when the field distribution is even,
p(h)=p(—h), to the canonical Ising model in the ab-
sence of a field, i.e., K, =K and it gives &, =0 from both
(3.13) and (3.14) (there are, however, some essential
differences between the energy fluctuations in those two
cases; cf. Sec. V). Thus, looking for a more complex be-
havior when the competition is soft, one may consider in-
stead, for instance, a symmetric distribution with nonzero
mean,; i.e., any distribution such that

plp+h)=p(p—nh) with u7#0 .

Interestingly enough, the latter still produces the “‘canon-
ical” behavior A, =u and K, =K for rate (3.6a), while one
has K, =K and a more involved expression for 4, when
the rate is (3.6b) or (3.6¢c).

To make that fact explicit, we have studied the distri-
bution

p(h)=3q8(h —[u+k])
+1q8(h —[p—k])+(1—q)8(h—pu) .
This transforms the formula (3.14) into
h,=1B 'In([ci(1+1,)+sk(1+{1—g]}t,)]
X[ci(1—t,)+s2(1—{1—q}t,)]7"),

(3.18)

where s, =sinh(Bx), ¢, =cosh(Bx), and t, =tanh(Bx).
Within the limit 8— « (T —0), the predominant behav-
ior implied by (3.18) is such that tanh(Bh,) goes to 1,
1—1g, or 1—g, respectively, according to whether p is
larger than, equal to, or smaller than k. That is,

p—k+(2B8) " 'In(2/g) when u>«
h,~ {(2B) 'In[(4—q)/q)] when p=«
28) In[(2—¢q)/q] when p<k

(3.19)

as T—0. This zero-temperature limit, which reveals the
most intriguing behavior of the system, will be discussed
later on in more detail.

Still concerning soft kinetics, it also seems interesting a
priori to consider the uneven field distribution

p(h)=q8(h —p))+(1—g)8(h —p,) with pu,>p, .

We now get from (3.13) that the rates (3.6a) produce are

tanh(Bh,)=[t, +(1—2¢)t, [1—(1—2¢)t,2,]"", (3.20)

where a =X(u,+u,) and b=1(u,—p,), in addition to
K,=K. The right-hand side (rhs) of expression (3.20)
goes to unity as T—0, except for u,= —pu, when it goes
to 1—2¢, which may be positive, negative, or zero. On
the other hand, the rates (3.6b) and (3.6¢), which also im-
ply K, =K, produce an effective field essentially differing
from (3.20), i.e., it then follows from (3.14) that

tanh(Bh,)=gq tanh(Bu,)+(1

As T—0, tanh(Bh,)—1 for p,>p,>0, while tanh(Bh,)
again is reduced within that limit to 1—2¢g for ;1,> 0> u,.
Those changes of the effective field as one varies the sys-
tem parameters, even in the relatively simple one-
dimensional case with soft kinetics, already illustrate the
great richness of the model behavior.

The system behaves in a qualitatively different way
when it evolves according to hard kinetics. As a matter
of fact, only an even field distribution p(h)=p(—h) will
then make the GDB condition hold in nontrivial cases, as
stated before. In order to make this more explicit, while
still trying to extract the relevant general behavior, we
have analyzed the case

—g)tanh(Bu,) . (3.21)
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p(h)=1q8(h —K)+1q8(h +x)+(1—q)8(h)

which is also characterized by A, =0. The situation may

be summarized as follows. For rates (3.6d), we get from

(3.16) that

Ke =K+%1n{[l—(l_q)t%.lt,zc_qtz.,ti]
X[1—=(1—g)t3t2+qt,,t217) . (3.22)

Consequently, one has three different behaviors as T—0,
namely,

K(1—«/2J)+1n(2/q) when 2J >«
K,~ |1In[(4—q)g~'] when 2J=x
1n[(2—¢)g '] when 2J <k .

(3.23)

For rates (3.6f), the situation is different, i.e., (3.17) vari-
ously leads to

K,=K+n{[gc,+(1—q)][gc; +(1—¢)]7Y
for 2J>k>0,

which leads to K, =<K (1—«/2J) as T—0,
K,=K+1in{[gc,;+(1—¢)][gce; +(1—¢)] 7!}

(3.24a)

for 2=k, (3.24b)
which leads to K, =0 as T—0, and
K,=K+1n{[ge "B*+qge 3+8 4 2(1—q)]
X[ge 3B+ ge Bt L 2(1—¢)]7 Y}
(3.24¢)

for 2J <«k; the latter case may present several distinct
sorts of behavior when T'—0, as we shall describe later
on.
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IV. THERMODYNAMICS

In this section we initiate an explicit study of the re-
sulting macroscopic behavior. Natural definitions for the
energy U and for the corresponding fluctuations, which
involve p(h) and P%(s), were discussed in Sec. II. In ad-
dition to those quantities, we shall study the behavior of a
specific heat defined

C,=(U/D),, ..,

the magnetization M and its square mean fluctuations
defined in the usual way, i.e.,

o4 =({(3,s,)—M}*), where (--- )= P%s)---
SES

is the first average indicated in (2.6), and the magnetic
susceptibility defined as

Xr=(M /3p), ..,

where p is the mean of distribution p(h4). It is then a sim-
ple exercise to write those quantities as a function of K,
and h,. It follows, for instance, that

=—J(dInZ /0K,)—u{d1InZ /3(Bh,)} 4.1)
and
M=Z"'93Z/3(Bh,)} . 4.2
Here,
Z= Y exp[—E(s)], 4.3)

SES

and E(s) represents the effective Hamiltonian. After us-
ing the familiar transfer-matrix method, for example, one
may finally arrive to expressions for the quantities of in-
terest as a function of K,, h,, K, and pu. In particular,
one gets

U=—JN{1+2(x—1)""[1—c,p "1?]} —uNs,y ~'/*, 4.4)
C,=—JNK,/3T)x(x —1) "' {8(x —1) "¢,y V2 —1]—4c,y —3/2x 72}

—uN[3(Bh,)/3T lc,y ~'*[1—sly "1]—2N[JO(Bh,) /AT +udK, /3T |x ~'s,y ~32 , 4.5)
oy =JNx(x—1)"'{8(x —1)"[c,y "V2—1]—4c,y ~3%x "} +u2Ne,y V[ 1—siy 1]

+2uJNx "'s,y 32+ a2 Ny [ NsE+c,(y 2 —sty ~1/2)], (4.6)
M=Ns,y 172 @7
oy =Neyy " [1-sy 1], 4.8)

and
Xr=0%0(Bh,)/3u+2Nx s,y 3/%K,/du . (4.9)

Here, ¢, =cosh(Bh,), s, =sinh(Bh,), x =exp(4K,), and
y=si+x~!. Notice as a general remark that soft kinet-
ics is such that K, =K and 9K, /du=0, and that hard ki-
netics requires even distributions p(4) implying =0 and
h,=0; these facts notably simplify the above formulas

[

when referring to specific cases.

