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The elastic constants of fcc palladium are calculated as a function of temperature for four different
embedded-atom-method (EAM) models and compared to experimental values. Two of these EAM mod-
els have been derived by other workers whereas two of the models are new. Because of the elastic anom-

aly near 120 K, in the shear constant C44 of Pd, the use of this zero-temperature elastic constant to
determine the Pd EAM potential leads to errors in the calculated C44 above the Debye temperature of
280 K where the potentials are to be used. To correct this behavior we determine the EAM potential in
the two new EAM models so that C44 is in much better agreement with the experimental value above the
Debye temperature. Interestingly in both of these new models the melting temperature is significantly
higher and in better agreement with the experimental value of 1825 K. One of our models uses a con-
ventional EAM third-neighbor interaction model whereas our other model is a fifth-neighbor interaction
model.

I. INTRODUCTION

The embedded-atom method (EAM) (Ref. l) of devel-

oping interaction potentials is being increasingly used to
develop potentials to study material properties. The
refinement of the method and its extension to more com-
plex materials is still evolving. ' For background materi-
al on the EAM we refer the reader to Refs. 2 and 3,
which contain many references to the motivation and de-
velopment of the theory as well as applications.

In the EAM procedure one normally fits to some ma-
terial properties at 0- K and then uses the derived poten-
tials in classical simulations at temperatures above the
Debye temperature. There has not been a careful study
of temperature dependence of properties using EAM po-
tentials. In this paper we present a detailed study of the
temperature dependence of several material properties
for four different EAM potentials for the element palladi-
um.

We have obtained the EAM potential for Pd deter-
mined by Foiles, Baskes, and Daw and another EAM
potential for Pd derived by Voter. Along with these two
potentials we have also developed two new potentials
which incorporate the 120 K elastic anomaly in the shear
constant C44. We calculate and present, as a function of
temperature, and at zero pressure the elastic constants,
hnear thermal-expansion coefficient, and isobaric specific
heat and compare these to experimental values. We have
also obtained an estimate of the thermodynamic melting
temperature of each model. The volume versus tempera-
ture and energy versus temperature of the four models
are also compared. Although there are other important
properties besides these we could study, we chose these
because they have played an important role in the devel-
opment of EAM potentials.

To calculate the thermodynamic properties of the
models we make use of fluctuation formulas associated
with the microcanonical ensemble form of molecular dy-
namics. This calculational procedure is efficient and
takes into account in an exact way the anharmonic con-
tributions to the equilibrium thermodynamic properties.
In Sec. II we outline the method used to obtain our two
new EAM models of Pd, whereas in Sec. III we give a
brief review of the statistical mechanics formulas used for
calculating the elastic constants in microcanonical en-
semble molecular dynamics. In Sec. IV we present the
results of our calculations for the four models and com-
pare with the experimental data, and in Sec. V we shall
make some concluding remarks.

II. NEW EAM POTENTIALS FOR Pd

In the EAM the potential energy E~„of the system
can be written as a term associated with the energy to
embed an atom in the electron density at the atom loca-
tion and a two-body pair potential which includes the
repulsive interaction between two atoms at short dis-
tances

+pot= X (Po)+ X Nab(rab) &

a=1 a, b=1
a(b

where p,b(r, b ) is the two-body interaction potential eval-
uated at the interatomic distance r,b between atoms a
and b, F,(p, ) is the embedding energy of atom a for the
electron density p, , p, is the electron density at atom site
a due to all other atoms in the system

P. = g Pb'(r. b»
b=1
bXa
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where p" is the atomic (at) electron density. Our method
of obtaining the EAM functions follows most closely that
of Voter and Chen, and Chen, Srolovitz, and Voter and
has also been recently used by Adams and Foiles. The
pair term is assumed to be a Morse potential

(2.3)

where D is the depth of the minimum located at ro, and u
determines the derivatives of the function (or shape) at
the minimum. The three Morse parameters are deter-
mined in the empirical EAM fitting procedure. The
atomic electron density is given by

p(r}=r (e ~'—512e ~"), (2.4)

where P is an adjustable parameter determined in the
fitting. This expression for p is a modified form of the
density of a 4s orbital. The embedding function F(p) is
found by the Foiles inversion method utilizing the equa-
tion of state developed by Rose et al. ,

