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A self-consistent-phonon approximation was used to calculate the ground-state properties and phonon

density of states for the &3X &3 R 30' commensurate phase of monolayer H2, HD, and D2 adsorbed on

graphite. The adsorbed molecules were assumed to be in a pure J=0 rotational state, and the wave

function for the solid included coordinates both parallel and perpendicular to the surface. The proper
inclusion of the surface-normal terms in the wave function was found to have a significant effect on both

the phonon spectrum and the ground-state properties. The calculations for the ground-state energy and

the phonon spectrum of these solids were done both with and without the inclusion of short-range corre-
lations, these short-range correlations being treated within a version of the T-matrix approximation.
The possible effects of various substrate-mediated interactions, anisotropic admolecule-carbon interac-

tions, and finite temperatures were also investigated. The current theoretical results are compared to
those of recent inelastic-neutron-scattering experiments and to previous theoretical results for these sys-

tems.

I. INTRODUCTION

The recent experimental interest' in the structure
and dynamics of the adsorbed molecular hydrogen isoto-
pic species (Hz, HD, and Dz) was the motivation for this
and earlier calculations ' of the phonon spectrum and
density of states for these monolayer molecular solids.
The work presented here is both an elaboration and an
extension of our earlier calculations for the H2 and D2
systems. The goal of the current study was to do a care-
ful assessment of the importance of various effects not
studied in the earlier work, to understand how each of
these effects alters the phonon dynamics, and to extend
these calculations to HD.

The three molecular hydrogen isotopic species ad-
sorbed on the basal plane surface of graphite provide a
wealth of different solid phases and corresponding solid-
solid phase transitions. These phases include the
+3 X &3 R 30' commensurate phase, at least two
hexagonal-incommensurate phases, and a uniaxial-
incommensurate phase. ' ' ' ' "" Although interest in
these systems goes back many years, ' ' experimental
techniques have now reached the point where a detailed
comparison of the inelastic-neutron-scattering (INS) data
with corresponding theoretical predictions is a realistic
possibility. ' ' "The calculations presented here for the
&3X&3 R 30 commensurate phase assume that the ad-
molecules are spherically symmetric, that is, they are in
the J = 0 free-rotor rotational state. ' The interaction of
each admolecule with the graphite substrate is assumed
to be the same as that of a single isolated H2 molecule
with a rigid surface. The dominant contribution to the
intermolecular interaction is assumed to be essentially the
same as a pair of isolated H2 molecules. However, in an
attempt to understand the possible sources of the
discrepancies between earlier theoretical results and the

INS results, the effects of substrate-mediated interactions,
two-particle short-range correlations, and anisotropic
hydrogen-carbon interactions were all investigated, even
in those cases where conventional wisdom would say that
the given effect was not of practical importance. ' Final-
ly, the effects of finite temperatures on the phonon spec-
trum were calculated and the results compared to recent
experimental results.

A survey was made of possible substrate mediated
effects, and the sizes of these effects were estimated for H2
on graphite. For those effects which could result in more
than a few percent shift in the effective longitudinal and
transverse coupling constants of the lattice dynamics, '

the actual shift in the phonon spectrum was calculated.
The anharmonic lattice dynamics was carried out in ei-
ther the standard self-consistent-phonon (SCP) manner,
or using a SCP calculation with an effective interaction
generated by a T-matrix approximation. The pure SCP
calculation includes only the even terms of the standard
theory. The T-matrix theory used in this calculation is a
modification of that used by Glyde and Khanna, ' and in-
cludes ladder diagrams in the usual manner. The
modification, introduced in the work presented here, in-

corporates certain elements of the approach used by
Horner'

Only the in-plane phonon modes of the monolayer will
be discussed here in detail. The surface-normal phonons
have much higher energies than the in-plane phonons,
and so these two sets of modes are essentially decoupled.
These surface-normal modes, which exhibit a nearly Hat

dispersion curve possessing a zone-center gap,
' ' have

widths that are much less than the minimum mode ener-

gy. Thus the surface-normal vibrations are approximated
very well by those of uncoupled Einstein oscillators. For
the sake of completeness, estimates are given here for the
Einstein frequencies associated with these surface-normal

46 8178 1992 The American Physical Society



46 PHONON SPECTRUM AND DENSITY OF STATES FOR. . . 8179

modes, these values corresponding to the zone-center
mode in a more complete treatment.

II.ADMOLECULE-GRAPHITE INTERACTION

Various models for the interaction of a hydrogen mole-
cule with a graphite surface have been proposed over the
years, ' * ' but many of these models are not con-
venient for the purposes of the calculation presented
here. The earliest models assume that the interaction en-

ergy of a single admolecule with the graphite surface can
be written as a sum of two-body terms, using an isotropic
function for the interaction of an admolecule with a sin-

gle carbon atom, and then summing these terms over all
carbon atoms in the graphite substrate. ' Later this ap-
proach was extended to the case where the two-body
term had an anisotropic dependence of a special form,
namely one which was axially symmetric about an axis
perpendicular to the surface. More recent attempts to
model this type of interaction have focused on use of
embedded-atom models to treat the repulsive part of the
interaction, while using a phenomenological attractive
term for the London dispersion part. ' While the more
recent approaches do have a better theoretical basis, all
these models have some uncertainty in their justification.

The simplest two-dimensional models, which have been
used widely in calculations of monolayer phonon modes,
do not allow for any effects generated by the zero-point
motion of the adsorbed species in the direction perpen-
dicular to the surface. If it is desired to include the
effects of such motion, and these effects are relevant to
both the energetics and dynamics of the commensurate
monolayer solids, these simple two-dimensional models
are inadequate. The most sophisticated models for the
admolecule-substrate interaction use the embedded-atom
approach, which, while quite realistic, still requires ex-
perimental input to determine one or more parameters.
In addition, these sophisticated models are more compli-
cated to implement then was desired for this calculation.
Thus the first task in this investigation was to construct a
realistic, but relatively simple model for the interaction of
a single hydrogen molecule with the graphite surface.

Given the uncertainties associated with all these mod-
els, it was decided to use the simplest approach that
would give a realistic treatment of the interaction of a H2
molecule with a graphite surface. For this purpose, the
model that was chosen is a modification of one of the ear-
liest models used, namely that of Crowell. ' The original
Crowell model approximates the total adsorption poten-
tial by a sum of spherically symmetric admolecule-carbon
interactions, with the admolecule-carbon pair interaction
being Lennard-Jones LJ(12,6). The parameters for the
LJ(12,6) interaction were originally determined through
the use of combination rules. The modification of the
Crowell model used in the current work involves simply
adjusting the LJ(12,6) parameters to fit the experimental
bound-state energies. With the assumption of a pure
J=O rotationa1 state for the hydrogen molecules, there
would be no dependence on molecular orientation for this
interaction, but there is no guarantee that there is not
some relatively small anisotropy due to the anisotropic

U(r, z ) =g Uo(z )e'
G

(2.1)

where 6 is a reciprocal lattice vector for the graphite
basal plane lattice. The calculations of the Uo(z) for the
LJ(12,6) interaction involve summations over the carbon
atoms that can be reduced to a closed form involving
Bessel functions of the second kind. The details of this
calculation are given in Ref. 32.

It is well known that the summation over carbon atoms
in those basa1 planes below the surface plane make an
insignificant contribution to the periodic variation of the
interaction potential. Furthermore, the only significant
contributions from these lower planes are the attractive
ones, and the summation of these attractive terms can be
replaced by an integral (with appropriately chosen limits)
without any significant loss of accuracy. Thus it is a
good approximation to write the G=O Fourier ampli-

electronic orbitals of the carbon atoms in the graphite.
However, anisotropic terms in this interaction, when
modeled with the axially symmetric form, do not contrib-
ute to the bound-state energies of the laterally averaged
potential, ' but only to the band-structure splittings.
With only the bound-state energies known experimental-
ly, there would be no way of independently determining
the contribution of the anisotropic terms. Since recent
estimates of the effects of such anisotropies are relatively
small, in the range of 10—15%, it was decided to ignore
such terms in the actual calculation of this interaction,
and simply test the sensitivity of the final results of the
lattice dynamics to variations of this magnitude in the
corrugation of the empirically determined hydrogen-
graphite interaction. In this manner, the importance of
the effects of the anisotropic hydrogen-carbon interac-
tions could be investigated without a detailed calculation
of the actual anisotropic potential. Given the current
state of our knowledge of the hydrogen-graphite interac-
tion, there seems little justification for a calculation of the
anisotropic effects on the phonon spectrum beyond what
is done here.

The energy levels for the bound states of both H2 and

D2 molecules in the laterally averaged admolecule-
graphite potential well have been obtained experimentally
through the analysis of selective adsorption measure-
ments. ' These bound-state values have been used to ob-
tain model parameters by a number of authors, ' ' the
model parameters being the LJ(12,6) well depth, given by
6p and the hard-core separation, given by cr. The values
so obtained for these parameters do depend slightly on
the particular criteria used to fit the data, but relative
variations in these values are of the order of only a few
percent.