The possible existence of a critical point in an Ising-
like system for some values of the temperature T and ap-
plied field # may be determined by analyzing the behavior
of the correlation length, say

E=&,T).

That is, the spin-spin correlation function is usually ex-
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pected to behave at long distances as
g(r)~exp(—r/€) asr— o ,

and £ will then eventually diverge for the values of T and
h locating the critical point. For example, using standard
notation,

£(0,e)~€™Y as e—>0"
and
£(0,€)~(—€)™ as e—0~

for the familiar Ising model. More precisely, the correla-
tions for the NN one-dimensional Ising model under a
uniform field A, which is defined via the Hamiltonian

H(s)=—35,Js, 1 +h), (4.10)
are such that

g(r)=sin’[27(®_ /P )] (4.11)
and

E=[In(®d_/d,)]" L. (4.12)
Here,

@, =eXcosh(Bh )+[e*Xsinh?(Bh ) +e ~2K]1/2 | w13

cot(r)=e? sinh(Bh ) .

This implies the existence of a critical point. That is, the
correlation length diverges as

£(0,e)=e™Y with v=1,

when one approaches T=0 with # =0. One may also no-
tice!® that, in the presence of a zero-temperature critical
point, the relevant temperature parameter for investigat-
ing thermal critical exponents is e=exp(—2K), and it is
then convenient to consider the scaling form
m=0|0]"2"1¥(e|0| /), where m represents the
magnetization for small values of both € and © =fh, and
V¥ is some undetermined scaling function. When 6] <1,
that scaling behavior is precisely confirmed for the one-
dimensional Ising model with W(x)=(1+x2)"!2 and
with B6=1 and 6= 0 in such a way that =0 is implied.
Also, the scaling law 2—a =y =v, together with the fact
that v=1, leads to a=1 for the one-dimensional Ising
model.

Concerning our one-dimensional models, we know (cf.
Sec. III) that, when the GDB property holds, they have
an effective Hamiltonian with the structure of (4.10).
Consequently, they will reveal critical behavior, as far as
(3.4) is satisfied, when A, =0, and T—0". Those condi-
tions, however, are not as simple as they may appear at
first glance. That is, our models involve a distribution
p(h) of fields whose specific form strongly affects both
conditions, (3.4) and h, =0, as already stated, and the fact
that the effective parameters i, and K, depend on tem-
perature necessitates a careful study of the limit 7—0".
In fact, it follows from (4.12) that the critical length in
our system diverges when ®_®;!—1. This occurs in

practice for
exp(—4K,)[ 1 —tanh*(Bh,)]+tanh*(Bh,)—0
and, given that
tanh?(Bh,)>0
and that
exp(—4K,)[1—tanh*(Bh,)] >0,
it is required both that
tanh*(Bh,)—0 ,
which implies Sk, —0, and that
exp(—4K,)—0,

which implies K,— . A simple situation will then
occur when A, —0 as the mean u of p(h) goes to zero, as-
suming this limit causes no extra problems in K,, which
corresponds to the existence of a proper critical point at
T =0 in our system. One may expect more complex situ-
ations in general, however, as becomes clear below.

V. MACROSCOPIC BEHAVIOR
FOR SPECIFIC FIELD DISTRIBUTIONS

In this section, we consider the thermodynamic formu-
las derived in the preceding section for specific rates and
field distributions. In particular, we investigate in detail
the system behavior in the zero temperature limit, and, in
addition to the nonequilibrium version of the usual
random-field case, we also refer to an impure system in
which the distribution p(h) involves strong fields “freez-
ing” the spin direction with a given probability.

A. Even distributions

Consider first any generic, even field distribution, so
that the mean is zero, u=0. When the system evolves ac-
cording to soft kinetics, one simply has that K, =K and
h,=0. This seems an evidence that the system reduces,
in practice, to the canonical Ising system. It also follows
in that case, however, that

U= —2NJ sinh®(K)[sinh(2K)]" !,
C,=(4NJ?/kyT?)sinh*(K)[sinh(2K )] %,
M=0, o3=N exp (2K),

and
0%, =kpT?C,+02=kpT?C,+Noiexp(2K) .

Consequently, a fluctuation-dissipation relation does not
hold, in the sense that 0% differs from kpT2C,, even in
the present case, which happens to bear very simple
nonequilibrium features. In fact, this system has an ex-
cess of energy fluctuations, which is given by

ol=Nolexp(2K)=0%0%, ,

due to the existence of a field distribution having nonzero
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variance. Otherwise, the behavior seems, indeed, the
same as for the Ising model in the absence of a field, in-
cluding the fact that

ol U250

in the thermodynamic limit N — «. The critical behav-
ior is the same as in equilibrium, i.e., there is a zero-
temperature critical point, and one finds

v=n=1 as T—0" .

Some some specific even field distributions for hard kinet-
ics, with results more intriguing than the soft case, are
considered below.

