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Interfaces in the 4mm-2mm ferroelastic transformation are treated to all orders in the nonlinearity
of the Lagrangian strain tensor. The free-energy density has minimal form so that three of the six
strains vanish identically, yielding a two-dimensional (square-rectangular) problem. The reduced
form of the density contains no terms coupling the remaining strains; for free boundary conditions,
a small volume decrease in the product state results Rom the geometrical nonlinearity of the strain
tensor. An explicit procedure to obtain the displacement from the strains is given, and closed
expressions for the displacements of the parent-product and product-product solitons are found.
The extended form of the density includes a term coupling two strains, allowing a volume increase
in the product state; the numerical solution of two second-order, ordinary difFerential equations
followed by evaluation of two integrals gives the displacement. All three strains are nonzero in the
wall region. For both densities, the displacements for solitons describing wall problems satisfy the
two-dimensional wave equation (in the coordinates x& and zz); the parent-product and product-
product interfaces are parallel to the parent (110) and (110) planes, and the product-product walls
are twin boundaries.

I. INTRODUCTION

Martensitic transformations are diffusionless solid-
state transformations, usually first order, in which the
strain is the primary order parameter; more generally, the
term is used for transformations in which the strain en-
ergy dominates the morphology and the kinetics. A sub-
class of these transformations obeys the group-subgroup
relation, and can be described by Landau theory (which
expands the free-energy density in the strains and their
gradients). Examples are the cubic-tetragonal transition
(in NbsSn, VsSi, In-Tl alloys, and Fe-Pd alloys) and the
tetragonal-orthorhombic transition, but not reconstruc-
tive transformations such as the fcc-bcc transition in Fe.
The strain can play a major role also in transformations
where it is the secondary order parameter; examples oc-
cur in displacive transitions (the cubic-tetragonal transi-
tion in BaTiOs) and in some order-disorder transitions
(the tetragonal-orthorhombic transition in the celebrated
92-K superconductor YBazCusOq s, but not the transi-
tion in P-brass). The results of pure strain theories such
as those presented in Refs. 1 and 2 may find application
in the theory of these transformations.

This article treats wall problems, the simplest inho-
mogeneities, in the theory of the 4mm-2mm ferroelas-
tic transformation, to all orders in the nonlinear term
in the strain tensor; the results apply strictly only to
the square-rectangular transformation, but should be
qualitatively correct for the tetragonal-orthorhombic (T
0) case as well, and the latter terminology is adopted
below. Unlike walls in incommensurate systems, the
parent-product (here T 0) and product-pr-oduct (here
0-0') walls have positive energy; they are forced into
the system by boundary conditions (to minimize macro-
scopic displacements), or occur due to multiple nucle-

ation events. The results may be useful for wall problems
in the cubic-tetragonal transformation, which is more im-
portant, but much more difficult.

Section II reviews finite-strain theory (a convenient
reference is the book by Brillouins) for the particular
case of the tetragonal-orthorhombic (T 0) transfo-rma-
tion. Section III obtains relations between the displace-
ment and the strains, and suggests that the strains are
simple if the components of the displacement satisfy the
two-dimensional wave equation in the coordinates xq and
z2. Section IV considers the free-energy density, which
has minimal form, with only three strains eq, e2, and es.
The homogeneous part is standard except that it con-
tains the coupling term Eeqez, the nonlinear term in the
strain tensor is essential if this term is included. The
strain-gradient part is obtained to all orders in the non-
linearity of the strain tensor. Sections V and VI consider
wall problems, with free boundary conditions; the strains
are expected to be functions of a single coordinate, per-
mitting analytical or simple numerical solutions. Section
V considers the reduced version of the density (without
the coupling term). Both homogeneous and inhomoge-
neous situations are described in terms of a single strain
e2, the strains eq and es vanishing identically; an ex-
plicit procedure is given to find the displacement from
e2. Closed expressions for the displacements of T-0 and
0-0' solitons are found; the asymptotic forms of the in-

homogeneous solutions are interpreted in terms of rotated
homogeneous solutions. The dilatation is nonzero except
for infinitesimal strains, and the volume decreases on go-
ing to the orthorhombic phase. Section VI considers the
term coupling eq and eq (which can explain a volume in-

crease), for both homogeneous and inhomogeneous (wall)
problems. The latter cannot be solved analytically, but
the displacement can be found by integration of the so-
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lutions of two ordinary difFerential equations; all three
strains are nonvanishing in the wall region (which has
monoclinic structure), even when the density contains
no terms coupling es to other strains. For both densities,
both T-0 and O-O' walls are parallel to the tetrago-
nal (110) and (110) planes, and the O-O' walls are twin
boundaries, as in Ref. 2.