' which states that
the energy of a perfect crystal E„at0 K and, at a given
lattice constant a, is given by

E„„(a)=—E„„(1+a')e (2.5)

where E„h is the cohesive energy of the crystal, a* is
defined by

a
a —1

ao

9BQ
E,h

(2.6)

and ao is the equilibrium lattice constant, B is the 0 K
bulk modulus, and 0 is the equilibrium atomic volume.
At any given lattice constant a the energy of a single
atom in the lattice can be determined by Eq. (2.1) or al-
ternatively by Eq. (2.5}. These two energies are required
to be the same and the value of the embedding energy I'
at that energy is determined; a corresponding density
given by Eq. (2.2) then defines F(p). This digital form of
F(p), so determined, guarantees that the system behaves
according to the Rose et al. ' equation of state at 0 K; it
follows that the 0 K lattice constant, cohesive energy,
and bulk modulus are exactly reproduced by the model.

In order to perform molecular-dynamics simulations
on the system conveniently, we truncated the EAM func-
tions in a "smooth" fashion. To do this we utilized a
"shift-force" method where P(r) and p(r) are cutoff at a
distance r =r,„,by using

(2.7)

where f(r)=P(r) or p(r). For our third- and fifth-
neighbor palladium models r,„,=5.4 A and 7.4 A, re-
spectively. This cutoff procedure affects the equation of
state if the lattice is expanded to the point where the
first-neighbor distance approaches the cutoff distance
since then Eq. (2.1}is zero but Eq. (2.5) is nonzero and as
a consequence, F(p) at p=0 is nonzero. This problem
can be repaired by altering the equation of state, Eq. (2.5)
as has been done before, however, we chose not to alter
the equation of state; since we have no intention of using

TABLE I. Summary of the EAM fitting procedure for the
two new potentials. Note that ao, E„h, and B are fitted exactly
because of our fit to the Rose et al. (Ref. 10) equation of state;
this is indicated by the square brackets around the values.

Properties Expt. Calc. (PDW3) Calc. (PD%5)

ao (A)
E,.„(ev)
B (GPa)
C]l (GPa)
C&2 (GPa)
C„(GPa)
DER, (eV)
D, (eV)
R, (A)

3.89
3.91

195
234
176
79 5'

1.54
0.70
2.4

[3.89]
[3.91]

[195]
230
177
78.1

1.58
0.98
2.53

[3.89]
[3.91]

[195)
230
179
80.4

1.48
0.69
2.54

Parameters
D (eV)
a(A )

ro (A)
P(A )

r,„, (A)

'Experimental value is 71.2 GPa.

1.7778
1.3665
2.3323
3.0167
5.4

1.5985
1.4886
2.3685
3.0719
6.4

these models for free atoms this point has no adverse
consequences. Furthermore, the value of the equation of
state, and thus F(0) is small at the lattice constant
a =2' r,„„for the third-neighbor model [F(0)= —0.058
eV] and still smaller for the fifth-neighbor model
(
—0.0074 eV).

Our fitting procedure utilizes the equations outlined
above along with experimental data to fit D, a, ro, and P.
The experimental data we chose to fit followed that of
Adams and Foiles, which is nearly the same as Voter
and Chen. %e fitted the three elastic constants C», C,2,
and C~, the vacancy formation energy AE~„, but only
weakly fitted the dimer properties (bond energy D, and
bond length R, ). As mentioned previously, the experi-
mental C44 elastic constant used in the fitting was adjust-
ed to account for an anomaly in its temperature depen-
dence. The 0 K value of 71.2 GPa was increased to 79.5
GPa to shift the C~ value to agree with the experimental
data in the 300-400 K range. The extent of this shift was
determined by observing that the palladium EAM poten-
tials developed by Foiles, Baskes, and Daw and Voter
gave significantly low values for C~ in molecular-
dynamics simulations at elevated temperatures (see Fig.
3), but the two potentials had similar temperature trends.
The value of 79.5 GPa was determined by noting that the
Voter result is off by approximately 8.3 GPa at 350 K.
Shifting the 0 K value of C44 by 8.3 GPa should yield an
EAM potential for which C~ is near the experimental
curve near 3SO K, which is indeed the case.