B. Symmetric distributions
with nonzero mean

When the field distribution is
plu+h)=p(u—h) with u70

for any h, the system with hard kinetics satisfies no GDB
condition except for J=0 in (2.4), which is a trivial case.
Concerning soft kinetics, it is convenient to consider two
subcases separately. For rates (3.6a), we have demon-
strated before that K,=K and h,=p. Consequently, it
follows the same behavior as for the Ising model under a
field A =p, except for the magnitude of some fluctuations.
Namely, there is now an excess of energy fluctuations,
which is given by

ol=0i(0%+M?) .
This is quite consistent with the situation described in

Sec. V A for the same rate and p(h)=p(—h), provided
that M =0 there. It also follows that

obU 2~02(M/U)? as N—>w ,
implying that

ob U 2~gi(J+u)"? as T—0
in the thermodynamic limit. The latter is a distinguish-
ing property of the MSURF, which does not hold for the
NERFM, as indicated in Sec. II. Concerning critical be-
havior, the system exhibits a critical point as u—0 and

T—0", which is characterized by equilibrium critical ex-
ponents, namely,

v=n=1, §=w , and =0
in such a way that
Bs=1.

The system behavior for the other subcase of soft kinetics,
(3.6b) and (3.6c), is described in the next section for a
more specific field distribution.

C. The case p(h)=1g8(h—[p+x])
+1¢8(h—[p—x]+(1—q)8(h—p)
Concerning soft kinetics, contrary to case (3.6a) de-

scribed in the preceding section, there is no general result
for any symmetric distribution of nonzero mean when the

elementary rates are either (3.6b) or (3.6¢c). Consequently,
we have studied the case

p(h)=1q8(h—[u+«k])
+1q8(h—[p—«])+(1—q)8(h—p),

which produces K, =K and expression (3.14) for h,. The
resulting formulas for the macroscopic quantities of in-
terest, which are rather involved, do not directly reveal
any interesting general fact; thus, instead of writing them
explicitly, we shall only refer here to the system behavior
in the zero-temperature limit.

Three different asymptotic behaviors follow depending
on the relation between the parameters p and «, which
characterize the distribution p(h).

Case a occurs for u > k. It then follows within the limit
T —0 that

tanh(Bh,)—1, 9d(Bh,)/du=pB,
d(Bh,)/dT =kyBk—pu) ,

and
h,~u—«+(28) 'In(2¢ 1) .

Case b occurs for p=«. This is characterized as T—0
by

tanh(Bh,)—1—1q , 3(Bh,)/0u—0,
o(Bh,)/oT —0 ,

and
h,~(2B) 'In[(4—q)g '] .

In both cases, a and b, the system tends to the follow-
ing asymptotic behavior as T —0:

U=—N(J+p), C,-0, M=N, xr—O0,
o4y~Nol, and 0}, —0.

The only relevant distinction between the two cases con-
cerns some details of the asymptotic regime, which may
influence critical behavior, as is discussed below.

Case ¢ occurs for p <«. This is characterized by

tanh(Bh,)—1—q , 3(Bh,)/qu—0 , 3(Bh,)/3T—0 ,
and h,~(2B) 'In[(2—q)g '] .

The latter is perhaps the most fascinating situation for
soft kinetics. That is, while g1 essentially reproduces
the above cases (in particular, case b, as shown later on),
a field distribution

p(h)=18(h—[p+k])+18(h—[p—«])

gives rise to an extremely rich behavior as one varies the
relation between y, k, and J (maintaining u <«, however).
It then turns out to be convenient to distinguishing
cases ¢y, ¢y, and c3 associated, respectively, with
k—u<J,k—p=J,and k—p>J.
In case c;, the strength J of the spin interactions is
strong enough to compensate the action of the fields
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h,=u+«k and h,=u—« with h, <0,

and it still follows a relatively regular situation. That is,
U, C,, and M are given as in cases a and b above,

X7=~2NpB exp[4B(k—p—J)]—0,

ol =N exp{B[6(k—pn)—4J]} ,
and

oy =0}(oy+N?),

the latter two going to infinity, N, or zero according to
whether 3(k—u) is greater than, equal to, or smaller than
2J.

Case c, is a changeover situation where it is noticeable
that

U=—NJ+2""u), 64>, M=27'?N,
Xr=~2"'"?BN > , and 03, =(22!2)7INe? - o .

Finally, the interactions cannot compensate the action of
the fields in case c3, and one gets

U~-NJ, C,—0, opy=Nu’+oi)e >,

M=0, yr=2NBexp[—2B(k—u—J)]—0,
and

ol =~Ne o .

Those differences imply a rich critical behavior. In
particular, one may distinguish two classes of critical
points when the rates are (3.6b). The first one is for u—0
and T—0". When g#1, everything follows as in the
equilibrium system, except that the magnetization m now
scales with ©=Bu(l—q). When g=1, however, one
finds equilibrium critical exponents and also a novel be-
havior, namely, that 86=1—«/J and that spontaneous
magnetization exists for «<J, which scales with
©’'=4fu, while it does not when x> J. The second class
of critical points occurs for ¢=1 and u7#0 as T—0".
As far as u <k, a line of critical points then exists, where
which are characterized by
v=min[1,(k—u)J ~!]. Notice that this essentially differs
from the case ¢ =1 in the first class, where one obtains
v=1 by taking T—0" after u—0. In fact, it follows
now that

£E— 0,

v=min[1,kJ 1]

if one makes p—0 so that v may differ from 1, i.e., the
two limits do not commute in general. As far as u >k, on
the contrary, £ shows no divergence.

D. The case p (h)=5q8(h —«)
+1q8(h+x)+(1—q)8(h)

Following the study of even distributions initiated in
Sec. V A, we report now on some singular situations aris-
ing as well for hard kinetics when

p(h)=1q8(h—k)+1qd(h+k)
+(1—q)d(h) with g0 .
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We first note that such a distribution has zero mean and,
consequently, ¥ cannot be defined. Thermodynamics
follow now from

U=—2NJx ,
C,=—4NJx[sinh(2K,)] 3K, /3T) ,
M=0,

0% =4NJ’x[sinh(2K,)] '+ 0% N exp(2K,) ,
ot =qx*, and 03, =N exp(2K,) ;

here x =sinh*(K, )[sinh(2K,)] ..