II. FINITE-STRAIN THEORY

The tetragonal state, with all strains zero, is the refer-
ence state for the tetragonal-orthorhombic (T-0) trans-
formation. In the Lagrangian description, the compo-
nents of the strain tensor g are

the deformed state is monoclinic, not orthorhombic. Ex-
plicitly, the vectors (1,0) and (0, 1) in the undeformed
state transform to (1 + ui, i, u2, 1) and (u1,2, 1 + u2, 2),
which are orthogonal if es = 0.

ei, e2, snd es are usually called the dilatational, devia-
toric, and shear strains, respectively, but these terms are
misleading, and avoided in the following. el is not the
true dilatational strain, except for infinitesimal strains;
for example, the displacement u = (5 —1)(zi, —X2/5)
conserves the volume, but gives nonzero el. The true
dilatationsl strain, which vanishes if the volume is con-
served, is ep = b —1, where (in two dimensions) the
local ratio 6(zi, Z2) of the final to initial volumes is the
Jscobisn of the transformation z; ~ z; + u;:

1
ll;~ = -(u;,~ + u~,; + uq, ~uA„~), (2.1)

~ —(1 + ul, l)(1 + u2, 2) u1,2u2, 1 (2.4a)

another useful form expresses b, in terms of the strainss

u; is the ith component of the displacement vector rela-
tive to the undeformed state, u; z

——B~u;, and repeated
indices are summed from 1 to 2. The square of distance
between two nearby points is ds2 = (dz, )2 in the unde-
formed state, and d82 = (dz; + du, )2 in the deformed
state; the two are related by dS2 —ds = 2ll;i dz; dzi.
The free-energy density describing the transformation is
an expansion in the components of rj and their deriva-
tives. Although the strains are usually small (less than a
few %), the nonlinear term in Eq. (2.1) is important. If an
arbitrarily deformed state with displacement 6 = (ui, u2)
is rotated by an angle 8, then the new displacement (rel-
ative to the fixed space axes) has components

ul(zl~ Z2) = —Zl+C[zl+ul(zli 2Z)] +S[ 2Z+2u( lZ) Z2)] ~

(2.2a)

u2(zii Z2) = —Z2 —S[zl+ul(zl~ Z2)]+C[Z2+u2(zl) Z2)],

(2.2b)

where c = cos 8 and s = sin 8. The tensor ll;~ obtained
from the displacement u is identical to the tensor rI;i
obtained from the displacement u, and the free energy
is unchanged. Equations (2.2) are useful in interpreting
solutions for inhomogeneous strains.

For the free-energy density of Sec. IV, the problem is
two dimensional; the parent phase has 4mm (tetragonal)
symmetry, with the three-axis the fourfold axis, and the
1-3 and 2-3 planes the mirror planes. Then the compo-
nent us is identically zero and the other components are
independent of zs,'the appropriate combinations are the
strains

6 = [(1+v 2ei) 2e2 4es] (2.4b)

III. DISPLACEMENT AND STRAINS

This section shows that the strains ei and es are sim-
ply related if the components of the displacement satisfy
the two-dimensional wave equation. These strains are
secondary to the T-0 transformation which is driven by
an instability to nonzero e2, as discussed in Sec. IV; in
the absence of terms coupling e2 to the other strains,
one expects the minimum-energy solutions to have both
ei = 0 snd es ——0, since the instability is in the e2 part
of the free energy, not in the ei or es parts. This section
is related to Sec. IV as kinematics to dynamics.

It is always possible to obtain the displacement for
arbitrary homogeneous strains, but not for arbitrary in-
homogeneous strains. For example, even if the equations
of motion allow solutions with ei = 0 and es ——0, such
solutions in inhomogeneous situations are allowed only
for special orientations of the walls, as discussed in Ref's.
1 and 2. Some guesswork is required to find forms for the
strains which both can be obtained from a displacement
and also minimize the free energy.

The basic results are obtained after obvious manipula
tions of Eqs. (2.1) and (2.3):

u2, 11 u2, 22 + uk, 2(uk, ll uk, 22) = ~2e1,2 + 2es, l

ul, ll u1,22 + uk, l(uk, ll uk, 22) v 2ei, l 2e6,2

(3.1a)

.i = (n»+ n22)/~2,

e2 = (@11—g22)/v 2, (2.3b)

(3.1b)

If the u, (i = 1,2) satisfy the wave equation u; 11—u; 22 =
0, that is, if

~6 = giZ

u'(xl x2) = U'(xl + x2) + V'(xl X2)

then

(3 2)

the other three strains vanishing identically. The or-
thorhombic (0) state has two variants, e2 ——+e2p. If
the strains are homogeneous, e6 must vanish; otherwise

ei 1 = V2es 2 and e1,2 = ~2es 1., (3.3)

the full "geometrical" nonlinearity (that of the strain ten-
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sor) has been retained in deriving these results. Then
both el and es satisfy the wave equation. Such solutions
are appropriate for wall problems, with strains transla-
tionally invariant in the tetragonal [110] or [110] direc-
tions; but e2 is also translationally invariant only if con-
straints are imposed on the functions U, and V, , which are
further constrained by the "physical" nonlinearity [see,
for example, Eq. (5.lc) below].

