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Successive reentrances and phase transitions in exactly solved dilute centered square Ising lattices
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We solve exactly several periodically dilute centered square Ising lattices by transforming the systems
into eight-vertex models. We find that for a given set of interactions, there may be five transitions with

decreasing temperature with two reentrant paramagnetic phases. These phases extend to infinity in the

space of interaction parameters. Moreover, two additional reentrant phases are found, each in a limited

region of phase space.

Frustration caused by competing interactions is known
to cause unexpected and rich behavior in magnetic sys-
tems. Among its effects, the reentrant phenomenon is
one of the most challenging problems. The reentrant
phase is defined as a phase with short-range order (or no
order at all) occurring below a more ordered phase on the
temperature scale. A recent example is the reentrant spin
glass. ' We are interested here in the reentrance
phenomenon occurring in a class of two-dimensional (2D)
lattice models that are periodically defined, i.e., there is
no bond disorder: the frustration caused by competing in-
teractions will itself induce disorder in the spin orienta-
tions. The advantage of models without bond disorder is
that they are subject to exact treatments, ' and therefore
represent possible applications in statistical physics. The
2D spin systems have recently attracted much attention
due to their close relation to high-T, materials. Reen-
trance was found in a number of exactly solved models:
centered square lattice, Kagome lattice, ' centered
honeycomb lattice, ' and cluster models. " In a previous
paper we conjectured that the necessary condition for a
reentrance to take place is the existence of a partially
disordered phase (PDP) next an to an ordered phase in
the ground state. This condition has been verified in all
known cases. " However, we showed' that this is not a
sufficient condition.

In this paper we study several 2D models defined from
the centered square lattice by taking away one, two, or
three centered spins in a periodic manner. These are
shown in Figs. 1(a), 1(b), and 1(d). The model shown in
Fig. 1(c) has been recently studied. Our purpose is to ex-
amine the behavior of the phase diagram, in particular
the existence of reentrant phases.

The Hamiltonian of the models shown in Fig. 1 is
given by
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Let us show in Fig. 2 the phase diagrams at zero tern-

perature in the space (a, b) where a=J2/J, and
b =J3/J, . The three-center case [Fig. 2(a)] has six
phases (I to VI), five of which (I, II, IV, V, and VI) are
PDP (with at least one centered spin being free), while
the two-center case [Fig. 2(b)] has five phases, three of
which (I, IV, and V) are PDP. Finally, the one-center
case has seven phases with three PDP (I, VI, and VII).
As will be shown later, in each model, the reentrance
occurs along most of the critical lines when the tempera
ture is switched on. This is a very special feature of the
models shown in Fig. 1 which has not been found in oth-
er models.

The partition function is written as

J J JH= —J, go;cr —J2 go;o —J) go;oj,

where the first, second, and third sums run over the spin
pairs connected by diagonal, vertical and horizontal

FIG. 1. Elementary cells of dilute centered square lattice: (a)
three-center case, (b) two-adjacent-center case, (c) two-

diagonal-center case, (d) one-center case. Diagonal, vertical,
and horizontal bonds are Jl, J&, and J, , respectively.

46 8214 1992 The American Physical Society



46 SUCCESSIVE REENTRANCES AND PHASE TRANSITIONS IN. . . 8215

~ ~

Il ill

~ ~

4

-Y.I v
4 0 +

(c)

(b)

~ ~

a"

a"

IV

tion that the present models can also be solved by stan-
dard dimer and Pfaffian techniques. ' ' Now, Eq. (4}
can be written as a second-order equation of X, which is a
function of E2 only:

A (K„Ki)X +8 (K„Ki)X+C(K„K3)=0,
with a priori four possible values of A, 8, and C for each
model.

For given values of E& and K3, the critical surface is
determined by the value of Kt, which satisfies Eq. (5)
through X. X must be real positive. We give in the fol-
lowing the expressions of A, 8, and C for which this
condition is fulfilled:
(1) Model with three centers [Fig. 1(a)]:

IV

Vll

V)

FIG. 2. Phase diagrams in the plane (a =J3/J&, b =J2/J& )

at T=0 for (a) three-center case, (b) two-adjacent-center case,
and (c) one-center case. He&y lines are critical lines. Each
phase is numbered and its spin configuration is indicated
(+,—,and ~ are up, doom, and free spins, respectively). De-
generate configurations are obtained by reversing all spins.