The Steele formulation for the LJ(12,6) adsorption po-
tentials gives explicit closed forms for the calculation of
the Fourier coefficients of U(r, z ), the potential energy of
a single admolecule located at a position r parallel to the
surface, and at a displacement of z in the direction per-
pendicular to the surface. These Fourier coeScients have
values that depend upon the position of the adsorbed
molecule in the direction perpendicular to the surface.
If these coefficients are denoted by Uo(z ), then one has:
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tude, which is the laterally averaged substrate potential
term, as

8m@()o
2

Uo(z) =
3b

2 0
5 z

10

(z+0.6ld ) (2.2)

TABLE I. A comparison of theoretical' and experimental re-
sults for bound-state energies of the laterally averaged substrate
potential. All energies are in kelvins.

0
where d = 3.4A is the graphite interplanar separation
and b = 2.46 A is the basal plane lattice parameter.

To obtain the values of the LJ(12,6) parameters used
here, the one-dimensional Schrodinger equation for a par-
ticle with the mass of the H2 molecule, subjected to the
potential well given by Uo, was solved numerically. By
means of a manual search, the interaction parameters
were adjusted to obtain a close fit to the lowest and
highest experimentally determined energy levels. The pa-
rameters for the admolecule-carbon interaction, as deter-
mined by this procedure, are so=47. 7 K and 0.=2.85 A.
The parameters thus chosen for the H2 interaction with
the carbon atoms were then used to calculate the interac-
tion of both the D2 and the HD molecules with the
graphite; and the corresponding values for the bound-
state energy levels of these admolecules were then calcu-
lated. Table I gives the theoretical and experimental
values for the energy levels of H2 and D2 along with the
theoretical values for HD. These parameters reproduce,
within 5%%uo, all the experimentally determined bound-state
energies for both H2 and D2, and they differ by only a few

percent from previously determined values. It is possible
to obtain a much better fit to the bound-state energies
(about l%%uo error) by using a different functional form to
describe the isotropic hydrogen-carbon interaction.
However, given the other uncertainties in the various in-
teractions associated with this problem, it was decided
not to use this improved (but more complicated) func-
tional form for this series of calculations.

The numerical solutions for the bound-state wave func-
tions show that the Uo adsorption potential energy
confines all three molecular species to a narrow region
near the surface of the graphite. Table II gives the aver-

TABLE II. Properties of the single-particle wave functions
for the hydrogen molecular isotopes in the laterally averaged

0

graphite substrate potential. The distances are in A and the en-
ergies are in kelvins. The distance from the surface graphite
plane is given by z, and Uz is the effective Fourier coefficient

1

for the (10) reciprocal lattice vector of the graphite basal plane.
The averages given by ( ) are calculated using the ground-
state solutions for the corresponding single-particle Schrodinger
equation.

Adsorbate z=(z) Sz„,= ((z —z)') '" U =(U )
1 ]

Hq
HD
Dq

2.99
2.96
2.94

0.24
0.21
0.20

-5.91
-5.96
-5.98

III.THE INTERMOLECULAR INTERACTIONS

age position and corresponding rms deviations for the
three isotopic species. They all show the same general
behavior, being roughly 3.0 A from the surface and hav-
ing an rms deviation of about 0.2 A. These rms devia-
tions are small enough, relative to the commensurate-
phase intermolecular separation of 4.26 A, that it is
reasonable to use a product of in-plane and surface-
normal factors in the wave function used to describe the
solid phase. Such a product wave function effectively
decouples the in-plane and surface-normal modes. A
product of single-particle (Einstein-oscillator) terms, both
Gaussian and non-Gaussian, were used for the surface-
normal part of the wave function. This assumption pre-
cludes any study of the dispersion in the surface-normal
phonon modes. However, recent theoretical calculations
have shown that the width of these surface-normal modes
is very small compared to the zone-center frequency. '

This is consistent with the INS experiments. Thus ig-
noring this dispersion should not have any significant
effect on the calculation of the in-plane modes. Either a
product of correlated Gaussians (the standard SCP
ground state), or a more complicated function of the in-

plane coordinates (the T-matrix ground state) was used
for the in-plane part. By implication, the rotational part
of the wave function is taken to be a pure J=O state.
Both theoretical and experimental results are consistent
with this last assumption. See Ref. 15 and references list-
ed therein.

Level H2 HD

Theory Expt. Theory Theory Expt.

-484. 1

-296.4
-170.0
-89.9
-42.9
-18.0

-6.3
-1.7

-482.9
-306.4
-177.9

-92.4
-41.9
-16.9

-505.3
-341.5
-221.5
-136.8
-79.8
-43.3
-21.6
-9.6

-518.2
-370.8
-257.5
-172.8
-111.4
-68.5
-39.9
-21.7

-268.2
-178.7
-116.1
-73.9
-43.9
-22.4

' As described in Sec. II.
L. Mattera, F. Rosatelli, C. Salvo, F. Tommasini, U. Valbusa,

and G. Vidali, Surf. Sci. 93, 515 (1980).

The interaction between two adsorbed molecules is a
combination of the direct interaction associated with
these two molecules in vacuum and the indirect interac-
tions caused by the presence of the substrate. ' These
substrate-mediated interactions typically cause a shift in
the attractive portion of the intermolecular interaction on
the order of 10—15 % relative to the interaction in the ab-
sence of the substrate. Rather than add together all the
possible substrate effects and only present the final re-
sults, it was decided to do a series of calculations to ex-
amine the effect of each indirect interaction when sepa-
rately added to the direct interaction, and then present
representative results for those cases where there is a ma-
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jor contribution to the total intermolecular interaction.
In this way, the importance and the uncertainties associ-
ated with these effects are more easily understood. As
will be demonstrated, some contributions were estimated
to be so small that it was not worth the effort to calculate
the phonon spectrum with these terms included.

The assumption that the adsorbed molecules are in a
pure J=0 rotational state means that the direct interac-
tion between two such molecules is described by an iso-
tropic function of the intermolecular distance. The valid-
ity of this assumption has been discussed in the previous
section, and this has been confirmed by recent calcula-
tions using an anisotropic molecule-molecule interac-
tion. ' For the majority of the calculations described
here, this isotropic interaction was based upon the one
used by Silvera and Goldman in their study of the pho-
non modes of Hz bulk solid. ' Although there is anoth-
er empirical interaction which might be slightly better for
general condensed phases the differences between these
two interactions, especially at the interatomic separations
relevant here, are very small compared to all the other
uncertainties. Furthermore, the Silvera-Goldman (SG)
interaction was optimized for the description of the bulk
solid phases of hydrogen, which makes it somewhat
preferable for a treatment of the hydrogen monolayer
solids. However, the SG interaction does contain a
many-body term which models many-body effects in the
bulk system. Since the system under consideration here
is quasi-two-dimensional and exhibits larger interatomic
separations than the bulk system, the strength of this
term (which is given by their C9 coefficient) was set equal
to zero. There was no attempt, as was done in a recent
calculation by Gottlieb and Bruch, to estimate the size
of this many-body term for the case of a two-dimensional
solid nor include this term in the lattice-dynamics calcu-
lations reported here. However, some exploratory calcu-
lations were done to estimate the effects of this term us-
ing the Gottlieb-Bruch value of the C9 coefficient, and
the effects were found to be very small.

The most important modifications of the interaction
between two nonpolar admolecules, which results from
the presence of a graphite substrate, are due to the
substrate's dielectric properties and its deformability.
The dielectric properties of the substrate alter the long-
range attraction of the London dispersion term. This
modification is the source of the McLachlan interaction,
an additive term which modifies the original two-body in-
teraction. ' Although this contribution to the two-body
interaction can be approximated reasonably well by a
reduction in the C6 coefficient of the London dispersion
term of the original interaction, the actual McLachlan
interaction has a complicated functional dependence on
both the in-plane and surface-normal coordinates. The
most common form of the McLachlan interaction, one
that places the two admolecules in the same plane paral-
lel to the surface, ' was examined for its importance in
the calculations of the phonon modes. With the con-
straint that the admolecules are at the same distance L
from the image plane of the substrate, the McLachlan in-
teraction depends upon two dispersion coefficients, Cz&
and C+2, besides the dependence on L and on the inter-

molecular separation parallel to the surface. The form of
this interaction, as used in the current calculations, is
given by Eq. 3.4 in Ref. 16 and the values of the two
dispersion coefficients were taken from Table I of this
same reference. The value of L was chosen to be 1.4 A
as suggested by Bruch. ' ' Results with and without the
McLachlan term were compared to assess the importance
of this interaction for both the ground-state energy and
the phonon spectrum.

The effects of the deformability of the substrate have
been treated by a number of authors, with various results
depending upon the details of the assumptions used.
The theory of Schick and Campbell was motivated by the
indirect interaction between two electrons in a bulk solid
caused by the exchange of virtual phonons. Using a
similar calculational approach, Schick and Campbell
found a static, essentially attractive, long-range interac-
tion which oscillated with intermolecular separation, but
which at large separations decreased as the inverse 3l2
power of the separation distance.