Section VI discusses the general case of Eqs. (3.3). The
important special case el = 0 and es = 0 is the basis of
other work, l'2 4 6 and is discussed in Sec. V; the relations
U,'+U2+(U,')2+(U2) = 0 and Vj' —V'+(V,') +(V')
0 are easily derived. The importance of functions of
zl 6 x2 was recognized by Barsch and Krumhansl, l who
found the product-product soliton of the cubic-tetragonal
transformation at a single temperature; the strains el and
es vanish for walls parallel to the cubic (110)planes. The
T-0 (more properly the square-rectangular) transforma-

tion was studied by Jacobs, 2 who found the strains e2
(at all temperatures) for the T-0 and 0-0' solitons; el
and es vanish if the walls are parallel to the tetragonal
(110) and (110)planes. Further developments were made
by Barsch and Krumhansl, 4 Ericksen, and Kartha et at.
References 2 and 5 considered the full strain tensor, while
the others linearized it. The development leading to Eq.
(3.2) is an independent and further contribution. The
one-dimensional case has only one strain, and so similar
considerations did not enter perhaps the earliest appli-
cation of Landau theory to wall problems in martensitic
transformations. ~

IV. FREE ENERCY'

Sections V and VI describe the T-0 transformation in
terms of the free-energy density

1 2 1 4 1 6 1
& = -Alei+ -A2e2+ B2e-2+ -C262+ -Ases+Eele2+ @(e~,,), (4.1a)

@(e,') = -dl(el, l+ 61,2) + 2d2(62, 1+ 62,2)+ 2ds(es, i+ 66,2)
1 2 2 1 2 2 1 2 2

+d4(el, le2, 1 61,262,2) + d5(61,166,2 + 61,266, 1) + ds(62, 166,2 62,266, 1) ~ (4.1b)

In Eq. (4.1a), the terms in el, e2, and es are the usual
contributions for a linear, homogeneous, elastic medium;

Al and As are positive, while A2 vanishes at a temper-
ature Ts and is negative below. All coefficients but A2,
including those in 4', are assumed independent of tem-
perature. The term in e2 (with C2 ) 0 for stability) is

necessary if B2 is negative (first-order transition). The
strain-gradient part @ of Eq. (4.lb) gives the contribu-
tion from inhomogeneous strains; this expression (quoted
in Ref. 4) is derived and discussed in the Appendix.

Equation (4.1) is minimal in that it omits many terms
allowed by symmetry; only essential terms are retained.
Particularly troublesome are terms which couple e2 to
other strains, and which can induce these parasitic strains
in the presence of nonvanishing e2. Equation (4.1) in-

cludes only one coupling term, Eele2, plus coupling
terms in 4. Other coupling terms (which may be numer-

ically important, and would be considered in a full solu-

tion) are omitted, first because they might destroy the
two-dimensional character, and second because strains
other than e2 can develop for other reasons (for exam-

ple, boundary conditions). The more tractable "reduced"

density, without the term Eele2, is considered in Sec. V;

~+ = olSl + ~2S2 + Hl«1 + H2~62 + H6~66

where the functionals Hl, H2, and Hs are

(4.2)

Hl = Alei d17 ei d462, 11+d462, 22 2d566, 12+E62

(4.3a)

H2 ——A262+ B2e2+ C262 —d2V 62 —d4el il
+d4e1,22 + 2Eei e2, (4.3b)

Hs = Ases —d3V 66 2d561, 12 . (4.3c)

The terms 01S1 and 82S2 are surface terms and do not

appear below; for completeness,

but it cannot explain a volume increase in the orthorhom-
bic state. Section VI considers the full ("extended") den-

sity which allows a volume increase Am. ore general
treatment would include also terms coupling the strains

el, e2, and es to the other three strains, and therefore the
results obtained below apply strictly only to the square-
rectangular transformation.