X=exp(4K2 ),
A =exp(4K, )cosh (4K& )+exp( —4K, )

—cosh (4K3 ) —cosh(4K3 ),
B=+ I 1+3 cosh(4K3 )+8 cosh (2K& )

+[cosh(4K')+cosh (4K3)]

X exp(4K i }+2exp( —4K& )],
C = [exp(2K, )

—exp( —2K, )]

A =exp(4K, }cosh (4K3)+exp( —4K, )

z=II X ~J
(j) (o)

(2)
+cosh (4K, )+cosh(4K, ),

B=
I 1+3cosh(4K& )+8 cosh'(2K& )

where the sum runs over all spin configurations and the
product over all elementary squares. Wj is the statistical
weight of the jth square. If the centered site exists, WJ of
the square is

W~
=exp[K, (cr,o 2+ 0 30 4)+K2(0 icT4+0 20 3)

+K3(r((r]+0 2+CT3+04)]

otherwise, it is given by

8'J =exp[Ki(0 &cr2+o 3o 4)+K2(o io4+o 2a3)]

(3a)

(3b)

Q, +Qi+ Q3+ Q4=2 max(Q„Q2, Q3, Q4), (4)

where 0; are functions of K&,E2, and K3. Let us men-

where K; =J;/kT (i =1,2, 3), k being the Boltzmann
constant, and T the temperature.

To obtain the exact solution, we decimate the central
spins of the centered squares. The resulting system is
equivalent to an eight-vertex model on a square lattice,
but with different vertex weights. Generally, we have to
define different sublattices with different statistical
weights. The problem has been studied by Hsue, Lin,
and Wu for two different sublattices, ' and Lin and Wang
for four sublattices. ' They showed that exact solution
can be obtained provided that all different statistical
weights satisfy the free-fermion condition. ' ' This is
indeed our case and we get the exact partition function in
terms of interaction parameters. The critical surfaces of
our models are then given by

—[cosh(4K& )+cosh (4K, ) ]

Xexp(4K, )
—2 exp( 4K, )], —

C = [exp( 2K i )+exp( —2K
&

) ]

(2) Model with two adjacent centers [Fig. 1(b}]:

X=exp(2K2 },
A =exp(2Ki )cosh(4K& )+exp( —2Ki ),
B =2[exp(2Ki )cosh (2K&)—exp( —2Ki )],
C =exp(2K, )+exp( —2K, ),
A =exp(2K, }cosh(4K' ) —exp( —2K, ),
B=+2[exp(2K, )cosh (2K&)+exp( —2K& )],
C =exp(2K, ) —exp( —2K, ) .

(3) Model with one center [Fig. 1(d)]:

X=exp(4K2 ),
A =exp(4K, )cosh(4K&)+exp( 4K&)—

—2 cosh~(2K' ),
B=+2 [ [cosh(2K3 )+ 1]

+ [exp(2K, )cosh(2K3 )+exp( —2K, ) ) ],
C = [exp(2K, ) —exp( —2K, ) ]
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A =exp(4K, )cosh(4K3)+exp( 4—K, )

+2cosh (2K3),

B =+2[[cosh(2K3)+1]
—[exp(2K I )cosh(2K3 )

—exp( —2KI )] ],
C = [exp(2K I ) +exp( —2K I ) ]

a = —1, at T=O [Fig. 3(d)].
B. Two ad-j acent ce-nter model [Fig. 1(b)]

For b & —1, this model shows only one transition for a
given value of a, except when a =0 where the paramag-
netic state goes down to T=O [Fig. 4(a). However, for

Equation (4) defining the critical surface may have as
much as five solutions for the critical temperature, ' and
the system may, for some given values of interaction pa-
rameters, exhibit up to five phase transitions. This hap-
pens for the model with three centers, when one of the in-
teractions is large positive, the other slightly negative,
and the diagonal one equals 1.

Before showing our results, we mention that all the
critical lines shown below are of second order with stan-
dard two-dimensional Ising universality class. Further-
more, we emphasize that though the critical surfaces are
obtained, it is not easy to calculate the order parameter
as a function of temperature in each phase. To investi-
gate the nature of ordering, we have performed Monte
Carlo simulations in the same way we did in previous
works. ' The nature of ordering described below is thus
a result of simulations that are tedious to show.