For rates (3.6d), one obtains three situations as T—07
corresponding to the three different behaviors in (3.23).
There is always a critical point, which may present two
quite distinct kinds of behavior. When 2J >k and
T—07, one obtains

U—->—NJ,
o3 =N(2/q)"*exp[B(2J —K)]— o ,
o}, ~0iN(2/9) *exp[B(2J —K)]— o ,
K,~K(1—3k/J)++In(2/q) ,

Cc,—0, M=0,

and
§z(%q)1/ze_v with v=1—%KJ”1 .
When 2J =k, on the other hand, it follows that
U=NJ[(1—y)1+y)" '], C,—0,
o} =~2NJ}1—4/(2+qy)]+Noiy ,
and
oy =Ny,

and one has the result K,~JIny implying £~ 1y; here
y E[(4—q)q—1]1/2. This is, the disorder makes the sys-
tem hot enough at =0 to avoid the usual (thermal) criti-
cal point, while there is still some critical behavior as
g —0, which is characterized by v,=1. This is also the

critical behavior characterizing the system when 2J <k, a
case for which one gets

~—NJ[1—gz][2(1—¢)]"', C,—0,
0}, =~2NJ*[1—2/(1+gqz)]+Noiz,
and
aﬁ,zNz as T—07 5

here z=[(2—q)q ~']'/2. Moreover, a very interesting sit-
uation corresponds to the latter case (i.e., when the in-
teractions cannot balance out the peaks of the field distri-
bution) for ¢ =1; it then follows that

K,—~0, U0, C,—0,

04, —No? , and 03, >N .

Figure 1 illustrates the situation for rates (3.6d).
For rates (3.6f), one may again distinguish three main
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FIG. 1. The dependence with K =J /ky T of the effective parameter K,, cf. Egs. (3.11) and (3.12), for the one-dimensional system
driven by Kawasaki rates (3.6d) (hard kinetics) and acted on by the even field distribution
p(h)=1q8(h—k)+ 1q8(h+k)+(1—q)8(h), as described in Sec. V D, for different values of g and A=k/2J. (a) ¢=0.1 and A=0.5,
1, and 5 from top to bottom. (b) The same as (a) but for g=1 and A=0.5,1,1.5, .. .,5 from top to bottom. The changes occur con-

tinuously between (a) and (b). (c) A=5 and ¢=0.1,0.2, ..., 1 from top to bottom. (d) The same as (c) but for the critical value A=1.
(e) The same as (c) but for A=0.5.
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cases, and the corresponding critical behavior is rather
involved and interesting.
When 2J >k, one has

K,—»K(1—«k/2J)
implying that

U=-—NJ ,

o =N exp[B(2J —Kk)]—> ,

Cc,—0, M=0,

0%, =~0iN exp[B(2J —k)]—> o ,
and
E~le™ withv=1—1kJ7!,

i.e., the critical behavior is similar to the one for rates
(3.6d) and 2J >«k. The case limit of that occurs for
2J =«; then,

K,—0 and U—O0,

C,—»0, M=0, o3 —>N,
and

2

oy —oiN .

That is, the system is now extremely hot at T=0, and it
presents quantitative differences with the case of rates
(3.6d).

When 2J <k, one may distinguish up to seven different
subcases within the limit 7—0%, and the system then
presents the richest critical behavior. That is, one ob-
tains,

KezK(l—%KJ_l) for $J>k>2J,
K,=~—(1/3)K+1In[(2—q)/q] for k=37,
and
K,~—K(1—«x/4J)+1In[2(1—q)g ']
for 47 >k>2%J .

These three cases are such that K, - — « when T—0%,
revealing a kind of effective antiferromagnetic situation
at low temperatures. It is also interesting to notice that,
analyzing the behavior of K, with T, there follows a
change of sign implying the existence of a temperature,
say T*, such that K,(T*)=0. On the other hand,

Kez}ln[Z(l—q)q'l] for k=4J ,
K,~—K(1—ikJ " ")+1in[2(1—g)g '] > ,
for 8J >«k>4J
and
K,~%In[2(1—q)g '], for k=8J .

The critical behavior of the correlation length in these
three cases may be represented by

E~(L)1%7vg 7 with v=1kJ"'—1

and

v when 8J >k>4J ,

=1
q 72
and with

v=0 and vq=§ when «k=4J or 8J .

That is, the disorder may preclude, as before, the ex-
istence of a thermal critical point when T—07, but there

is still critical behavior in any case as ¢ —0. Finally,
when k > 8J, one obtains

K,~K— o

and it follows the existence of a standard critical behavior
with v=1. Figure 2 illustrates the situation for rates
(3.6f).

E. Random freezing

It also seems interesting, in principle, to consider dis-
tributions involving strong fields, which are able to freeze
the direction of the spins. As an example, we shall study
the case

p(h)=q8(h—p)+(1—q)8(h —pu,)

in the limit y,— «. As shown before, such uneven dis-
tribution only tolerates GDB when the system evolves ac-
cording to soft kinetics, and one then may distinguish two
different cases.

The first case occurs for rates (3.6a), when dJ‘d);‘—»O
as u,— . This is characterized by

hy~L(u ) +1B ' In[(1—g)g 1> ,
tanh(Bh,)~tanh(Bu,)—1,

and
3(Bh,)/dT =~ —LkBHu,+p,)—— ,

the indicated limiting values occurring for pu,— o, and
by

3(Bh,)/du~LiBlg '+(1—g) ']
This implies the following thermodynamics as pt,— o
U=~—N[J+tgu+(1—q)y]>—», C,—0,
oy =~q(1—g)pu—py)*"N*—> o |
oyU *=q(1—q)"', M—>N, xr—0, and 03 —0.