The first variation in the density of Eq. (4.1) is

Si = (dlei, i + d462, 1+d566,2)«1+ (d262, 1+ d416, 1 +d666, 2)&62+ (d366, 1+d561,2 —d662, 2)«6,

S2 (dle1, 2 d4&2, 2 + d5&6, 1)«1 + (d2&2, 2 d4&1,2 d6~6, 1)«2 + (d3~6, 2 + d5&1,1 + ds&2, 1)~&6

The condition that the free energy be stationary with respect to variations in the u, yields the equations of motion as
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B1[(H1 + H2) (1 + u1,1) + Hsu1, 2/~2] + B2[(H1 —H2) u1,2 + Hs(1 + u1 1)/~2] = 0 )

B1[(H1 + H2) u2, 1 + Hs(1 + u2 2)/0 2] + B2[(H1 —H2) (1 + u2, 2) + Hsu2, 1jV 2] = 0 .
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(4.4a)

(4.4b)

These coupled, fourth-order, partial difFerential equa-
tions for the components u; retain the full geometrical
and physical nonlinearities, and are valid for any den-

sity with variation of the form (4.2). But their solution
is a formidable problem in general. Sections V and VI
develop analytical techniques for wall problems, but the
solutions are not proved to be global minima of the en-

ergy. The geometrically linearized versions of Eqs. (4.4)
are much simpler, but still difficult to solve:

Hl, l + H2, 1 + H6, 2/~2 (4.5a)

H1, 2 —H2 2 + Hs 1/~2 = 0 . (4.5t )

V. DISPLACEMENTS FOR THE REDUCED
DENSITY

A. Basic equations

Trial solutions of Eqs. (4.4) are H1 ——0, H2 = 0, and

Hs = 0; in turn, trial solutions of these are (recall that

E =0)

ey ——0, (5.1a)

(5.1b)

Using the reduced density of Sec. IV (without the term

Ee1e2), this section obtains closed expressions for the
parent-product and product-product solitons, to all or-
ders in the nonlinear term in the strain tensor. Expres-
sions for the components u, , consistent with e1 = 0 and

es = 0, are given in Sec. V A. The homogeneous solution
is obtained in Sec. VB, and inhomogeneous solutions in
Secs. VC—VF. The true dilatational strain eo does not
vanish for these solutions, and the volume decreases in

the orthorhombic phase, as seen from Eq. (2.4b).

Equation (5.1b) is satisfied if e2 is a function of x1 6 x2
(or is independent of x1 and x2). Equations (5.1) are
identical to Eqs. (10)—(12) of Ref. 2, which omitted the
terms involving d4, ds, and ds in Eq. (4.1b); these terms
are necessary both in principle and in practice, for they
enter the determination of the coefficients d; from phonon
dispersion curves. 4 The above shows, however, that they
have no consequences for solutions with e1 ——0 and es =
0, and all results of Ref. 2 are unchanged.

A procedure follows to obtain the components u1 and
u2. These are assumed to be functions of x1 6 x2
alone, corresponding to a particular setting of the de-
formed structure relative to the fixed space axes; then
e1 = +y 2es, and both vanish if one does. As suggested
by the results of Ref. 2, the components are written as

&1(xl ~ x2) = fl (x1 + x2) f2(xl + x2) ~

&2(xl) x2) = %f1(xl + x2) W f2(xl + x2)~

(5.2a)

(5.2b)

where f1 and f2 represent the linear and higher-order
terms, respectively. Forms satisfying all requirements are

Xg+X2

f1(x1 + x2) = dX e2(X)/v 2, (5.3)

X$ +X2

f2(x1 + x2) = dX [1 —h(X)]/2 ) (5.4)

where h(X) = [1 —2e22(X)]1~2; the lower limits of the
integrals are taken to be zero, except for T-0 solitons.
Equations (5.2)—(5.4) extend the fourth-order results of
Ref. 2 to all orders in the homogeneous strain e2|1, con-
sistent with e1 ——0 and es = 0. The only requirements
are that the strain e2 be a function of x1 6 x2, and that
~e2~ & 1/v 2; the explicit form of the free-energy density
affects only details of the function e2.

Equations (5.2)—(5.4) can also be obtained by following

the procedure of Ericksen. s With ~2e2 = sinn (to avoid

a sign problem), one finds that n has the form

~2e2 + B2e2 + C2e2 d2+ e2 = 0 (5.1c) n(x1) x2) n+(x1 + x2) + n —(x1 x2) i (5.5a)

(5.1d)

a solution for the components u, in terms of the functions

e+ and a is

&1+&2 &1 22

&1 = —x1+ (s1/~2) sinn+(X) dX+ cos n (X) dX (5.5b)

1+&2 X1 X2

u2 x2 + (s2/V~) cosn+(X) dX+ sin n (X) dX (5.5c)
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where s& and sz are independently +1. The special cases
n = m./2 and a+ ——0, rotated by m/4, reproduce Eqs.
(5.2)—(5.4). Obviously ui and u2 satisfy the wave equa-
tion.

If the lower limits of the integrals in Eqs. (5.3) and
(5.4) are zero, then fi and f2 are, respectively, even and
odd functions of their arguments; for X = xi + x2,

ul ( x2 zl) — u2(zl x2)

u2( z2& xl) ul(xl& z2)

(5.6)

and the 0-0' walls X = 0 are twin boundaries, as in Ref.
2. This is a general result, independent of the details of
the free-energy density; it is not sufficien that the u, be
functions of xi 6 z2 —the signs in Eqs. (5.2) and the
evenness or oddness are crucial.