A simplex method was used to search the parameters
space (D, a, ro, and P) to minimize the difFerence between
the calculated and the desired properties (Cii, Ciz, C44,
b,Efi„, D„and R, ). The function used to measure the
"goodness-of-fit" was defined by
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ui;(f f—; )

d

where f,' is the calculated property, f; is the desired

property, and w, is the weight. The dimer properties
were given weights of 0.2; all other weights were unity.
The desired values used in the fitting are found in Table I
along with all calculated values and the fitted parameter
values for the new palladium models which are denoted
PDW3 and PDW5 for the third- and fifth-neighbor mod-
els, respectively.

III. MOLECULAR-DYNAMICS PROCEDURES
AND FORMULAS

(3.1)

which yields

In the molecular-dynamics method we solve Newton's
laws of motion for the trajectories of the atoms in a
many-body simulation. For a general discussion of
molecular dynamics we refer the reader to the book by
Allen and Tildesley" and references contained therein.
In the simulations reported on in this paper we have em-

ployed 500 Pd atoms initially arranged in an fcc solid.
Periodic boundary conditions have been applied in all
three dimensions to remove the surface effects of the
small system. We used the Gear fifth-order predictor-
corrector algorithm" with a time step of 2.036X10 ' s
which is about —„ofthe shortest vibrational period in the
system. For this algorithm and time step we found accu-
rate energy (enthalpy) and linear momentum conserva-
tion in all of the simulations.

The force on atom a, F„may be obtained from the po-
tential energy E~«given in Eq. (1):

aE...F, =—
Bx

B. Microcanonical, EhN, molecular dynamics

In microcanonical molecular dynamics we can deter-
mine the adiabatic elastic constants (elastic modulii or
stiffness coefficients) C;Jk by using fluctuation formulas
derived by Ray and Rahman and shown to be efficient

by Ray, Moody, and Rahman':

C"
ij km „' (&F,,F„.&-&F,, &&F,.&)

2'~ T
+ (5;k5) +5; 51k)

0

A. Calculational methods

In the present study we used Parrinello-Rahman' HtN
molecular dynamics to determine the reference values hp

and Vp for the pressure P,„t=0 and tension t,„t=0. At
each temperature in our study we determined the refer-
ence values of h and V by carrying out HtN simulations
of typically 50000 iterations or 102 ps after equilibration
of the system. We then used these reference values to
determine the elastic constants, and other properties us-

ing microcanonical or EhN molecular dynamics simula-
tions. Note that in the HtN simulations we also deter-
mined the energy-versus-temperature and volume-
versus-temperature relations for zero pressure and ten-
sion. Although one could, in principle, determine the
elastic constants using HtN fluctuation formulas, these
formulas are known to be only marginally satisfactory be-
cause of slow convergence, ' however, we did use the sca-
lar fluctuation formulas of HtN ensemble molecular dy-
narnics' to check on selected values of the constant pres-
sure specific heat, thermal-expansion coefficient, and adi-
abatic bulk modulus, which were determined in the EhN
ensemble molecular-dynamics simulations. This gives a
good check on the EhN calculations.

trpb' dFb t)p," t3p,b(r,b )

b=l Bp. Br.b Bpb ar.b a.b
'b

bAa

(3.2)

where r denotes a unit vector along r. To simplify the
notation we shall in the future denote derivatives of
F,(p, ), p,"(r,b ), and p,b (r,b ) with respect to the ap-
propriate argument by a prime. The microscopic stress
tensor can be obtained from the virial theorem and has
the form

+&el,...&+&@2,,„.&+&a3J„.&,

where the three Born terms have the form

~l
1 ~ ~ g g

V'ab +abi +abj Xabk +abm

2~ P a, b=l ~ab ~ab
a&b

I

1 ~ +, zt Pb abi abj abk abm

a, b=1 Pab Tb
aXb

N

ijkttt P Fa gaij gakmVp,

(3.4)

(3.5)

(3.6)

(3.7)

at'+F at'+y& )
abt abj

a&b

(3.3)

where V is the volume of the system, p„- is the ith carte-
sian component of the momentum of particle a, and x,b;
is the ith component of the relative position vector of
particle a and b.

an g„.- is g ven y

gaij
=

b=1
b&a

at'
Pb +abi+abj

~ab
(3.g)

The first term in Eq. (3.4) is called the fluctuation term,
while the second term is called temperature correction
term. Later we shall give specific values for these
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different contributions to the elastic constants for selected
cases.