It also seems interesting to consider the double limit
H,— o and ¢ — 1 with p,(1—g)=k remaining finite. For
the same rates, (3.6a), it follows the same qualitative be-
havior as in the above case for finite g, except that U
remains bounded,

U=~—N(J+p,+«),

and 0% U~? diverges, according to our previous com-
ments on the amplitude of energy fluctuations.
For rates (3.6a) and a field distribution

p(h)=q8(h —p)+(1—q)8(h —p,) ,
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FIG. 2. The same as Fig. 1 but for the modified Metropolis rates (3.6f) (hard kinetics), as described in Sec. VD. (a) ¢=0.1 and
A=0.5 (solid line) and, from bottom to top, A=1,1.5,2,...,5. (b) ¢=0.9 and A=0.5 (upper curve) and 1. (c) A=0.5 and
¢=0.1,0.2,...,1, from top to bottom. (d) The same as (c) but for A=1. (e) The same as (c) but for A=2. (f) A=5 and, from top to
bottom, ¢ =0.1, 0.5, 0.9, and 1.
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the system has no critical point except for ;= —u,. In
that case, the critical point occurs at T—0" where

E~—11—2q| "1 —1[1-2g2— £ [1—2g[*+ - ),

i.e., £ diverges as ¢ — 1 with v=1.
The rates (3.6b) and (3.6¢) produce, instead, the follow-
ing macroscopic behavior as yu,—

Uz—N(l—q),uzy_l—H:o ,

C,~{2J+1qu,[1—tanh®(Bu))][(1—x)x ]!}
XNkBH1—g)(y?—1)y u,— o ,

oy~ (N[(1—¢)+(1—q)gx?]
Xx "Ap2—1)y P+ NA1—q)gp 2
+u,{2N(1—¢q)g(1—x)x "'y,

+4NJ(1—q)—2N*(1—q)gy *}—> oo ,
M=Ny~ !,
which remains finite,

Xr=1B[1—tanh*(Bu,))(1—x2)"'o3,

and

ol =N(y*—1xy3) ',
here

x =(1—gq)+gq tanh(Bu,)
and

y=[1+e *(1—x2)x "2]1/2.

When p,— o and ¢ —1 in such a way that p,(1—g)=«
remains finite, we get A, =y, and it follows that

U=U*—Nky* !,
C,=CX+NkB(y**—1)y* 3[2J +pu, /tanh(Byu,)]

and
0}, =0%+Nk(y**—1)y* [ k/tanh(Bu,)
+2/tanh(Bu,)+4J ]
+02N[(y*2—1)/y**tanh(Bu,)+Ny* 2],
where

y*=[1+e *¥{1—tanh?*(Bu,)}tanh~%(Bu,)]' "

and the other quantities with an asterisk represent the
corresponding quantity for an equilibrium system under a
field p,. That is, when the rates are (3.6b) or (3.6¢c) one
obtains the equilibrium behavior expect for some addi-

tional terms having a simple interpretation.

Finally, concerning critical behavior, the system with
rates (3.6b) has no critical point, except for u,>0>p,
when one essentially obtains cases considered before.

VI. COMPARISONS WITH RELATED SYSTEMS

The system we have studied here essentially differs
from two related models of disorder studied before,
namely, from the more familiar quenched and annealed
versions of the random-field system.?’ This is illustrated
in this section by comparing some one-dimensional ver-
sions of our system with some existing exact results for
the two above-mentioned equilibrium cases. The (few)
similarities one may draw in this way are only occasional,
but their consideration is interesting enough. In fact, the
comparison confirms the great influence dynamics may
have on the steady-state properties of frustrated systems,
and provides further indication of the possible relevance
of the NERFM to the better understanding of disordered
systems. It also seems worthwhile to mention that the
main intrinsic difference between the quenched, none-
quilibrium and annealed random-field models concerns
the behavior of the random-field distribution. This distri-
bution is, respectively, fixed in time, changing in time at
random, i.e., as if the local fields were driven by some sort
of completely random or infinite-temperature process,
and evolving in such a way that it remains in equilibrium
at temperature 7 with the other degrees of freedom.
Only the latter, annealed case, where disorder seeks the
most convenient (correlated) distribution, which mini-
mizes its influence, e.g., by moving towards the interface
and thus lowering the system free energy, seems physical-
ly rather unimportant for understanding the behavior of
most real systems. We also describe, in this section, a
nonequilibrium version of the diluted antiferromagnetic
system under a uniform field, which, in light of an equi-
librium result, one might expect to be equivalent in a
sense’! to the NERFM.

A. The quenched random-field Ising model

The familiar, quenched random-field model'*?° is an

equilibrium ferromagnetic Ising system whose spins at
different sites experience random local magnetic fields 4,
which are independent and spatially assigned according
to some distribution p(h). Although this has been active-
ly investigated, both theoretically and experimentally, ex-
act solutions are partial at present.?2”?% Nevertheless,
the original solution for a one-dimensional Ising model
with random exchange energy (or a spin-glass model, as it
is customarily known nowadays) under a uniform field?®
may easily be adapted to write an implicit solution for the
one-dimensional random-field Ising model. This has been
analyzed, among other authors, by Grinstein and Mu-
kamel.?” The latter have considered the particular case
(to be denoted GMM in the following) in which the field
is (spatially) distributed according to a distribution hav-
ing mean p and variance o =g«?, namely,
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p(h)=1qd(h—p )+ 1q8(h—p_)

+(1—q)8(h—p), py=ptk, (6.1)

in the limit k— . We quote this case because it is the
only one we found comparable to one of our model cases
here, particularly to our case in Sec. VC. In fact, those
authors recognized that a main motivation for their study
arose from the noted relevance of the parameter «/J, a
fact that has also been pointed out by us in Sec. V C.

In addition to the latter fact, we may compare the cor-
responding results for the spin-spin correlation function
defined

g(r)—z—[«SRSR +r » ]av ’

where [{( - - - ))],, represents the double average in (2.6),
i.e., the usual ensemble average plus the disorder average
with respect to p(h). Grinstein and Mukamel found that,
for z=tanh(BJ)7#1 (TF#0) and rz"<<1 (thus involving
T — o, in particular), one has

gr)~(gr+1)X1—gq)z"

neglecting terms of order r(1—gq)z* or smaller. Our
model is characterized by

g(r)=[tanh(K,)]" .

In order to reduce this to a comparable result, we need to
consider the rates (3.6d) (hard Kkinetics), and the distribu-
tion (6.1) with zero mean, =0, and large enough values
of « (actually, any k>2J). It then follows in the same
limit as before that

glr)~(1—q)z"

neglecting terms of order 7(1—¢)z" 2 or smaller. That
is, the high-temperature nonequilibrium correlations for
d =1 show a purely exponential behavior, unlike the one
reported for the GMM. The correlation length, however,
behaves the same way in both cases, namely,

El=—Inz—In(1—q) .
When T =0, on the other hand,
g(r)~constX(1—gq)"
in the GMM and here
gr)~[1—¢q)1".