B. Homogeneous strains

The strains are eq = 0, ez ——kezp, and es = 0, where
e2p is the larger positive solution of Ay+ Bze&p+Czezp =
0; the true dilatational strain is ep = 6p —1, where
h, p = (1 —2ez2o)ii ( 1. If the orthorhombic axes are
parallel to the fixed space axes, the components of u are

Gi = (1+v 2e2) —1 zi, u2 = (1—~2e2) i —1 xq,

(5.7)

representing an expansion in the one-direction and a con-
traction in the two-direction, or vice versa. But a direct
transition between the two variants e2 = kezp involves
prohibitively large energies, since both dilatational and
shear strains are generated. Rather, the 0-0' walls dis-
cussed below connect two oppositely rotated variants, as
shown in Figs. 1 and 2 of Ref. 2, and described by Eqs.
(5.9) below.

The components for other settings of the orthorhom-
bic axes relative to the fixed space axes are obtained by
rotating the above solution; from Eqs. (2.2), the choice

c = (1+v2eg)'i2+ (1 —v2e2)'i /2 (5.8)

gives components which are functions of X = xi + x2.

u1 (e2 + eo/V 2)X/+2, u2 = p(e2 —eo/V 2)X/v 2

(5.O)

This displacement represents a shear in the tetragonal
[110] or [110] directions (explicitly, with vanishing com-
ponent in the orthogonal direction); this remarkable re-
sult (another reason for avoiding the terms dilatational,
deviatoric, and shear) is due to the special form of the
displacement when both ei and es vanish. It is this
property which allows the analytical solution of the form
u, (xg + zg).

C. Second-order transition; O-O' soliton

For a second-order tetragonal-orthorhombic (T 0)-
transition, the coefficient Bz is greater than zero, and
Cq can be taken to be zero. The T solution eq = 0 min-
imizes the energy for Aq ) 0. The transition occurs at
Aq = 0. For Az ( 0, the minimum in the free energy
is at ez = +ego. There is no parent-product (T-0) soli-
ton because the T solution is a local maximum of the
free-energy density below the transition.

The strain of the soliton connecting the two or-
thorhombic variants 0 and 0' with ez = esp and eq =
—esp is eg(X) = e2p tanh(zX/~2), where X = zq + z2,
ezp = ( A2/Bz) i,—and z = (—Az/2d2) i; this form
is familiar from the mean-field theory of many problems
(e.g. , the domain wall in an Ising ferromagnet). The com-
ponents of u are given by Eqs. (5.2) from the functions

fi and f2

fi(X) = (e2o/r) 1n cosh(rX/v 2), (5.10a)

X 1
f2(X) = ——

i v 2ezp arcsin v 2e2(X) + Dp arcsinh Ap sinh(rX/v 2)
rv2 i (5.10b)

These solutions can be rotated to produce trivially different solutions. Reference 2 gives expansions and figures of
deformed regions for these results and also those of Secs. VE and VF below.

In the asymptotic region iXi —+ oo, the functions fi and fz are

fg (X) = e2p i

Xi�/y

2 —(e2p/K) ln 2,

fq(X) = (1 —Ap) X/2 —{{eqp/r) arcsin(~2eqp) + [Ap/(v 2r)] ln Ap)sgn(X),

(5.11a)

(5.11b)

plus exponentially small terms. To fix ideas, let X =
x& + x2. Equations (5.11) are reproduced by the follow-

ing sequences of operations. In the region X —+ oo, the
tetragonal state is first deformed as described by Eqs.

(5.7) with eq = e2p & 0, then rotated clockwise by the
~~gl~ i8i from Eq. (5.8), and finally translated by the

vector a+ b, where

a = —(eqo/r) ln 2 (1, —1), (5.12a)

b = {(ezp/K) arcsin(V 2egp) + [Ap/(v 2K)] ln kp) (1,1) .

(5.12b)
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In the region X ~ —oo, the tetragonal state is first de-
formed as described by Eq. (5.7) with es = —esp, then
rotated counterclockwise by the angle ]ei from Eq. (5.8).
and finally translated by the vector a —b. The asymp-
totic solutions in Secs. VE and VF below can also be
discussed in terms of rotations.

D. Second-order transition; chain of O-O' solitons

The solution of Eq. (5.lc) for a chain of 0-0' solitons is
well known from the mean-field theory of inhomogeneous
systems:

e2(X) = e20 [2m/(1 + m)] i sn(uim) . (5.13)

Here and in the following, the notation of Ref. 8 is used
for elliptic integrals (K, E, and II) and Jacobian el-
liptic functions (sn, dn, . . .). The ar ment above is
u = )AX/gl + m, with s; = (—As/2dq) s, the parameter
is m, and the spatial period in u is 4K(m); the previous
subsection considers the degenerate case m = 1. The
functions fi and f2 are

fi(X) = (eio/z) ln([dn(uim) —A' cn(u]m)]/(1 —k)},
(5.14a)

f2(X) = esp [u —E(uim)]/(z2)jl + m) + 0(ezp)

(5.14b)

where k = ~m is the modulus; the function f2 cannot
be obtained in closed form.