Let us describe now in detail the phase diagram of each
model.
A. Three-center model [Fig. 1(a)]

For clarity, we show the phase diagram in the plane
(a, T) for typical values of b, instead of displaying the
three-dimensional space (a, b, T ).

For b (—1, there are two reentrances. Figure 3(a)
shows the case of b = —1.25 where the nature of the or-
dering in each phase is indicated using the same numbers
of corresponding ground-state configurations (see Fig. 2}.
Note that phases I, II, and VI are PDP: the centered
spins which are disordered at T=O [Fig. 2(a)] remain so
at all T. As seen, one paramagnetic reentrance is found
in a small region of negative a [schematically enlarged in
the inset of Fig. 3(a)], and the other on the positive a ex-
tending to infinity. The two critical lines in this region
have a common horizontal asymptote.

For —1 & b & —0.5, there are three reentrant paramag-
netic regions as shown in Fig. 3(b): the reentrant region
on the negative a is very narrow (inset), and the two on
the positive a become so narrow while a goes to infinity
that they cannot be seen on the scale of Fig. 3. Note that
the critical lines in these regions have horizontal asymp-
totes. For a large value of a, one has five transitions with
decreasing temperature: paramagnetic state —PDP
I—reentrant paramagnetic phase —II—reentrant pararnag-
netic phase —ferromagnetic phase [Fig. 3(b)]. This is the
first time that such successive phase transitions with two
reentrances are found in a simple model

For —0.5 & b &0, there is an additional reentrance for
a (—1:this is shown in the inset of Fig. 3(c). Note that
as b increases, the ferromagnetic region (III} "pushes"
the two PDP (I and II) toward higher T. Finally, at
b =0, these two phases disappear at infinity. For positive
b, there are thus only two reentrances remaining on a
negative region of a, with endpoints at a= —2 and
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FIG. 3. Three-center case: phase diagram for typical values

of b: (a) b = —1.25, (b) b = —0.75, (c) b = —0.25, (d) b =0.75.
Reentrant regions on negative side of a (limited by discontinued
lines) are schematically enlarged in the insets. The nature of or-
dering in each phase is indicated by a number which is referred
to the corresponding spin configuration in Fig. 2. P is paramag-
netic phase.
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—1 & b & 0, two reentrances appear, the first one separat-
ing phases I and II goes to infinity with increasing a, and
the second one exists in a small region of negative a with
an endpoint at (a = —2 —2b, T=O}. Note that the slope
of the critical lines at a =0 is vertical [inset of Fig. 4(b)].
As b becomes positive, the reentrance on the positive side
of a disappears [Fig. 4(c)], leaving only phase III (fer-
romagnetic).
C. One cente-r model [Fig. 1(d)]

The phase diagram of this model is shown in Fig. 5. It
is very similar to that of the two-center model shown in
Fig. 4 in the regions b & —1, —1 & b &0, and b )0. This
is not surprising if one examines the ground-state phase
diagrams of the two cases [Figs. 2(b) and 2(c)]: their com-
mon point is the existence of a PDP next to an ordered
phase. The difference between the one- and two-center
cases and the three-center case shown above is that the
latter has, in addition, two boundaries, each of which
separates two PDP's [Fig. 2(a}]. It is along these boun-
daries that the two additional reentrances take place at
finite temperatures.

In conclusion, we have found two reentrant phases
occurring on the temperature scale at a given set of in-
teraction parameters in very simple models. Another
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FIG. 5. One-center case: the same as that of Fig. 3 with (a)
b= —1.25, (b) b= —0.25, (c) b=0.5.
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striking feature is the existence of a reentrant phase be-
tween two PDP's which has not been found so far in any
other model (we recall that previous works found a reen-
trant phase only between an ordered phase and a PDP).
Therefore, the conjecture on the occurrence of a reen-
trance should be modified as follows: the necessary con-
dition for a reentrant phase to take place between two
phases at finite temperatures is at least one of them being
a PDP in the ground state. Finally, let us mention that
simple models like those studied here can possess compli-
cated phase diagrams. In particular, very narrow reen-
trant regions can exist on the temperature scale. There-
fore, care should be taken while analyzing experimental
data in frustrated systems. In view of the simplicity of
our models, we hope that the results found here will have
applications in statistical physics.
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FIG. 4. Two-center case: the same as that of Fig. 3 with (a)
b = —1.25, (b) b = —0.25, (c) b =2.
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