Employing an isotropic continuum model of the sub-
strate, Lau and Kohn found that the effective interac-
tion between two identical static admolecules was repul-
sive, and monotonically decreasing with the inverse third
power of the intermolecular separation. Later, Lau and
separately Kappus investigated the effects of the anisot-
ropy of the crystalline surface. They found that the in-
teraction could be either attractive or repulsive, depend-
ing upon the orientation of the intermolecular displace-
ment vector relative to the symmetry axis of the crystal-
line surface, and could even oscillate, but otherwise the
results were consistent with those of Lau and Kohn.
These predictions are somewhat at odds with the Schick
and Campbell predictions, and the source of the
discrepancy is not easy to understand. In a recent pa-
per, Tiersten, Reinecke, and Ying have reexamined this
effect for admolecules on a crystalline substrate. Al-
though they also find a long-range behavior similar to
that of Kappus, the short-range oscillations are reminis-
cent of the behavior found by Schick and Campbell.
These differences might be due to the approximations
made in the Schick-Campbell calculation for the wave-
vector dependence of the lattice response functions.

Rather than critically assess any of these various
theories and how they apply to the case of hydrogen on
graphite, two rough estimates were made of the impor-
tance of this class of indirect interactions. A simple esti-
mate using the Schick-Campbell theory was made, and
then an alternate estimate of these effects was carried out
in the spirit of the variational calculations of Wagner and
Horner for the elastic distortion energy associated with
hydrogen-in-metal systems.

The original Schick-Campbell theory was applied to
the case of He adsorbed on argon-plated copper. The
theory requires knowledge of the LJ(12,6) parameters for
the admolecule-substrate interaction, the shape of the
wave function that describes the probability of locating
the admolecule at some position above the surface, and
the sound velocity for the substrate bulk mode with prop-
agation vector parallel to the surface and polarization
perpendicular to the surface. In addition, the number
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density of the substrate atoms and the mass of the ad-
molecule are required. Estimates for the appropriate
sound velocity for graphite were made using the experi-
mental phonon modes. The wave function was obtained
by solving the one-dimensional Schrodinger equation as
discussed in the previous section. The numerical evalua-
tion of the Schick-Campbell term showed that it might
increase the binding energy by 1 —2 K, but would have
virtually no effect (less than about 1%) on the lattice dy-
namics.

An independent check for the order of magnitude of
this effect was made by using a simple mass and spring
model for the substrate surface atomic plane, and to ex-
amine the response of this system to an admolecule which
has an inverse cube attraction to a semi-infinite bulk.
The style of this calculation was similar to the Wagner-
Horner calculation for defect energies. The model con-
sists of a two-dimensional hexagonal lattice of masses and
nearest-neighbor springs attached to the surface of a rigid
semi-infinite solid, each mass being connected to this sur-
face with a single spring. The lattice spacing of the two-
dimensional system was set at 2.46 A, and the associated
mass value was chosen to produce the proper surface-
mass density for the graphite basal plane. The static dis-
tortion of this system, when subjected to the forces of two
hydrogen molecules, was studied as a function of the in-
termolecular displacement of these admolecules. These
admolecules were attracted to the rigid semi-infinite solid
by an inverse-cube attractive interaction with a strength
appropriate to the hydrogen-graphite system. The ad-
molecules were attached to a surface lattice site by a
spring adjusted to give the appropriate vibrational fre-
quency for a hydrogen molecule on graphite. The in-
duced interaction was determined by a calculation of the
difference between the total energy at a fixed value of ad-
molecule separation and the same energy for "infinite"
separation. This induced interaction between the ad-
molecules was found to be anisotropic and oscillatory,
consistent with the results of Tiersten, Reinecke, and
Ying. Nevertheless, the corresponding estimates for the
increase in the binding energy of these admolecules and
the effects on the lattice dynamics were of the same order
of magnitude as those obtained from the Schick-
Campbell theory. In the final analysis, the distortion-
induced interaction seems to have an effect which is
smaller than any of the other effects investigated.

In summary, all the estimates made of the effects of the
deformability of the substrate confirmed the conventional
wisdom that these effects are smaller by about an order of
magnitude than the McLachlan interaction term. ' Since
all these phonon-mediated interaction corrections are so
small, none of these terms were included in the calcula-
tion of the phonon dynamics of the monolayer discussed
here.

IV. SCP LATTICE DYNAMICS

The wave function for the ground state of the mono-
layer solid is written as

(4.1)

where 1(, = p(zJ. ) is a function of the surface-normal dis-

placement (z position) of the jth admolecule, and 4o is

the standard SCP ground-state wave function. ' The 4o
function is a product of correlated-Gaussian factors that
depend upon Ir, —r I, the set of a components of the
in-plane displacements between the ith and the jth ad-
molecules. However, it is more common to express this
dependence in terms of the set of Iu, = rJ

—R, I,
where u represents the a component of the in-plane dis-
placement of the jth admolecule from R, its ideal lattice
site. It is convenient to think of the system's energy as
consisting of five major contributions: the kinetic energy
associated with the in-plane motions; the kinetic energy
associated with the surface-normal motions; the inter-
molecular interaction (which, strictly speaking, depends
upon both in-plane and the surface-normal displace-
ments); the laterally-averaged interaction of the ad-
molecules with the graphite (which depends only upon
the surface-normal positions of the admolecules); and the
remainder of the admolecule-graphite interaction (which
depends upon both the in-plane and surface-normal posi-
tions of the admolecules). The ground-state energy Er
for this system can then be written conveniently as

E~ = E, +E„„,+E„, (4.2)

where each term on the right corresponds to one of three
different groupings of the five contributions discussed
above.

The E, term is the kinetic energy associated with the z
motion plus the potential energy associated with the la-
terally averaged substrate potential Uo(z, ). E, depends
only on the QJ factors in the wave function and, for a sys-

tem of X admolecules each with mass m, this energy can
be written as

Ez

g2 N g2 N

+g P Uo(z) P, .
2m i Bz.

N

E„,= g g (g ~Uo(z )~P. )exp( —
—,'G G~(ugu, ~)),

j=1 GXO

(4.4)

where the Einstein summation convention is assumed for
the summations over the a and P indices. Here Uo(z) is

the z-dependent Fourier coeScient associated with the
graphite basal plane reciprocal lattice vector G.

The E„ term is the kinetic energy associated with the
in-plane coordinates plus the intermolecular interaction
energy. This term can be written

(4.3)

The E„„,term is the potential energy term associated
with the periodic variation of the adsorption potential,
and it depends on both the P~ and the Co factors. How-

ever, this energy depends on the 4o only through
( u~ uJ~), the tensor for the average second moment of the
in-plane displacements of the jth admolecule from its lat-
tice site. For in-plane, correlated-Gaussian wave func-
tions, it is possible to write E, as
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E,„= x(4 +

(4.5)

The function V(g} describes the interaction of two ad-
molecules separated by a distance g = (x +y +z }'~ .
If the effect of averaging the intermolecular potential
over the g factors in the wave function can be ignored,
then E„y depends only on the 40. Numerical comparison
of the functions V, (trr} and V(r) showed that the "bare"
V(r) interaction is an excellent approximation (about 1%
error} to the V,s(r} term for the relevant range of r
values. The replacement of V,rr(r} by the "bare" V(r}
was used for all calculations presented here. Under these
circumstances, the E„ term becomes independent of the

QJ functions.
The optimum wave function is determined by minimi-

zation of the total energy as a function of the parameters
in the QJ and 40 factors of the wave function. Minimiza-
tion with respect to the P, involves both the E, and the

Ezyz terms This is the quasi-one-dimensional problem of
finding the minimum energy of a single particle with a
mass m in a quasi-one-dimensional potential well given
by

Uo(z) + g Uo(z)exp( —
—,'G G~(u u~&).

6%0
(4.7)

If the trial g is a simple Einstein oscillator Gaussian,
then the problem is a straightforward variational calcula-
tion for finding both the z position of the center of the
Gaussian and its width. However, it is also possible to
find the "exact" g, by solving the quasi-one-dimensional
Schrodinger equation for the potential given by Eq. (4.7)
just as was done in Sec. II for the U0 term alone. Both
these procedures were used, and the results compared to
each other.

Minimization of the energy with respect to the parame-
ters in the 40 factors involves both the E„, and the E„
terms. The equations that result from this second minim-
ization are those of a two-dimensional SCP theory with
efFective "two-dimensional" Fourier coefficients U& given
by

(4.8)

These SCP equations generate the phonon frequencies
and polarization vectors for the in-plane modes in the
usual manner. ' Clearly, the minimization procedures
for the g. and the 40 are not independent. The trial QJ.

determines the values of the U&, which determine the
phonon spectrum, which determines the values of the
( uj uj~&, which determine QJ. Several iterations between
the equations for the optimum wave-function parameters

where the double sum excludes the i = j contributions.
The effective two-dimensional interaction V,z is a func-
tion of r;., the in-plane separation between the ith and jth
admolecules, and it is defined by the equation

(4.6)

of the f a.nd of the SCP parameters are necessary to pro-
duce a fully self-consistent solution set for the energies,
phonon modes, and corresponding wave functions. The
first step in this procedure is to generate a set of U& from
the zeroth order QJ, that is, the QJ that minimizes the E,
term only. Then these U& values are used to start the
iteration procedure that minimizes the total energy E.