E. First-order transition; T-0 soliton

eg(X) = eso/(1 + e ~" )' (5.15)

where i(; = [382/(16Csd2)] /; Eq. (5.15), which occurs
also in one-dimensional problems, r P couples the T parent
(e2 = 0, X h —oo) to one of the 0 products (e2 = e2p,
X h oo). The functions fi and f2 are

For a first-order tetragonal-orthorhombic (T-0) tran-
sition Bs & 0 and C2 & 0 (for stability). Depending
on the parameter A2, there are several possibilities. (a)
A~ & 82/4C~. the T state is stable; there is no 0 state.
(b) Bz/4' & Aq & 38'/16C2. the T state is stable; the
0 state is metastable. (c) As = 38'~/16'. the T and
0 states have the same energy. (d) 38'/16' & A~ & 0:
the T state is metastable; the 0 state is stable. (e)
0 & Aq. there is no T state; the 0 state is stable. The
two-strain in the 0 regions (in the range As & Bz/4'
where the 0 state exists) is e2 = +esp, where esp =
[(—82/2+ p)/Cs] i, with p = (Bs/4 —AiCg) i .

The T-0 soliton strictly exists only at the transition
temperature (defined by As = 3822/16C2). The strain
1s

fi(X) = (e~o/~) ln(v'1+ u) + ~u), (5.16a)

1 Ql + hou) + y 1 + u) Ql + b,ou) + Ap y 1 + io
fq X = ln

2
p ln 1+ho ) (5.16b)

where u) = exp(v 2/rX), and the constants of integration have been chosen so that ui and u2 vanish deep inside T
material (X -+ —oo, u/ —h 0).

F. First-order transition; O-O' soliton

The two-strain of the 0-0' soliton is2

ez(X) = esp sinh(/(, 'X/22/2)/[cosh (e'X/+2) + o,]
/' (5.17)

this form occurs also in one-dimensional problems. 7 p io Here @' and o( are defined by z' = e2p(p/d2)i/'2 and a =
(—Bs + 2p)/(82 + 4p), with p = (82 /4 —AsC2) i . Equation (5.17) is valid in the range As & 382/16Cs where the
0 state has lower energy than the T state; the parameter o. diverges as Aq approaches 38&2/16' from below, and
the 0-0' soliton splits into two T Osolitons. s The -functions fi and fq are

ssc cosh(r'X /v 2) + (cosh ( X vs2) /+ o) '/

)K 1+pl+a (5.18a)

f (X)
X 1 ~ g 11(~ ] )

Ap dn(uim) + pisc(uim)
2 ~ ~2 ' ' 2 dn(uim) —pisc(u]m)

(5.18b)
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where N = o,j(n+ 1), m = a/(a+ 2e2o), & = (~+
1)/(o. + 2ez2o), pi ——[(n —1)(1 —N)] ~, and sn(u~m) =

i~ztanh(z'X/v2). A simpler expression is available
in terms of II(n; u~m), but n ) 1 (hyperbolic case); see
Ref. 8, Eq. (17.7.8).

v2ez = (a —d) + (1+2a)Ui —(1+2d)U2,

+2es = v 2ei —2(a+ d+ a + d );

(6.3b)

(6.3c)

es is a linear function of ei, as in Eqs. (3.3). If a and d
are related by

a+ d+ a + d = eip/V2, (6 4)VI. DISPLACEMENTS FOR
THE EXTENDED DENSITY

ui(xi z2) a(zi + x2) + Ul(zl + x2)

uz(zi& x2) = Wd(xl W x2) + Uz(xl + x2)

(6.2a)

(6.2b)

consistent with Eq. (3.2). In terms of the unknown pa-
rameters a and d and the unknown functions Ui and Uz,
the strains are given by

v 2ei ——(a+ d + a + d ) + Ui + U2 + (Ui) + (Uz)

(6.3a)
I

This section considers the fr~energy density of Eq
(4.1), including the coupling term Eeiez, it is essential
here to include the nonlinear term in the strain tensor,
since ei = O(ez). Wall problems are reduced to the solu-
tion of two second-order, ordinary difFerential equations
for the strains, followed by the evaluation of integrals to
find the displacement.