Note that those similarities when d =1 between the
random-field Ising model (or the GMM) and our none-
quilibrium model cannot be extrapolated beyond the con-
ditions stated above. In fact, the two models essentially
differ, for instance, when the (nonequilibrium) kinetics is
driven by rates other than (3.6d). For example, distribu-
tion (6.1) with =0 and rates (3.6f) leads to K, —K as
Kk— o (actually for «>8J), which cannot be compared
with the GMM case.

B. The annealed random-field system

We reach the same main conclusion when the none-
quilibrium one-dimensional system is compared with a

random-field Ising model (with d =1) whose impurities
are not quenched but annealed, i.e., they have reached
equilibrium with the other degrees of freedom instead of
remaining frozen in.?>?® This equilibrium situation may
be defined via the partition function.

Zy=«Zy(T,h))
N
= [ dhp(h) S exp(BZ;s;[Js; 41 +h]) . (62)
ji=1 s

It simply follows that Z, may be written as
(C;%—S;%)“/Z)NEQ' ,

where
C,={cosh(Bh)) , S,={sinh(Bh))),

and the average {( - - - )) is defined in (2.2), times the par-
tition function of the familiar NN one-dimensional Ising
model under a field A, with the latter satisfying

tanh(BA)=S, /C}, .

Then, given that { is independent of s, it follows that the
stationary solution P*(s) for the annealed system equals
the one for the Ising model under a field A, and also the
one for the nonequilibrium system with rates (3.6a) (soft
kinetics). That is, annealed configurational quantities
such as the magnetization, its fluctuations, and spin-spin
correlation functions are identical to the ones for those
two mentioned systems, while thermal quantities such as
U and C, will, in general, differ essentially showing a
strong dependence on p(h) in addition to the one in-
volved by A. For instance, when one defines AU as the
difference between the energies for the nonequilibrium
[with rates (3.6a)] and annealed systems, it follows for
(6.1) that

AU=«ktanh(Bk) when g=1,
AU—-0 as T— ,

and
AU—k as T—O0.

In any case, our comment at the end of the last section
also applies here.

C. A nonequilibrium diluted
antiferromagnetic system

It also seems valuable to recall that some of the interest
on the random-field Ising model followed after the recog-
nition?! that it describes the practical case® of a diluted
antiferromagnetic, whose spins are present at each lattice
site with a probability that is independent of other spins,
in a uniform field. Consequently, we ask ourselves
whether such a relation also holds for nonequilibrium
systems.

A nonequilibrium diluted antiferromagnet under a con-
stant field may be modeled by following the philosophy in
Sec. II. That is, we shall now consider a competing kinet-
ics involving (only) different exchange energies, namely,
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having a distribution
g(J)=pd(J+Jy)+qdJ), (6.3)

with p+¢=1 and J;>0. This is essentially similar to a
system considered before, > except that the existence of an
external uniform magnetic field, A, is assumed here. That
is, the original competing Hamiltonians have the struc-
ture (2.4), where J is a random variable with distribution
(6.3) and h =const. For d=1 and A0, the condition
(3.4) produces an effective Hamiltonian, which has the
structure (3.11), only when the system is driven by the
soft rates (3.6a). The corresponding parameters are

pexp(—2K,)+gqg
p exp(2Ky)+gq

K =

L
e 3

In (6.4)

» h.=h,

with Ky=pJ,. This is precisely the effective Hamiltoni-
an of our nonequilibrium random-field system in Sec.
V B, i.e., under any field distribution

plu+h)=p(u—h) with u#0 ,

when the latter evolves with rates (3.6a) and has a cou-
pling constant given by J= —1J,. It may be proved that
no other simple equivalence exists between those two
nonequilibrium models. That is, the only relation occurs
for rates (3.6a), which, as discussed before, devise a case
that is almost identical to the (equilibrium) one con-
sidered in Ref. 21, a trivial case from the point of view of
the present work.

VII. SOME EXACT RESULTS
FOR ARBITRARY DIMENSION

The formalism outlined in Sec. III gives no significant
explicit information concerning the model versions with
d > 1, except the following general theorem:’ When an
effective Hamiltonian exists and the transition rates are
local having certain symmetry properties, which is the
case, in particular, of the transition rates enumerated in
Sec. II1, the effective Hamiltonian necessarily has the NN
Ising structure of the original one, e.g., (2.4). The prob-
lem is that, at the present stage, the practical computa-
tion of such an effective Hamiltonian involves the GDB
condition, and one may prove this is not satisfied by any
version of our model system when d > 1. This has two
main consequences. On the one hand, two- and three-
dimensional versions of our model system cannot have
the quasi-canonical behavior that we have discussed in
Sec. III; actually, this is also the case for some one-
dimensional versions, as indicated before. This seems to
guarantee that those cases, where (3.4) does not hold, will
be characterized by a full nonequilibrium behavior,
which is even more interesting than the one in Sec. V.
On the other hand, it follows that one needs to study the
case d > 1 by different methods.

Some interesting exact results concerning systems of
arbitrary dimension may still be derived, for example,
from the following theorem:’ The rates in (2.1) may be
written as

c(s’ls)=1e(r) [1—s, 3 Py(r)s, |,

where c(r)>0, the sum is over all possible different sets
of spins a, one defines

sa= II 5,
r'ea
and P,(r) are real functions. Consequently, once c(s’]s)
is known, one gets

c(r)=2""¥3 c(sls)

and

P (r)=—T s5,5,c(s"ls) {2 c(s’ls)}_1 )

Then, it may be shown that, when a given lower bound to
the minimum possible value of c(s|s) is positive, namely,
when

5=inf [c(r) 2l ’>o : (6.5)

a

the process is exponentially ergodic. This means that,
for almost any probability measure p€Q, it is
(s, ),,#— fdv 5| <2e "% indicating that the system will
relax exponentially fast in time towards the invariant
measure v.