Fluctuations in the kinetic energy E in the EhN ensem-
ble give the specific heat at constant volume Cv:

(K') —(K)'=
2 2Cv

(3.9)

where BT is the isothermal bulk modulus. The adiabatic
bulk modulus can be obtained from the elastic constants
by Bs=(C»+2C,z)/3, since the pressure and tension
are zero. Using standard thermodynamic relationships
we can obtain the specific heat at constant pressure Cz
and determine explicitly the linear thermal-expansion
coefficient a.

In summary our calculational procedure consists of the
following steps: At each temperature we determined a
reference value of h, ho by calculating the average value
of h in an HtN molecular-dynamics simulation. Next we
carried out an EhN molecular-dynamics simulation with
h =ho and employed the above Auctuation formulas, to
determine the elastic constants, the specific heat at con-
stant pressure, and the linear thermal-expansion
coefficient for each of the four model potentials at several

temperatures. For the averages in the EhN simulations
we typically ran 50000 iterations or 102 ps for each tem-
perature and, of course, each potential, and often we fol-
lowed this by another 50000 iterations to check on the
convergence of the results. For selected runs we ran
longer to check on convergence.

As discussed by Johnson, ' there is a type of "gauge in-
variance" of E „defined by the transformation

F,(p)~F, (p)+c,p, II},b~p, b c,pb' czp',—,
—(3.11)

where c, is an arbitrary constant. Under this transforma-
tion, the two Born terms 81 and 82 are modified, but
their sum remains invariant, however, the 83 term,
which is related to the curvature of the embedding func-
tion, is invariant under this transformation. Notice that
the 81 and B2 terms are pair terms and the entire many-

body contribution of the EAM potential to the elastic
constants is contained in the 83 term, which is also the
term that breaks the 0 K Cauchy relation C&&

=C44. The
fiuctuation term and the temperature correction term
break the Cauchy relation at finite temperature. Thus, if
we are using EAM potentials that differ only by a gauge
transformation from one another, the term 83 will be the
same for both potentials. A comparison of the 83 terms
at 0 K, therefore, gives a simple way of telling whether
the two potentials could be related by a gauge transfor-
rnation.

whereas the cross fluctuation between the kinetic energy
and the microscopic pressure function P = I gp;; allows

one to obtain the linear thermal-expansion coefficient a
of the system

9aB V
(PK) —(P)(K) =(k T) 1—,(3.10)

Vo 2Cv
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FIG. 1. C» vs temperature for four models of Pd and the ex-

perimental data from Ref. 16. The line represents the experi-
mental data whereas the symbols show the simulation points;
the triangle is for the FBD potential, the circle is for the VOT
potential, the box is for the PDW3 potential, and the plus sign is
for the PDW5 potentials.
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IV. RESULTS

1. Elastic constants
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FIG. 2. C ]p vs temperature. The symbols have the same

meaning as in Fig. 1.

In Figs. 1, 2, and 3 we show the elastic constants C»,
C&2 and C44 as a function of temperature obtained with

the four model potentials as well as the experimental elas-
tic constant data as reported in the Landolt-Bornstein
compilation, ' which is shown by the solid line. The
Landolt-Bornstein data for Pd at temperatures below 300
K is consistent with the more recent experimental data
given by Nygren and Leisure. ' The experimental data is

only available to 900 K. In order to refer to the poten-
tials individually we refer to the Foiles, Baskes, and Daw
potential as FBD, denoted by 6 in the figures, the Voter
potential as VOT, denoted by 0 in the figures, the new

third-neighbor potential as PDW3, denoted by 0 in the
figures, and the new fifth-neighbor potential as PD%5,
denoted by + in the figures. Our inclusion of the fifth-

neighbor model is mainly to check in a quantitative way
the difference between a third-neighbor model and a
fifth-neighbor model. EAM applications have almost
universally used a third-neighbor or less model with no
quantitative comparison of finite temperature properties
between the two different types of models.