V. T-MATRIX LA'X IICE DYNAMICS

The study of the effects of short-range correlations on
the phonon dynamics of highly quantum bulk solids has a
long history. ' ' ' The initial work focused on the use of
Jastrow factors in the wave function, while later efforts
used variations of the T-matrix approach. ' ' ' The
problems associated with combining short-range correla-
tions with a SCP wave function in either of these ap-
proaches are well documented, and are associated with
the difficulty of untangling the long-range two-body
correlations built into the SCP Gaussian wave function
from the short-range two-body correlations associated
with either the Jastrow wave function or the T-matrix
equations. Previous investigations of the effects of short-
range correlations in the two-dimensional quantum solids
have focused on the ground-state properties and Jastrow
approaches. ' ' The efFects of short-range correlations
on the ground-state properties of the commensurate
molecular hydrogen solids, it turns out, can be as large or
larger than the effects associated with the more important
of the substrate-mediated interactions. Given this, a
treatment of the effects of short-range correlations on the
phonon dynamics of these quantum solids is warranted.

A very detailed (but intrinsically complicated} theory
for the inclusion of short-range correlations in the pho-
non dynamics of quantum solids was developed by
Horner some years ago. ' Horner's approach includes
short-range correlations while maintaining self-
consistency between two-particle moment functions cal-
culated by means of appropriate real-space integrations
of the pair-distribution function and the same quantities
calculated by using momentum-space integrations of the
appropriate phonon correlation functions. However, the
full implementation of Horner's method is extremely
difficult, and the typical approach is to use an ansatz for
the functional form of the pair distribution function and
apply some of the conditions of the theory to determine
the unknown parameters. A more straightforward ap-
proach is that of Glyde and Khanna, ' ' who used a vari-
ation of the Bruckner T-matrix theory to determine the
ground-state properties and phonon modes. In this ap-
proach, a two-particle Schrodinger equation is solved for
a two-particle function that defines the T-matrix effective
interaction. Then this effective interaction is used in
place of the bare interaction (in an otherwise typical SCP
calculation} to calculate the phonon dynamics and
ground-state properties. The Glyde-Khanna theory,
however, produces small but bothersome inconsistencies
between the real-space and momentum-space integrations
discussed above. Given the uncertainties and difficulties
involved in both these and other methods for dealing
with the short-range correlations in phonon dynamics,
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it was decided to try an approach which takes the best
parts of the first two methods described above. Although
this modified approach is an ansatz, and cannot be
rigorously derived from first principles, it seems to have
about the same justification as the actual implementa-
tions of other approaches.

The Glyde-Khanna approach constructs an effective
interaction T(r) from the bare interaction V(r ) by multi-

plying this bare interaction by a two-particle function
g(r), and normalizing. The function g(r) satisfies a two-
particle Schrodinger equation which involves both the
bare interaction and the parameters of the SCP Gaussian
ground state. In the Glyde-Khanna papers, this ap-
proach was justified by means of the summation of ladder
diagrams for a T-matrix theory which involve the SCP
Gaussian wave function instead of the usual plane-wave
states. In the approach used for this calculation, a two-
particle function is also used to define an effective interac-
tion and this effective interaction is used exactly as that
in the Glyde-Khanna approach. The calculation here
differs from the Glyde-Khanna theory in that the g(r)
function is constrained to satisfy the two-particle
Schrodinger equation only for small separations of the
two particles. For very large separations, the g factor is
functionally constrained to go to unity, while for inter-
mediate distances, it is allowed some freedom to oscillate
through the use of free parameters. Then, following
Horner's arguments, the free parameters in this pair
function are determined by demanding that the
momentum-space and real-space evaluations of the two-
particle moment functions are consistent with each other.
This ansatz for the treatment of the short-range correla-
tions works very well in practice, and it easier to both un-

derstand and implement than the full Horner method. It
uses the Glyde-Khanna approach in that region of space
where it is most reliably implemented, and modifies this
method in that region where it is most suspect. While
not as satisfactory as a rigorous theory, it suffers from un-

certainties that are no worse than common implementa-
tions of the other theories.

The first step in the current approach is to construct
the T-matrix given by the equation

V(r)=e (5.4)

for small values of r. It is straightforward to demonstrate
that for this repulsive interaction the appropriate form
for u (r) is given by

a (r) e(a —gr)/2 g22 A'

A.P
(5.5)

and m is the mass of a single admolecule. Now, using the
ideas of Horner, the functional form of g(r) is general-
ized at intermediate values of r so that consistency condi-
tions for the first- and second-moment functions can be
applied. This was done by modifying the g function so
that it has the form

e u ( r)f ( r) (5.6)

where the function f is a polynomial in the separation
distance r. It was sufBcient in this calculation to use the
quadratic function

f (r)= I +ar+ ,'br, — (5.7)

where a and b are free parameters. The fact that it is pos-
sible to satisfy the consistency equations using a function
of the scalar variable r is a consequence of the hexagonal
lattice symmetry. For lattices of less symmetry, the more
general form

f (r)=1+a r+ —,'r b r (5.8)

would be needed because the consistency equations in-

volve tensor objects. The consistency equations which
need to be satisfied involve the first and second moments
of u;J =u; —u, the relative displacements of the molecu-

lar pair ij. Since the first moments of u;. are identically
zero within the phonon description, these conditions
translate into the equations

where the function u (r) is expected to go to zero rapidly
at large values of r, and to become very large as r goes to
zero (the WKB approximation). For example, the SG in-
teraction is of the form

T(r)=g (r) V(r)

s
(5.1)

and

(5.9)

a' l a r g(r)+ V(r)g(r)=0,
2JM r Br Br

(5.2)

where p is the reduced mass of the pair of admolecules,
and the strongly repulsive nature of V(r} at small values
of r has been used to justify dropping the other terms
from the corresponding equation in the Glyde-Khanna
theory. This equation is solved approximately by looking
for solutions of the form

(5.3)

where ( )s is the appropriate average over the SCP
ground-state wave function (40~ . ~40). For values of
r deep inside the repulsive core of the bare interaction
V(r), the pair-function g(r) satisfies the two-particle ra-
dial Schrodinger equation:

( 2~a~P )iJ' iJ' s I aP (5.10)
(g2) '1 '

where I J~ is the corresponding second moment of u; u;.
calculated using phonon coordinates; and it is given by
Eq. (8} in Ref. 50. It is clear that g (r) depends upon both
the bare interaction and upon the parameters of the SCP
wave function, but in a way that differs somewhat from
both the Horner and the Glyde-Khanna theories. To find

the free parameters in g, the T-matrix is used in place of
the bare interaction in the otherwise standard SCP equa-
tions for the commensurate solid ' starting with a and
b values set to zero. Once the preliminary phonon dy-

namics has been determined, it is a matter of iterating the
consistency equations, the T-matrix equations, and the
SCP equations until a consistent set of parameter values
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has been found. This generally takes about half a dozen
cycles through the entire set of equations.

The use of the T matrix alters the calculation of the
ground-state energy so that it is no longer given by the
standard SCP form. This alteration is due to the com-
bination of additional kinetic energy due to the increased
curvature of the wave function produced by the g pair
function and the decreased potential energy produced by
the decreased probability of finding two admolecules
close together. ' It is convenient to rewrite the Glyde-
Khanna form for the energy in terms of the SCP equa-
tions with the bare potential and an additional correla-
tion energy e;. which results from the g pair function.
Then the ground-state energy takes the form

while the T-matrix approximation does not satisfy such a
constraint, the close agreement of these two calculations
does indeed indicate that the ground state of either sys-

tem is very close to an Einstein oscillator.
Comparison to the calculation of Janssen, Van den

Berg, and van der Avoird' is more complex because of
the nature of that calculation. However, that work in-

cludes a comparison to the earlier version of this calcula-
tion and this comparison demonstrates good agreement
between the two approaches.

The ground-state energies for both the H2 and Dz
&3X+3 R 30' commensurate phases were compared to
the corresponding energies of both the rotated and non-
rotated incommensurate phases. using both the LJ(12,6)

E=& '
& +g& V(r,")& +pe,",

i&j i &j
(5.11)

and the SG interactions. ' The commensurate phases
are lower in energy than the incommensurate phases in
all cases. Using the LJ(12,6) interaction, the energy

where the correlation energy e'J is given by

&[g(;, ) —&g& ]X[V(;,) —V(R;, )+—,
' @;, , ]&

&g&,

(5.12)

and the 4~~ are the renormalized force constants of the
SCP theory. The 4;~ matrix is given by Eq. (30a) in Ref.
50 with the bare interaction replaced by the efFective in-
teraction T(r}.

VI. ZERO-TEMPERATURE RESULTS

difference for H2 is about 17 K per admolecule, while for
D2 this difference is about 16 K. These results are
reasonably consistent with calculations based on the Har-
tree approximation for the ground-state wave function
and the LJ(12,6} interaction. Similar calculations with
the SG interactions lead to similar conclusions. It can
be said that both the earlier Einstein oscillator models
and the current lattice-dynamics models all lead to the
conclusion that the &3X &3 R 30' commensurate phase
is the stable ground state for these admolecules. Further-
more, the additional decrease in the ground-state energy
due to the long-range correlations associated with the
phonons is about a few kelvins at most for these states.