For homogeneous strains, the free energy is stationary
if ei = eip(= —Ee2p/Ai), e2 = +e2p, and es ——0, where
e2o is found from Az + (B2 —2E /Ai)ezo + Czezp = 0.
For orthorhombic axes parallel to the space axes, the
components are

ui —[(S+V2ezp) 1]zl u2 —[(S+v 2e2p) 1]z2

(6.1)

where S = 1+ v 2eip. The ratio of final to initial vol-
ume»»o = (S' —2ezp) ~; the volume increases in
the orthorhombic state if E ( —Ai/v 2, for small ~ez~.
Most experimental results are for cubic-tetragonal sys-
tems: VsSi (Ref. 11) and NbsSn (Ref. 12) have small
strains ( 10 s and 2 x 10 s), and experiments de-
tect no volume change; the strain is larger ( 0.02) for
In7sTlzi (Ref. 13), but the change in volume is "very
small"; for MnssNisCs (Ref. 14), the volume increases in
the tetragonal state, by about 3 parts in 10s (compara-
ble to the strains themselves), presumably because of a
large coefficient for the term ei(ez + es) —the strains
are defined in Ref. l.

For inhomogeneous strains, the components are as-
sumed to have the form

then es g 0 only in the wall region (where the structure
is monoclinic). The components are then given by Eqs.
(6.2), with

Ui(X) = S '[ (d —eio/V2)X+ (1+2a)fi(X)
—(1+2d) f2(X)], (6.5a)

U (X) = S [ (a —eip/V2)X —(1+2d) fi(X)
—(1+2a) fz(X)], (6.5b)

where X = xi 6 xz, fi and fz are given by Eqs. (5.3)
s,nd (5.4), but here

b, (X) = [1 —2eip —2ez(X) + 2v2Sei(X)]

(6.6)

These results reduce to those of Sec. V for E = 0 (and
zero eip, a, and d).

Equations (6.2) plus (6.5) for homogeneous strains are
of course rotated versions of Eqs. (6.1). To fix ideas, let

ez = e2p, and take X = xi +zz, then fi(X) = ezoX/v 2,
fz(X) = (1—Ap)X/2, and application of Eqs. (2.2)—(6.1)
gives

1+2a = cos8g+ —sin8g, 1+2d = cos8g +sin8g+,

(6.7)

with g~ = (S 6 V2e2p)i~z; Eqs. (6.7) determine the pa-
rameters a and d in terms of the arbitrary rotation an-

gle 8. For the O-O' wall, with ez(X ~ koo) = +ezp,
the leading term in fi is instead esp]X[/v 2 Rom Eqs
(6.7), the rotation angles have the same magnitude in

the two asymptotic regions for d = a = (~S —1)/2,
with 8 found from V S cos 8 = (g+ + g )/2; this reduces
to Eq. (5.8) when E = 0. The discussion at the end
of Sec. VC applies (except that the translation vectors
a and b are not determined here). Also, Eqs. (5.5) are
satisfied (for X = zi + zz and d = a), and the O-O'
walls are twin boundaries. Solutions for d j a corre-
spond merely to rotations of the structure with d = a;
explicitly, rotation of the latter by the angle 8 found from
cos 8 = (1+a + d)/Si~z gives Eqs. (6.2) and (6.5).

It remains to determine the strains ei and e2. The
variation of the density is

bE = [(1+ ui i)(Hi + Hz + Hs/v 2) + ui z (Hi —H2 + Hs/V 2)] b Ui/~2

+[(1+ uz 2) (Hi —Hz 6 Hs/~2) + uz i (Hl + H2 + Hs/V 2)] 6U2/V 2

+[(1+2a)ba+ (1+2d)bd] (Hi/V2 ~ Hs/2)

+[(1+2Ui)ba —(1+2U2)bd] Hz/v2 . (6.8)
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O. I I
I Note that the inhomogeneity in e2 generates nonzero es,

even when the only term coupling es to the other strains
[the ds term in Eq. (4.1b)j is omitted.

Equations (6.9) are easily solved numerically; but the
coefficients A1, etc. , are unknown, and comparison with
experiment is not possible. Figure 1 plots the strains e1
and e2, and Fig. 2 shows two deformed regions, both for
an O-O' wall. Unrealistic parameter values are used, for
display purposes: Ai = 1, A2 = 0, As = 1, B2 ———40,
C2 ——750, di + ds/2 + +2ds ——1, d2 = 1, and E = 0 or

20

0.2

O. I
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FIG. 1. Strains ei (dashed line) and e2 (solid line) as func-
tions of X = zq 6 x2 near the center of an O-O' wall. The
parameter E is —2; other parameter values are given in the
text.