Condition (6.5) may easily be checked in our systems.
As an illustration, consider first the model for any distri-
bution p(h) driven by the soft rates (3.6a). The system is
ergodic, so that there is a unique phase (and no phase
transition is allowed), when B<pf, where the latter
satisfies

[1+tanh(ByJ)]*
=2{1+[((sinh(Byk ) ) (cosh(Boh )N ]} " .

When p(h)=p(—h), the theorem leads to the same
bounds as for the Ising model with zero field, i.e.,
ByJ =0.44, 0.19, and 0.123 for d =1, 2, and 3, respective-
ly. For p(u+h)=p(u—~h) with u> 0, the bounds are the
same as for the Ising model under field u, i.e.,
BoJ =0.266, 0.149, and 0.104 as d is increased. This
confirms the fact that the rates (3.6a) generally induce a
rather trivial case in the present problem. When the sys-
tem with

p(h)=1q8(h—k)+1q8(h+k)+(1—q)d(h)
is driven by the hard rates (3.6d), B, is defined as follows:
g[T) =T7 1+2(1—¢g), =2,
lg[TF +2TF —T; —2T; 1+2(1—q)[t,+21,]]
+lg[T —2T —T; +275 ]

+2(1—q)[t,—2t,]| =4,

and
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3lq[Td +4TF +3TF —Tg —4T, —3T; ]
+2(1—q)[tg+at,+31, ]|
+16|q[T§ —3TS —T¢ +3T;5 ]
+2(1—¢)[ts—3t,]]
+3|q[Td —4TH +5TF —Tg +4T;
+2(1—q)[tg—4t,+51,]1=32

—5T; ]

where
TE=tanh[By(ktnJ)] and 1, =tanh(nByJ/),

for d =1, 2, and 3, respectively.

It also seems worthwhile to mention that the model be-
havior may be represented at =0 by simple random cel-
lular automata. For example, the latter case of hard rates
(3.6d) and a distribution

p(h)=3q8(h—K)+1q8(h +k)+(1—q)8(h)
is equivalent at T=0 to the cellular automaton
c(s’ls)=1—s,0,[1+1g6(A,)],
1—s,[x(0,+0oy)+ylomyt+o,m)],
and
1=s,[23,0,Fw(32, 0,7, +0,0,03)
Ral’D TP, ST i

with I,m,n =1,2,3, I#mn, for d=1, 2 and 3, respec-
tively. The following notation has been used here to
shorten formulas:

=1 =1
01—7(5r+i+sr_i) ’ 02—7(sr+j+sr—‘j) ’

=1 ==
03=3(SchrtSeoi) s TI=Se4iS—i
Ty=Sr4jSe—j > and 3= Sy

where r+r’ (r'=i, j, or k) represent NN’s of site r,

lll

(4+q[2+20(A)+6(A)]}
+[—2—296(A)+q6(2,)],
1{4+1g[36(1))+46(2,)+060(R3)]} ,
w=1[—4—3¢0(A)+qb(A;)] ,

114
8

III

and

v=1L{1+1qg[50(A,)—46(A,)+6(A))]} ;
ox)=e(x)e(—x)-2],

where 6(X)=0 for X <0 and ©(X)=1 for X=1, and
A,=«/2J—n. By using condition (6.5) here, it follows
that, at T=0, the system with «> 6J is ergodic for any
g >0 when d =1, for any g >{ when d =2, and for any
g> % whend=3.

VIII. CONCLUSIONS

This paper introduces a lattice interacting-spin (or par-
ticle) model system whose time evolution is stochastic be-
cause of a competing spin-flip (or creation-annihilation)
kinetics, which, in addition to the usual heat bath, in-
volves a random external magnetic field (or chemical po-
tential). The competition induces a kind of dynamical
frustration that might be present in real disordered sys-
tems such as the class of random-field materials. It may
also be implemented in the laboratory, e.g., by exposing a
magnet to a field that is continuously varying according
to p (h) with a period much shorter than the mean time
between successive transitions modifying the spin
configuration. This will, in general, drive the system
asymptotically towards a nonequilibrium steady state,
thus producing a situation that crucially differs from
those in the annealed and quenched random-field model
systems. In fact, while the local field is randomly as-
signed in space according to a distribution p(h,), which
remains frozen in for the quenched case, and p(h,) con-
tains essential correlations in the annealed system, where
the impurity distribution is in equilibrium with the spin
system, our case is similar to the quenched system at each
time during the stationary regime, but %, keeps randomly
changing with time, also according to p(h), at each site.
Consequently, while frustration and randomness turn out
to be rather unimportant in the annealed case, they are
fundamental for the behavior of the nonequilibrium sys-
tem in a way, however, which is expected to produce
macroscopic differences with the quenched case.

We present exact solutions for some of the model ver-
sions when the lattice dimension is d =1. They are based
on previously derived theorems that state that, when the
effective transition rate (2.2) satisfies certain symmetry
conditions, including the global detailed balance property
(3.4), the system may be represented by a short-ranged
effective Hamiltonian. In fact, the theorems assert that
the effective Hamiltonian is of the nearest-neighbor Ising
type when this is the structure of the original series of
“Hamiltonians” (2.4) involved by the elementary transi-
tion rates, which are always assumed to be local and
canonical in the usual sense. That is, for certain transi-
tion rates and distributions p(k), our one-dimensional
model turns out to be quasicanonical, with the effective
Hamiltonian parameters reflecting the action of some
imaginary agent that aims to represent the influence of
kinetics on the steady-state properties. That constraint
is, however, non-Hamiltonian, in general, given that one
may prove that the global detailed balance condition (3.4)
does not hold for other one-dimensional cases nor when
d > 1. It is true that our theorems do not exclude the ex-
istence for those cases of a short-ranged Hamiltonian
simply defined via Egs. (3.1)-(3.3), but the system would
then lack the canonical feature (3.4). Instead, we have in-
vestigated lattices with arbitrary kinetics and dimension
by two different methods, namely, by requiring that a
given bound to the transition rates is positive, which
leads to a bound region of the phase diagram where the
system is necessarily ergodic, and by providing simple
representations of the system ground state, which may be
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useful for further investigations.