A series of initial calculations were carried out for the
purpose of comparing the current calculations to previ-
ous theoretical work on this problem. For comparison
with the previous results of Ni and Bruch, some trial
calculations were done with a Lennard-Jones LJ(12,6) po-
tential and a fixed effective UG = 6.4 K. The parame-

1

ters for the LJ(12,6) interaction were taken from the work
by Michels, de Graaf, and Ten Seldam but any
differences between the various isotopes were ignored, as
was done by Ni and Bruch. The SCP calculation
showed that the long-range correlations in the SCP wave
function reduced the ground-state energy for H2 by only
1 K relative to the Hartee calculation of Ni and Bruch.
For D2 it was only a fraction of a kelvin. The amplitude
of the in-plane zero-point motion was virtually the same.

Additional calculations for H2 and D2, again using a
fixed effective UG = 6.4 K, were carried out using the

I

SG interaction and the T-matrix approximation for the
purposes of comparison to the Jastrow calculations of
Gottlieb and Bruch. ' ' This comparison showed that
the Jastrow variational calculation and the T-matrix ap-
proximation differed by less that 0.5 K in the estimates
for the ground-state energy of the two commensurate
phases. There were, however, differences of about 1 —2 K
in the individual terms like E„,. So although these cal-
culations difFer in some respects, they essentially agree on
the results for the basic parameters of the ground state.
Since the Jastrow calculation, as a variational technique,
provides an upper bound to the ground-state energy,

A. SCP calculations

Table III lists the various energy terms given by Eqs.
(4.2)—(4.5) for the case of a Gaussian f(z) and the SG in-
termolecular interaction without the many-body term.
The calculation of the matrix elements of the dynamical
matrix used a sum over three nearest-neighbor shells (18
neighbors). The potential-energy calculations used the
SCP real-space integrals summed over these same neigh-
bors, but included a correction for the contributions to
the potential energy from other molecules beyond this
limit. This correction, which approximates the missing
contributions by using a corresponding lattice sum over
fixed lattice sites, works quite well.

Although a SCP calculation using the self-consistent QJ.

rather than the zeroth-order 1t does not have a large
efFect on the total energy, there is a significant shifting
among the individual energy contributions to the total as
a result of using this self-consistent criterion. The altera-
tion of these various energy terms is a direct result of the
contraction of the SCP Gaussians in the surface plane as
the solutions go from the zeroth-order case to the fully
self-consistent case. Furthermore, this in-plane contrac-
tion drives a shift of the P function toward the surface
with a corresponding contraction of its width. These
changes are a direct reflection of the nonadditivity of the
substrate interaction in its dependence on the in-plane
and surface-normal coordinates of the admolecules, and
they demonstrate the importance of a proper treatment
of the wave function's z dependence. The clearest
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TABLE III. Ground-state energy contributions, calculated within the standard SCP approximation,
for the &3X&3 R 30 commensurate phases of H2, HD, and Dz on graphite. These calculations were
carried out using a Gaussian trial wave function for P(z) and the SG interaction (C9 = 0) for the inter-
molecular interaction. The energy terms are defined in the text by Eqs. (4.2)—(4.5), and all values are in

kelvins.

E,
Exyz

E,y

Initial'

-478.4
-16.0
-15.4

-509.8

H2
Final

-474.9
-21.2
-14.7

-510.8

Initial'

-501.4
-17.8
-25.6

-544.8

HD
Final

-497.3
-24.4
-24.7

-546.4

Initial'

-515~ 3
-18.9
-31.0

-565.2

D2
Final

-510.6
-26.7
-30.0

-567.3

Solutions which are based upon the zeroth-order Gaussian l(, that minimizes only the E, term.
Solutions which are based upon the fully self-consistent Gaussian g, that minimizes the total energy.

demonstration of this is the dependence of the self-
consistent effective Fourier coefficients on the mass of the
admolecule. As the equations are iterated towards the
self-consistent solutions, there is a significant increase in
these effective Fourier coefficients UG, and corresponding
effects on co&, the phonon gap at the I or center point in
the Brillouin zone, and bco, the width of the DOS (pho-
non density of states). The magnitude of these changes
depends upon admolecule mass. The corresponding pho-
non energies for the cases shown in Table III are listed in
Table IV, along with UG, the effective Fourier

1

coefficients corresponding to the nearest-neighbor re-
ciprocal lattice vector for the substrate potential. The
overall effect for D2 is much larger than that for Hz, as

might be expected from the mass difference, with the HD
case being between the two extremes. The increase in the
effective Fourier coefficients and the corresponding nar-
rowing of the width of the DOS is about a 25% effect for
D2. In all cases (H2, HD, and D2), there is a movement of
the adsorbed molecules in towards the surface by about
2% as these admolecules are localized over adsorption
sites. It is this "dropping down" of the admolecules into

the surface pockets formed by the adsorption sites that is
responsible for the decrease in the ground-state energy
and the alteration in the DOS associated with the fully
self-consistent solutions. For clarity, it should be noted
that if the starting point for these calculations (zeroth-
order solutions) had been the classical position of the ad-
molecule in the full substrate potential, there would have
been a "lifting out" of the admolecule away from the sur-
face, and a corresponding decrease in the effective
Fourier coefficients. In this case, the greatest shift would
be associated with H2 and the smallest shift with Dz. The
important point being made here is that the effective sub-
strate interaction for quantum solids depends upon ad-
molecule mass, with the more massive admolecule sitting
closer to the substrate surface and experiencing a larger
effective lateral variation in the substrate interaction and
the least massive being further away, which reduces the
size of the effective lateral variation.

Figure l shows the DOS (obtained by a finite sampling
of the phonon dispersion curves in the irreducible part of
the Brillouin zone) for the three species of admolecules
calculated within the fully self-consistent approximation

TABLE IV. Parameters, calculated within the SCP approximation, characterizing the phonon densi-

ty of states for the ~3 X v'3 R 30' commensurate phases of H„HD, and Dz on graphite. These values

correspond to the ground states described in Table III. All values are in kelvins. UG is the effective
1

Fourier coefficient corresponding to the nearest-neighbor reciprocal lattice vector. Acoz is the phonon

energy gap at the zone center, and EAco is the width of the density of states. AS& and ASL are phonon
energies corresponding to peaks in the density of states. All the above modes correspond to modes po-
larized in the direction parallel to the surface plane. The Aco& term corresponds to the mode polarized
in the direction perpendicular to the surface; it is an Einstein-oscillator mode in this model, and thus in-

dependent of wave vector.

Initial'
H2

Final Initial'
HD

Final Initial'
D2

Final"

UG

Scop

LMco

ASz-

ASL

Acoj

-6.0

40.5
48.0
61.7
83.1

250.2

-7.7

46.6
42. 1

64.9
83.8

285.4

-6.0

34.9
24.1

48.1

60.7
206.5

-7.9

40.7
23.8
51.6
62.0

238.3

-6.0

31.1
19.6
40.4
48.7

180.0

-8.1

36.9
14.8
44.2
50.3

209.5

Solutions which are based upon the zeroth-order Gaussian QJ that minimizes only the E, term.
Solutions which are based upon the fully self-consistent Gaussian g, that minimizes the total energy.
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FIG. 1. Phonon density of states for the in-plane modes of the
V3Xv 3 R 30' phase of Hz, HD, and Dz on graphite. These
calculations used the SCP approximation, the SG interaction
(C9 = 0), and the Gaussian f functions.

discussed above. The comparison between Dz and Hz is
striking, with the HD case again being between the two
extremes. The narrow DOS for Dz compared with that
of Hz is easily understandable in terms of the smaller
mass of Hz. The Hz DOS is much wider than the Dz
DOS because the zero-point motion of Hz is much larger,
causing these molecules to be affected more by their
nearest neighbors. The Dz molecule is more classical in
nature, and thus it is more localized by its interaction
with the substrate. Correspondingly, it is much less
afFected by interactions with its nearest neighbors and has
a DOS that is significantly narrower than that for Hz. In
fact, the Dz behavior approaches that of an in-plane Ein-
stein oscillator.

The phonon spectrum for Dz, calculated with the fully
self-consistent solutions for f, is characterized by a pho-
non gap mz = 36.9 K, a maximum in the phonon spec-
trum of the transverse modes at coT = 44.2 K, and a local
maximum at col = 50.3 K in the longitudinal modes.
The DOS calculated for this spectrum was found to have
peaks at both coT and coL. Table IV lists these values as
well as the corresponding values for the zeroth-order QJ.

functions. Since it is not yet possible to do a single-

crystal INS experiment for monolayer systems, the INS
data that do exist are either weighted averages of the
phonon spectrum over the Brillouin zone (for D2), or a
direct measure of the DOS (for Hz and HD). An empiri-
cal model, based on fitted coupling constants, was used to
infer the phonon spectrum and DOS from the INS data
for the Hz, HD, and Dz systems. " The empirically
derived values for the zone-center gap in the phonon
spectrum of the various admolecules agree, within a few
percent, with the theoretical values of the fully self-
consistent calculation listed in Table IV. However, the
results for the width of the DOS are clearly not as good
as those for the zone-center gap.