For C&& all four potentials show nearly the correct de-

crease with temperature until after 500 K, where the ex-

perirnental values do not show as much softening as the
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FIG. 3. C~ vs temperature. The symbols have the same
meaning as in Fig. 1.

B1+B2
B3

FBD T=O K
98.99 65.07

119.54 119.54
65.07
0.0

Total 218.53 184.61 65.07

B1+B2
B3

VOT T=O K
129.59 70.36
102.99 102.99

70.36
0.0

TABLE II. The zero-temperature elastic constants for the
four models broken down into the different terms in Eq. (3.4).
The elastic constants are given in units of GPa.

C&2

Total 232.58 173.35 70.36

models. Note that FBD was not fitted as accurately to
the 0 K elastic constants as the other models, so it looks
worse in this comparison. By carrying out independent
simulations we obtain independent determinations of the
elastic constants and can use these to estimate the com-
putational errors in these quantities. In all cases we esti-
mate the errors in the elastic constants to be less than
1%. This error is expected due to the small value of the
fluctuation term in Eq. (3.4) which controls the error in
the calculation. '

For C&2 we again see good agreement between experi-
ment and the models over the entire temperature range,
especially so for the two new models. Note that, from
the point of view of the elastic constants, the two new
models PDW3 and PDW5 give essentially the same re-
sults, except at higher temperatures where PDW3 is seen
to soften more than PDW5.

For C44 we do not find as good an agreement between
the models and experiment mainly because of the 120 K
anomaly in C44. This anomaly is interpreted by Rayne'
to be associated with the change with temperature of the
contribution by the holes in the 4d band in Pd. The
EAM potentials cannot, at this stage of their develop-
ment, explain such a subtle electronic structure property.
As mentioned in Sec. II for PDW3 and PDW5, we have
fitted to a higher value of C44 at 0 K so that near room
temperature the calculated elastic constant is close to the
experimental value. Since our classical simulations are
valid only above the Debye temperature, of 280 K for Pd,
the mechanical properties of PDW3 and PDW5 should
be better than the other two potentials at temperatures
where classical simulations are valid. Basically what we
are doing is determining the EAM potential by fitting to
a finite temperature property instead of a zero-
temperature property; since the EAM is empirical, at the
present time, our approach seems to be a preferable way
of developing the EAM potential for Pd. For higher tem-
peratures even the two new models show significant devi-
ations from the experimental values for C44. The slope of
the simulation values for C44 in Fig. 3 shows considerable
deviation from the experimental values. This discrepancy
is probably also due to the elastic anomaly since at higher
temperatures C44 would be expected to soften more rap-
idly; the elastic anomaly delays the softening of C44 until
higher temperatures and this gives rise to the difference
in slopes of the theoretical and experimental values in

B1+B2
B3

PDW3 T=O K
130.81 78.07
99.37 99.37

78.07
0.0

Total 230.18 177.44 78.07

B1+B2
B3

PDW5 T=O K
130.81 80.36
97.88 97.88

80.36
0.0

Total 228.69 178.24 80.36

Fig. 3.
In Table II we give the Born terms at 0 K for all four

models and the elastic constants as determined from Eq.
(3.4). Table II shows that both Born terms give
significant contributions, with the many-body Born term,
B3, being around 100 GPa for the last three potentials.
Recall that the two-body Born terms do not have a gauge
invariant significance by themselves and only the sum is
gauge invariant, thus we give only the sum B1+B2 in
Table II. Note that the many-body term does not con-
tribute to C~, which clearly shows the breaking of the
Cauchy relation at 0 K. At elevated temperatures each
of the Born terms decreases in absolute magnitude, due to
the increase in volume and to the averaging associated

Fluct
T Corr
B1+B2
B3

Total

PDW3
—6.38

1.42
123.58
97.45

216.07

T=382.8 K
—0.14

0.0
73.73
97.45

171.00

—4.40
0.71

73.73
0.02

70.06

Fluct
T Corr
B1+B2
B3

Total

PDW3
—18.28

3.64
113.36
93.93

192.65

T=1007.2 K
—1.47

0.0
67.07
93.82

159.42

—11.88
1.82

67.07
0.0

57.07

TABLE III. The elastic constants for the potential PDW3 at
two temperatures broken down into the different terms in Eq.
(3.4). The elastic constants are given in units of GPa.