APPENDIX: STRAIN-GRADIENT ENERGY

This appendix derives and discusses the expression of
Eq. (4.1b) for the strain-gradient contribution @ to the
free-energy density. The strains are assumed to vary
slowly over atomic distances, and only the lowest-order
invariants are retained. The six forms )l;) srIi~ „+
which are invariant under rotation by )r/2 about the
three-axis and under reflection in the 2-3 plane are

—(2di+ds+2v 2ds)el+Aiei+Ee2 —Ae(eio —ei)/2 = 0,
(6.9a)

Il = (r111,1) + ()l22,2) ) I2 = ()F11,2) + ()l22, 1)—2d2e2 + A2e2 + B2e2 + C2e2 + 2Eeie2 = 0 . (6.9b)

I3 = (1)12,1) + (i712,2) ~ I4 = )ill, li722)1 + )F11,2922, 2 )
2 2

I I

E=-2(0) . .

I

E=O
0

~ ~

0 I P
~ I ~ ~0

~ ~

0
~ ~ ~ ~

~ ~

~ ~6-
0

I6 = g11,2g12, 1

+$12)2 /22) 1 ~

I5 = f11,1/12, 2 + f12,1/22, 2
~ ~

0 ~P
~ ~ ~ ~

04-
Then @ is the linear combination 4 = pi 1 ni Ii . A
little algebra yields Eq. (4.1b), in which the coefficients
d, are the following combinations of the n;:

0
\

~ ~ ~

~ ~ ~ I

I
0

I

~ ~ \

00-
Xg "2 = ni+n2 —n4 ~di = ni+n2+n4,

(A2)d4 = ni —n2,ds = 2ns,-4-

ds = (ns + ns)/y 2, ds = (ns —ns)/i/2 .-6-
Equation (4.1b), which retains the full nonlinearity of the
strain tensor, is identical to Eq. (2.18) of Ref. 4 (which
considered only the linearized tensor).

But Eq. (4.1b) contains redundant terms, because 4'
is a density, and there exist two relations involving the
invariants II,. The first relation,

-8-

I I I

-4 -2 0 2
I

2
I

-2
I

4
I

4
I

0 6
XI XI

FIG. 2. Deformed regions, for E = 0 and E = —2; other
parameter values are given in the text. The undeformed re-
gion wae the rectangle )xi

~

& 3, (x2~ & 7. The shear strain es
vanishes in part (a), and also asymptotically in part (b), but
is nonzero in the waH region for the latter.

Is = Is+~1(i711,2'912+'912,2r122) ~2(gll, lrI12+)l12, 1/22) ~

(AS)

is an identity to all orders in the geometrical nonlinear-

The third of the four square brackets vanishes because of
Eq. (6.4), and E is stationary if Hi + Hs/+2 = 0 and
H2 = 0. For the extended density, ei and e2 satisfy the
coupled, ordinary differential equations
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ity. Therefore the free energy depends only on the sum
os + ns, not on the difference, and terms involving ds
are absent in Eqs. (4.3) for the functionals H; appearing
in the equations of motion, Eqs. (4.4). Explicitly, the
last (ds) term in Eq. (4.1b) is a surface term and can be
discarded:

62 les 2 62,2es, l —02(~2,166) ~1(~2,2~6)
= &i(62~6,2) ~2(&2&6,1) (A4)

Further reduction of Eq. (4.1b) is possible in the ap-
proximation (almost certainly valid in practical cases) of
a linearized strain tensor; the second relation is

5 2 4 ~1['911(u1,22 + &k, 1&k,22) 'f22(&2, 12 + uk, 2+k, 12)]

+~2[122(u2, 11 + uk, 2&k, ll) 911(&1,12 + uk, luk, 12)] + A~el(&k 12 &k, ii&k, 22) (A5)

the first two terms on the right-hand side are surface terms, and the last is of third order in derivatives of the u, .
Correspondingly, the term in Eq. (4.lb) involving ds is

el, le6, 2 + e1,266, 1 —(&1,1 + e1,2)/~2 (&l, le2, 1 ~1,2&2,2)/~2+ ~1(&k,12 &k, lj&k, 22)
2

+~1 [el (rl12, 2 922, 1)] + ~2 [el(rl12, 1 011,2)] (A6)

in this identity, the first two terms are proportional to the first and fourth terms in Eq. (4.1b), the third is of third
order, and the last two are surface terms. Then the geometrically linearized theory contains only four strain-gradient
coefficients. With the help of Eq. (A6), Eq. (4.1b) can be rewritten in several forms, one of which is (with surface
and third-order terms discarded)

@(ea,i) 2di(ei, i + 61,2) + 2d2(e2, 1 + e2,2) + 2ds(es, i + e6,2) + d4(el, le2, 1 e1,262, 2)
i' 2 2 2 2 2

(A7)

In this expression, and also in the equations of motion [Eqs. (4.5)], ds is absent (as mentioned above), and di, d4, and

ds appear only in the combinations di ——di + v 2ds and d4 ——d4 —ds/v 2. Reference 4 also found four strain-gradient
coefficients; a difference is that no relations between the coefficients d, are obtained here.
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