Examining the Dz case first, the theoretical phonon
gap is about 7% smaller than that deduced from experi-
ment and the theoretical maxima in the DOS have pho-
non energies that are about 2—5% too high. However,
the theoretical width of the DOS is about 14.8 K while
the experimentally deduced width is about 9.5 K. For
Hz, the agreement is about as good as that for Dz. While
the theoretical zone-center gap of 46.6 K is only about
1.5% too low, the theoretical width of the DOS is 42. 1

K, which is about 50% larger than the experimentally de-
rived value. The theoretical positions of the transverse
and longitudinal peaks are also too high. The disagree-
ment for HD is, as might be guessed, about the same as
that for the Dz and the Hz systems. The theoretical
zone-center gap for HD of 40.7 K is about 6% too low
and the theoretical width of the DOS has a value of 23.8
K, which is about 60% too large.

Given an admolecule's large zero-point motion in the
surface-normal direction, it would be reasonable to ques-
tion the validity of using a Gaussian for the P(z} trial
functions. Since the effective Fourier coefficients do de-
pend upon the averaging of the "bare" Fourier
coefficients over these functions, and the effective Fourier
coefficients do have a rather dramatic efFect upon the
DOS, an obvious point to examine is the validity of the
Gaussian approximation. The proper minimization of
the ground-state energy with respect to the functional
form of P(z) involves only the pseudo-one-dimensional
potential energy term given by Eq. (4.7) and the kinetic
energy associated with f(z). The exact solution of this
problem is given by the ground-state solution to the
pseudo-one-dimensional Schrodinger equation

az
2 g(z) + Uo(z) + g U&(z) exp( —z'G G~(uj u~~) } g(z) = E,D P(z),2m Bzz

GAO
(6.1}

where E,D is just the sum of E, and E,. Since the
pseudo-one-dimensional potential depends on the solu-
tions to the SCP equations through the (u~ uj~) tensor,
the solutions to Eq. (6.1) must be iterated with the SCP
equations until a self-consistent solution set is found.
This generally takes about a half-dozen iterations as per
the Gaussian case. Although the phonon modes polar-
ized in the surface-normal-direction are not explicitly in-

corporated into the SCP treatment, the use of an
Einstein-oscillator function for the z dependence of the
wave function implies that the "theoretical" mode fre-
quency is independent of wave vector and its value is
given by the excitation energy of the first excited state of
this oscillator. For the Gaussian trial function, this
means that %co~ is just four times the kinetic energy asso-
ciated with the Gaussian. For the exact g(z), A'co~ is
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determined by the energy difference between the ground-
state and first-excited-state solutions of Eq. (6.1). This
value differs slightly from that for the single molecule as
found in Sec. II.

The results using the exact f are compared to those us-
ing the Gaussian trial function in Table V. The effects
upon E, (which then affects Ez.), and upon ficus' are
significant, especially the effect upon the latter. Howev-
er, except for these two particular effects, there appears
to be little difference between using a Gaussian l((z ) rath-
er than using the exact f(z). The E, values calculated
using the exact g(z) are consistent, of course, with the
single-particle solutions shown in Table I, while there is
naturally some error introduced by calculating E, using a
trial Gaussian wave function. In general, the purely in-
plane quantities are not much affected by use of a Gauss-
ian rather than the exact P(z ), but those quantities which
are sensitive to the z dependence of the wave function are
altered substantially.

Measurements of the total kinetic energy have been
made using deep INS. The kinetic energy associated
with the Gaussian trial function (52.4 K for Dz) is gen-
erally about 25% larger than the kinetic energy associat-
ed with the exact f(z) (42.4 K for D2). Similar results
are found for the other isotopic species, indicating that
using the exact wave functions clearly makes a significant
difference here. The experimental value for the kinetic
energy of Hz in the &3X&3 R 30' phase at a tempera-
ture of about 10 K is 115+32 K, while the kinetic energy
for Hz using the SCP calculation and the exact g(z ) func-
tions is 92 K (35 K for the in-plane motion and 57 K for
the surface-normal motion). The experimental and
theoretical values are consistent, but the error bar on the
experimental value is large enough to justify some cau-
tion in comparing these values. The changes in the
theoretical values due to finite temperature and other
effects discussed below are rather small, being on the or-
der of 2-5 K.

The trend in these calculations is quite clear. The SCP
calculation using an intermolecular interaction that ig-
nores the influence of the substrate does a very good job
of deducing the values of the zone-center gap in the pho-
non spectrum, but a rather poor job of estimating the
width of the DOS. It also does a respectable (but not very
good) job of estimating the positions of the peaks in the
DOS. In an attempt to understand these discrepancies,
an investigation of some of the effects ignored in the
above calculations was carried out. In particular, the
effects of short-range correlations, the modification of the
intermolecular interaction due to the substrate, and the
effects of anisotropic terms in the hydrogen-carbon in-
teraction were examined.

B. T-matrix calculations

T-matrix calculations were carried out using the SG in-
teraction (C9 = 0) and the exact f(z). The consistency
conditions on the moments of u;~ (as well as the correla-
tion energy and the two-body potential energy) require
the calculation of real-space integrals of two-body func-
tions. These were carried out in the standard fashion us-

ing the T-matrix pair distribution function. ' The solu-
tions to Eqs. (5.9)—(5.10) were obtained using the stan-
dard multivariate Newton-Raphson method. Table VI
summarizes the results and compares these T-matrix re-
sults to those of the corresponding SCP calculations.

The effects of two-body correlations are strongest for
H2 and least for D2, as would be the obvious guess, since
the more massive admolecules have smaller zero-point
amplitudes and thus less direct contact with their neigh-
bors. Two-body correlations lower the total energy of the
system (relative to the SCP ground state) with the max-
imum effect being about 3 K and the minimum about 1

K. These effects are smaller for the commensurate ad-
sorbed phase than they would be for the incommensurate
adsorbed phase or the bulk phase. This is a result of the

TABLE V. Comparison of the Gaussian f function results vs those for the exact P functions. The
parameters listed, calculated within the SCP approximation, characterize the ground-state wave func-
tion and the phonon density of states for the &3 X W3 R 30' commensurate phases of Hi, HD, and Di
on graphite. All values are in kelvins. The first four energies are the same quantities as those in Table
III, while the other quantities are defined in Table IV.

Gaussian' Exactb Gaussian'
HD

Exact Gaussian'
D2

Exact

E,
X)72

U~

i6cor

EAco

Aco z.

i6coL

'RNl

-474.9
-21.2
-14.7

-510.8
-7.7

46.6
42. 1

64.9
83.8

285.4

-481.6
-20.8
-14.7

-517.1
-7.5

46.1

42.7
64.8
84.0

190.8

-497.3
-24.4
-24.7

-546.4
-7.9

40.7
23.8
51.6
62.0

238.3

-502.2
-24.0
-24.7

-550.9
-7.8

40.4
24.0
51.3
62.0

166.3

-510.6
-26.7
-30.0

-567.3
-8.1

36.9
14.8
44.2
50.3

209.5

-514.5
-26.4
-30.0

-570.9
-8.0

36.7
15.0
44.0
50.2

149.5

Solutions which are based upon the fully self-consistent Gaussian g that minimizes the total energy.
Solutions which are based upon the fully self-consistent exact g, that solves Eq. (6.1).
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TABLE VI. Comparison of the T-matrix approximation to the SCP approximation. These parame-
ters, calculated using the Silvera-Goldman interaction (C9 = 0) and the exact g functions, characterize
the ground-state wave function and the phonon density of states of the &3X&3 R 30' commensurate
phases of H2, HD, and D2 on graphite. All values are in kelvins. The first energy is the correlation en-

ergy defined by Eq. (5.12), and is identically zero for the SCP approximation. The next three energies
are defined by Eqs. (4.3)—(4.5), using the T-matrix effective interaction where appropriate. The total en-

ergy ET is just the sum of the first four energy terms. The others quantities are defined in Table IV.

T matrix'
Hp

SCPb T matrix'
HD

SCPb T matrix'
D2

Scpb

~Corr

E,
Exyz

E„y
E
UG

%cod

LAa)

16coT

ficol

f1COl

-3.6
-482.0
-19.2
-15.4

-520.2
-7.4

44.5
36.1

60.2
76.4

190.4

-481.6
-20.8
-14.7

-517.1
-7.5

46.1

42.7
64.8
84.0

190.8

-1.9
-502.3
-22.9
-25.4

-552.5
-7.7

39.5
20.1

48.9
57.5

166.1

-502.2
-24.0
-24.7

-550.9
-7.8

40.4
24.0
51.3
62.0

166.3

-1.2
-514.8

-25.5
-30.6

-572.1

-7.9

36.1

12.3
42.4
46.3

149.5

-514.5
-26.4
-30.0

-570.9
-8.0

36.7
15.0
44.0
50.2

149.5

Solutions which are based upon the fully self-consistent T-matrix approximation.
Solutions which are based upon the fully self-consistent SCP approximation.

substrate causing an in-plane localization of the ad-
molecules, which restricts the direct contact of these ad-
molecules with their neighbors.