The main global conclusion from our analysis is that
the system behavior, including critical phenomena, is
amazingly rich and certainly different from the one in fa-
miliar equilibrium situations, even for d =1. This is illus-
trated, in particular, by Figs. 3 and 4. Moreover, here
nonuniversal behavior seems the rule, i.e., model parame-
ters usually exist that are relevant or marginal in the
sense of renormalization-group theory, and equilibrium
features such as the fluctuation-dissipation theorem do
not hold, in general. As a specific example of that, our
model, unlike the standard random-field Ising model,
may present a zero-temperature critical point under some
circumstances when d =1.

Once features (2.1)-(2.4) are given (note, however, that
one could also be interested in a competition between two
or more different ‘“Hamiltonian” structures), the model
conduct is dominated by details of kinetics such as the
form of the functions p (k) for the field distribution and
c(s'|s;h) for the transition rates. This is reflected in mi-
croscopic properties, e.g., (3.4) only holds for certain

1.0 17—
.
(a)
€0.5 4
g / ‘ ‘
0.0 1.0 2.0
K
1.0
€0.5 4
0.0 . : .
0.0 1.0 2.0

K

FIG. 3. The magnetization vs K for Glauber rates (3.6b) (soft
kinetics), as described in Secs. IV and V. (a) For
p(h)=1g8(h+0.20)+ 3q8(h—0.4J)+(1—¢)8(h —0.1J), cor-
responding to the case in Sec. VC when £ =0.1J and «=0.3J,
where ¢=0.1 (upper curve) and ¢=1 (lower curve). (b) The
same for u=J, k=3J and, from top to bottom, ¢ =0.1, 0.5, 0.9,
0.95, and 1.

pairs of functions p (h) and c(s'|s;h), and it is also ob-
servable. In fact, the study of the cases in which (3.4)
holds naturally leads to a classification of the functions
that are more familiar in the literature as specific realiza-
tions for the elementary rates, namely, one may distin-
guish soft rates, such as (3.6a), (3.6b), and (3.6c), where
the function f,(s;h) defined in (3.5) factorizes with the
dependence on the field separated from that on the spin
configuration and hard rates, such as (3.6d) and (3.6e),
where those dependences cannot be separated from each
other. As a further indication of the complex behavior
our class of systems with competing kinetics may present,
note that the recent study of a different type of nonequili-
brium impure system,’ where the competition is between
exchange energies and no external field is acting on the
system, required a classification of transition rates based
on their asymptotic properties. No doubt this and other
questions raised in the study of those systems need to re-
ceive further investigation from a more general point of
view.

0.4 T

4 (G) (‘/ \

/ ]

-0.2 + B :
0.0 2.0 4.0
K
2.0
(b)
1.0 - AR !

FIG. 4. The specific heat C, (normalized to Nkp), as defined
in Sec. IV, as a function of K in the case of hard kinetics. (a)
For Kawasaki rates (3.6d) when A=1.5 and, from top to bot-
tom, ¢ =0, 0.25, 0.5, 0.75, and 1. (b) For the modified Metropo-
lis rates (3.6f); the solid line is for ¢ =0, while the dashed lines
are for ¢=0.75 and A=3, ¢=0.75 and A=2.5, ¢=0.25 and
A=1.5, and g =1 and A =2, respectively, from top to bottom at
K=1.
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In the present case, the classification of rates is
motivated by the important consequences the formal dis-
tinction mentioned above has both on the global detailed
balance condition and on the form for the effective pa-
rameters defined in (3.11). That is, (3.4) holds for any
p(h) when rates are soft, and we then get K, =K and h,
given, in general, by a complex function of T, p(h), and
c(s’|s;h). That function is such that h,=0 when
p(h)=p(—h), and the system then reduces to an equilib-
rium system, except for energy fluctuations. In that
sense, the simplest situation occurs for the rates (3.6a)
used by van Beijeren and Schulman in a different none-
quilibrium problem;!® except for some excess fluctua-
tions, those rates are seen to reduce our system with any
distribution

plut+h)=plu—nh),
even with
pn#0 ,

to the pure Ising model, and we also found for (3.6a) the
only similarity (though a loose one) between the none-
quilibrium and annealed cases. When the rates are hard,
the situation is essentially different, beginning with the
facts that one has here that (3.4) only holds for even dis-
tributions p(h), K, is a complex function of the model pa-
rameters, and h, =0, the latter as a direct consequence of
p(h)=p(—h).

The above facts are strongly reflected in critical prop-
erties. Given that, on the assumption (2.4) and (3.4), the
effective Hamiltonian always has the structure (3.11), the
existence of a critical point characterized by condition
(4.12), requires that one of the following situations occur:
(i) h,=0 (as a consequence of the model features) and
K,— o as B— . This is the familiar path to the zero-
temperature critical point of the pure Ising model; it
occurs typically, e.g., for rates (3.6a), when
p(h)=p(—h). (i) h,—0 and K,— o, both as B— o,
which has no equilibrium counterpart. This may only

occur for soft rates, where h,70, in general. Excluding
the “trivial” (cf. the preceding paragraph) case (3.6a),
soft rates indeed produce an interesting critical behavior
of that kind, with two different types of critical phenome-
na, including the possibility of a critical line, when
plu+h)=p(u—h). We have revealed that fact in Sec.
V C for

p(R)=18(h—[p+xk])+18(h—[u—k]) as u—0.

(iii) It may also occur that K, has a more complex depen-
dence on temperature, and neither of the two above situa-
tions, (i) or (ii), arises. The limit B— o then leads to
several different situations, i.e., B, =K, /J —>B°, where 8°
is positive (the strong disorder maintains the system hot
enough at T=0 to preclude any critical behavior), nega-
tive (the field competition produces an effective antiferro-
magnetic situation) or infinite (corresponding again to a
zero-temperature critical point), depending on the model
version. This occurs typically for hard rates when the
distribution is even, e.g.,

p(h)=1g8(h—K)+1g8(h+K)+(1—q)8(h)

as described in Sec. VD and in Figs. 1 and 2. It seems re-
markable, in particular, the crucial role played by the
typical deviation «, or the way it is related to u and J, in
producing dramatic changes of the observable properties.

We are presently analyzing by other methods those
versions of the model in this paper for which condition
(3.4) does not hold.
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