The most important efFect of the two-body correlations
is to decrease the width of the DOS. This effect causes
about a 15% shift for Hz and a 18% shift for D2. There
are corresponding shifts in the other DOS parameters.
This is typical of such calculations, since the inclusion of
two-body correlations softens the effective interaction
and lowers the energy of the zone-boundary phonons.
The surface-normal mode is virtually unaffected. These
shifts in the DOS are in the right direction (closer to the
experimental values), but the discrepancies between
theory and experiment are still larger than the estimated
uncertainties of these experiments. Nevertheless, it is
clear that two-body effects are important for accurate cal-
culations of the phonon dispersion curves and they have
a significant effect on the DOS of these admolecules.

C. EfFects of the McLachlan interaction

The McLachlan interaction is essentially repulsive in
nature, and as such it can be expected to stiffen the pho-
non dynamics, thus increasing the width of the DOS. It
can be a significant enough effect, that a study of the
phonon dynamics needs to examine the importance of
this term. The usual form used for this interaction re-
quires an estimate of the effective distance of the ad-
molecule from a mathematical image surface plane, and
this differs from the plane of the surface carbon atoms. '

The uncertainty in the value of this parameter is not easy
to estimate without a first-principles calculation. Fur-
thermore, the theoretical functional form for this interac-
tion is the result of a perturbation theory calculation
which is only valid at large intermolecular separations.
This perturbation calculation predicts an inverse-cube

functional dependence for small separations where the
theory is not valid. As such, the effect of this term on the
zone-boundary modes, which are dominated by the
short-range interaction between nearest-neighbor ad-
molecules, is suspect. The efFect of this term on the total
energy of the system is on a much better theoretical foun-
dation, and these results are more reliable.

Table VII shows the results of including the
McLachlan interaction. The only significant effect on the
various energies is on the in-plane energy E„„„andthis is
due primarily to the effect of the McLachlan term on the
interadmolecule potential energy. The effects on the
DOS are very srn. a11 except for an increase in the width of
the DOS. This increase is in the 10—20% range. Howev-
er, it is not clear how reliable these increases might be for
the reasons stated above. It is most likely that these in-
creases must be considered as upper limits to the actual
effect.

The most likely overall effect of the McLachlan in-
teraction is to raise the ground-state energy of the com-
mensurate solid (decrease the binding energy}, and to in-
troduce some small increase in the DOS, although not as
large an increase as typically shown in Table VII. Never-
theless, this term does have some influence on the behav-
ior of the solid, and whether it is included or not, this
influence produces some uncertainty in the predicted be-
havior of the system.

D. ES'ects of an anisotroyic hydrogen-carbon interaction

The use of isotropic atom-carbon interactions has been
criticized for some time as predicting Fourier coeScients
for the admolecule-graphite interaction that are too
small. In some cases, the error has been estimated to be

30

as large as 40—50%. Recent calculations, using the
embedded-atom method to calculate the hydrogen-
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TABLE VII. Comparison of calculations using the SG interaction (C9 = 0) with and without the
additional McLachlan interaction. All calculations used the T-matrix approximation and the exact lt
functions. The parameters in this table are the same as those in Table VI.

Without'
H2

Withb Without'
HD

With Without'
D2

With

~corr

Exyz

E„y

UG

ANp

b,Ace

Aco T
AcoL

Acol

-3.6
-482.0
-19.2
-15.4

-520.2
-7.4

44.5
36.1

60.2
76.4

190.4

-3.2
-481.9
-19.6
-5.3

-510.0
-7.5

44.9
38.2
60.9
78.6

190.7

-1.9
-502.3

-22.9
-25.4

-552.5
-7.7

39.5
20. 1

48.9
57.5

166.1

-1.9
-502.3
-23.3
-15.4

-542.9
-7.7

39.9
22.0
49.5
59.4

166.2

-1.2
-514.8

-25.5
-30.6

-572.1

-7.9

36.1

12.3
42.4
46.3

149.5

-1.0
-514.6

-26.0
-20.6

-562.2
-8.0

36.4
14.1
43.1

49.6
149.5

' Results of the fu11y self-consistent solutions without the McLachlan interaction.
Results of the fully self-consistent solutions with the McLachlan interaction.

graphite interaction, estimated that isotropic interactions
would lead to Fourier coefficients that are too small only
by about 15%. Since the isotropic model used here re-
sults in effective Fourier coefficients in the range 7.5-8.0
K, this would imply that a more sophisticated anisotropic
model would lead to efFective Fourier coefficients in the
range 8.8-9.4 K. These are significant changes because
both the zone-center gap and the width of the DOS are
very sensitive to relatively small alterations in the Fourier
coefficients in the above range of values. While it would
be possible to reconstruct the entire admolecule-graphite
interaction using an anisotropic model as developed in
Ref. 30, it seemed more profitable at this time to adjust
the effective Fourier coefficients to obtain a better fit be-
tween the theoretical DOS parameters and the experi-
mental ones. Since an ad hoc adjustment of the effective
Fourier coefficients is inconsistent with self-consistent
solutions involving surface-normal terms, the calculation
was carried out as a purely two-dimensional one.

An increase in the effective Fourier coefficients would
cause an increase in the phonon gap and a decrease in the
width of the DOS. This would bring the theoretical

values more in line with the experimental ones. No at-
tempt was made to obtain the "best" fit in any sense.
Rather, the value of UG was increased until a reasonable

1

fit between the theoretical and experimental value for the
zone-center phonon gap was obtained. The goal was sim-

ply to see if the required adjustment of this coefficient
was reasonable in light of the results of Ref. 24, and if the
other parameters characterizing the DOS were close to
the experimental values. Table VIII shows the results of
these calculations and the corresponding experimental
values. " Figure 2 shows the theoretical DOS curves for
the three isotopic species. The agreement between the
theoretical values and the experimental results is quite
good.

It is clear that the required increases in the effective
Fourier coefficients are quite modest and within the 15%
shift discussed above. Furthermore, there is a significant
decrease in the width of the DOS and a corresponding
shift downward of the coT and coL values. The agreement
between the theoretical results and experimental results
for D2 is very good. In fact, numerical results showed

TABLE VIII. Comparison of the two-dimensional model calculation with the experimental results.
These parameters characterize the phonon density of states of the ~3X~3 R 30' commensurate
phases of H2, HD, and D2 on graphite. All values are in kelvins and the quantities listed are defined in
Table IV. The theoretical parameters were calculated using the Silvera-Goldman interaction (C9 = 0)
and the T-matrix approximation.

UG

Acorn

b Aa)

ANT

ASL

Theory

-8.0

47.3
33.8
62.0
77.3

H2
Expt. '

47.3
27.5
57.9
71.4

Theory

-8.7

43.3
17.4
51.6
59.0

HD
Expt. '

43.2
14.7
48.8
55.8

Theory

-9.0
39.9
9.9

45.3
49.0

D2
Expt. '

40.0
9.5

43.3
48.1

H.J. Lauter, in Phonons 89, edited by S. Hunklinger, W. Ludwig, and G. Weiss (World Scientific,
Hong Kong, 1990), p. 871.
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FIG. 2. Phonon density of states for the in-plane modes of the
v 3Xv 3 R 30' phase of H2, HD, and Dz on graphite. These
calculations used the T-matrix approximation, the SG interac-

tion(C9 = 0), andthemodel UG .

that any adjustment of the Fourier coefficients as large as
40—50%, as has been suggested for some other adsorbed
systems, would lead to a DOS that is incompatible with
the INS experiments. Although the agreement between
theory and experiment for the other admolecules is not as
good, it is still quite reasonable. Note that the required
effective Fourier coefficients do depend upon the ad-
molecule mass, as would be expected from the results of
the other calculations, and they exhibit the appropriate
trends as a function of this mass. Further adjustment of
the UG could have been carried out to improve the

1

overall fit to the DOS, but in the absence of detailed
knowledge of the sensitivity of DOS parameters to errors
in the experiment or subtleties in the analysis, such ad-
justments makes little sense. It is obvious that a very
reasonable increase in the effective Fourier coefficients
due to anisotropies in the admolecule-carbon interaction
could account for much of the remaining discrepancy be-
tween the theoretical and experimental parameters for
the DOS.

VII. TEMPERATURE DEPENDENCE
OF THE DENSITY OF STATES

A series of calculations were carried out to determine
the temperature dependence of both the DOS gap and its
width. Since the temperature dependence of the DOS has
been measured experimentally for each isotopic species, '

these calculations serve as a further check on the general
validity of the lattice-dynamics calculations. The finite-
temperature SCP calculations are essentially the same as
the zero-temperature calculations and only require the in-
sertion of the Bose-Einstein distribution function into the
appropriate functions. This occurs mainly in the calcula-
tion of the I;~ and in the kinetic-energy expressions.
Both SCP calculations and T-matrix calculations were
carried out at finite temperature. The T-matrix approxi-
mation was applied to the SCP theory just as in the zero-
temperature case, even though it is not clear that this is

FIG. 3. Temperature dependence of the DOS (phonon density
of states) parameters for the ~3 X/3 R 30' phase of H~, HD,
and D2 on graphite. The curves show the results of calculations
using the T-matrix approximation, the SG interaction (C9 = 0),
and the model UG . The experimental results are shown as

1

open triangles for D2, skeletal triangles for HD, and as solid tri-
angles for H2. The six experimental points for the DOS gap
(Ref. 11) are very close to the theoretical results, but the three
experimental points for the DOS width (Ref. 68) are
signi6cantly larger than the theoretical results.

completely justified. All these calculations showed the
same general tendencies.

Figure 3 shows the results of a two-dimensional calcu-
lation using the model UG values shown in Table VIII.

1

Also shown are the experimental results for the DOS gap
from Ref. 12. The lower three curves show the theoreti-
cal gap (normalized by the corresponding value at zero
temperature) as a function of the reduced temperature
(the absolute temperature divided by the experimental

melting temperature). ' The theoretical results shown
used the T-matrix approximation, the SG interaction
(C9 = 0), and the model UG . In all cases the theoretical

1

gap energy varies very little with temperature, which is
just the behavior found experimentally as can be seen
from the six experimental points shown. Even at the ex-
perimental melting temperature, the gap is within about
5%%uo of its zero-temperature value. Given that the melting
temperatures are in the range of 18—20 K, and the gap
energies are in the range of 40—47 K, perhaps this near
independence of the gap energy on temperature is not
very surprising.

It is interesting to note that when the normalized gap
is plotted against the reduced temperature, all three
curves are so close together that it almost suggests a
universal curve. However, the DOS width does not show
this behavior. The upper three curves in Fig. 3 are the
theoretical widths (normalized by the corresponding
value at zero temperature) of the three admolecules plot-
ted as a function of the reduced temperature. All three
curves show a significant increase in this width with tem-
perature, and these relative changes are substantially
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different from admolecule to admolecule. There are three

experimental points shown, two for HD and one for H2.
While there is respectable qualitative agreement between
the theoretical and experimental trends, all three experi-
mental points show a much larger increase of the DOS
width with temperature than is found theoretically. It
appears that the theoretical values for the DOS width are
too large at zero temperature, but show a srna11er in-
crease with temperature than is found experimentally.
Whether this is due to some general inadequacy in the
phonon dynamics, or is due to some simplifying assump-
tion in the general interaction model, is not at a11 clear at
this point in time.

Adsorbate Initial' Final Expt. '

H2
HD
D2

187.7
163.8
147.4

190.8
166.3
149.5

226
172.8

TABLE IX. Comparison of theoretical and experimental re-

sults for fico~ corresponding to the phonon mode polarized in the
direction perpendicular to the surface. These parameters
characterize the &3X&3 R 30' commensurate phases of H2,

HD, and D2 on graphite. The theoretical values were calculat-
ed using the SCP approximation and the exact P functions. In
this model, co, is an Einstein-oscillator mode and thus indepen-

dent of wave vector. All values are in kelvins.

VIII. DISCUSSION

These calculations demonstrate that to describe the dy-
namics of hydrogen monolayers properly, it is necessary
to deal with the three-dimensional nature of both the sub-
strate interaction and the monolayer wave function. In
particular, the effective Fourier coefficients depend upon
the mass of the admolecule due to the dependence of the
zero-point motion on this mass. Any admolecule with
substantial zero-point motion should show these effects.
The coupling between the parameters for the surface-
normal and the in-plane factors in the wave function has
a significant effect on the dynamics of these systems and
cannot be ignored. That is, commensurate quantum
solids cannot be treated as simple two-dimensional sys-
tems if accurate phonon spectra are to be calculated.

Clearly there is good, but not perfect agreement be-
tween theory and experiment for the in-plane DOS of the
&3X&3 R 30' phase of Hz, HD, and Dz. The general
agreement between theory and experiment shows that the
interaction between hydrogen molecules and the graphite
surface, as well as the interaction between the hydrogen
molecules themselves, can be described reasonably well

by the models that have been used here. However, it is
clear that two-particle correlations, anisotropic effects of
the admolecule-substrate interaction, and substrate
modification of the admolecule-admolecule interaction
cannot be entirely ignored. In particular, two-body
correlations and anisotropic modifications of the
admolecule-substrate interaction play significant roles in
determining the in-plane DOS. Much of the discrepancy
between the earlier SCP theory and experimental results
is a consequence of such effects.

The excitation energies of the surface-normal modes
are in rough agreement with the experimental values pro-
vided that the exact f functions are used. The simple
Einstein-oscillator treatment of the surface-normal modes
yields a phonon energy for the I -point mode that is
slightly higher than the excitation energy of the first ex-
cited state of the corresponding isolated admolecule. The
small shift to higher energy is the result of the effective
surface-normal potential well being dependent upon the
in-plane part of the wave function. Table IX lists the
theoretical values for each of the three isotopic species
along with the experimental values, which are somewhat
higher than the theoretical ones.

A more sophisticated treatment of the surface-normal

' Solutions which are based upon the zeroth-order exact g, that

minimizes only the E, term.
" Solutions which are based upon the fully self-consistent exact
tt, that minimizes the total energy.
' J.L. Armony, V.L.P. Frank, H.J. Lauter, and P. Leider, in
Phonons 89, edited by S. Hunklinger, W. Ludwig, and G. Weiss
(World Scienti5c, Singapore, 1990), p. 916.

modes yields mode energies that are even lower than
those found here, and predicts a width of about 35 K for
these modes. ' The differences between the two calcula-
tions are significant, and yet the simpler one seems closer
to the experimental results. Reference 10 suggested an
alternate assignment to the experimental modes as a way
to explain the discrepancy between theory and experi-
ment. This might be the case, although a simple physical
argument indicates that the surface-normal mode at the
I point would most likely have a higher, not a lower, ex-
citation energy than the isolated molecule. In particular,
the in-plane localization of the admolecule in the solid
causes it to be closer to the surface than is the case for
the isolated admolecule, thus it experiences that part of
the substrate potential well that has more curvature, and
hence it exhibits a higher energy for the surface-normal
excitation. It may be that both the model presented here
and the more sophisticated model of Ref. 10 both suffer
from the same two difficulties. First, the excited surface-
normal states are most likely more sensitive than the
ground-state properties and in-plane modes to the precise
shape of the effective surface-normal potential well, and
this shape would be affected by any anisotropic nature of
the admolecule-carbon interaction. Second, neither of
these theoretical models treats the dynamical coupling
between the substrate and the monolayer which affects
surface-normal mode much more than it does the in-

plane modes. Perhaps a full understanding of the nature
of these surface-normal modes must await the resolution
of these two issues.

The intermolecular interaction is clearly dominated by
the direct interaction of two admolecules, and the site-
site model for the interaction of each admolecule with the
graphite does produce the dominant part of the
adrnolecule-graphite interaction. The role of the
McLachlan interaction in the determination of the DOS
is somewhat uncertain, although it does have a significant
effect on the total binding energy of the solid. It may also

play an important role in the stability of the commensu-
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rate phase, since it clearly favors lower-density phases.
However, as far as the phonon modes are concerned, this
interaction and the other smaller substrate-mediated
effects would appear to be relatively minor perturbations
on the direct interactions used for this model calculation.

The critical question about the interaction model, for
the purposes of determining the DOS, is clearly the un-
known role of the anisotropic admolecule-graphite in-
teractions. These systems are borderline commensurate
phases in that small changes in the substrate Fourier
coefficients have qualitative effects upon the dynamics of
these systems. For adsorbed He on graphite, the role of
the anisotropic terms is known to be important. Howev-
er, the relevant band-structure matrix elements were
measured by appropriate selective adsorption experi-
ments, ' ' and so there is independent experimental in-
formation that can be used to determine the size of the
anisotropic terms. This additional experimental informa-
tion is lacking for the molecular hydrogen isotopic
species, which makes the calculation of these terms using
an empirical model rather difficult. Lacking such experi-
mental information, it might be possible to use the recent
theoretical calculations based upon the embedded-atom
model ' as a constraint in building an appropriate
model for use in phonon-dynamics calculations.

An important calculation to do in the future, for the
purposes of comparing theory to experiment, would be a
proper quantum treatment of the dynamic structure fac-
tor. The analysis of the experimental results used a clas-
sical approach to deduce the DOS from the INS measure-
ments. '" Because of the large zero-point motion of
quantum solids, there is at least the need to consider the
interference term between the single-phonon and two-
phonon scattering. This requires the calculation of a
phonon response function that includes the cubic-
anharmonic correction, a term which also contributes to
phonon damping. Furthermore the effects of phonon

damping on the DOS, which shifts and broadens the pho-
non energy, could be as important as the short-range
correlation effects calculated here. The direct effects of
phonon damping can be expected to lead to a further de-
crease in the zone-boundary phonon frequencies, and the
concomitant reduction in the width of the DOS, and the
interference effects would lead to an alteration of the
shape of the dynamic structure factor. While the cubic-
anharmonic damping term has been calculated for some
monolayer solids, ' ' the calculation of the interfer-
ence term has yet to be done for any of the monolayer
solids. This is certainly a fertile and important area of fu-
ture theoretical research. Once these effects are known,
it will be possible to make more critical comparisons be-
tween theory and experiment. This could make the
determination of the effective UG from the experimental

1

phonon-dynamics results a viable option. Such a com-
parison could help settle the question of just how impor-
tant the anisotropic admolecule-substrate effects are.
Clearly the DOS is a sensitive probe of the admolecule-
substrate interaction for these systems.
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