Ci2
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with the increase in size of the Debye-%aller thermal
cloud. Also, the fluctuation term is nonzero and in-
creases with temperature whereas the temperature
correction term in Eq. (3.4) becomes nonzero.

As an illustration of these trends we show in Table III
the contributions to the elastic constants for PDW3 for
two different temperatures, 383 K and 1007 K. The oth-
er models show this same general type of behavior as the
temperature is raised. Note in particular the growth in

importance of the fluctuation term with temperature
from 3 /o at 383 K to 9.5% at 1007 K for C». Thus, the
fluctuation term plays an increasing role in the softening
at elevated temperatures. At a temperature of 2100 K,
where the model PDW3 is superheated and near the
point of mechanical instability of the crystal, the fluctua-
tion term is 44% of the elastic constant C».

2. Therma) expansion

In Fig. 4 we show the linear thermal-expansion
coefficient calculated for the four models using Eqs. (3.4),
(3.9), and (3.10) along with experimental data. ' Al-
though all four models show the same general increase as
the experimental values, they are on average lower than
the experimental data. In order to check the convergence
of the values obtained, we continued some averaging runs
for 200000 iterations, and found only small changes in
the values; not enough to change the graphs in Fig. 4.
We also carried out HtN calculations of the thermal-
expansion coefficient using fluctuation formulas appropri-
ate to that ensemble. ' As examples for PDW3 at
872 K we found o.H, N

= 12.04 X 10 K ' and

cxEhN
= 12.9 X 10 K ', while in another calculation

at 987 K we found aH, N
= 12.8 X 10 K ' and

aEhN=13. 1X10 K '. Although these are not the
same values they would not change the character of the
simulation results shown in Fig. 4. As an alternate
method we determined a by numerically differentiating
the V versus T zero pressure isobar. This gives a curve
that is essentially a fit of the data in Fig. 4 by a smooth
curve. The fluctuation expressions are an analytical ex-
pression of this derivative and, therefore, both methods
should and do give the same results. Since we were cal-
culating the elastic constants by the fluctuation formulas,
the calculation of a in the same simulation does not use

any more computer time. Qur results for the linear
thermal-expansion coefficient for the FBD potential agree
with the single room-temperature value given for this po-
tential by Foiles and Daw, namely +=10.9X10 K
We consider the calculated linear thermal expansion to
be satisfactory for all four models.

3. Specific heat

In Fig. 5 we show the dimensionless, constant pressure
specific heat per particle as determined by the fluctuation
formulas compared to experimental values. ' Again all
four models show the observed increase of C with tem-
perature. We again checked selected values of C by us-

ing HtN fluctuation formulas which were consistent with
the results in Fig. 5. We also numerically differentiated
the E versus T zero pressure isobar to check the specific
heat values. Note the two high-temperature points with
C near 4.9 in Fig. 5. These points are near the tempera-
ture of the mechanical instability for these two potentials;
the larger values given by the fluctuation formula are a
precursor of the incipient phase transformation. Since
the two new potentials become mechanically unstable at
higher temperatures, the fluctuation formulas still give
reasonable results for these potentials at these tempera-
tures. Again we consider the agreement of the calculated
specific heat to be satisfactory for all the models.

4. Melting

Palladium melts at a temperature of 1825 K. The ther-
modynamic melting temperature (temperature for equali-
ty of free energies of solid and liquid phases) is difficult to
directly determine accurately for a small system with
three-dimensional periodic boundary conditions because
of the ability of the system to be superheated far above
the melting temperature. In order to estimate the ther-
modynamic melting temperature, we used the method in-
troduced by Kluge, Ray, and Rahman. In this method
one raises the temperature of the system slowly until it
becomes mechanically unstable; the system then melts
and cools. The final temperature of the melt is an upper
bound on the thermodynamic melting temperature since
the system has undergone a phase transformation to a
more stable phase, namely the hquid phase at the final
temperature. Kluge, Ray, and Rahman found this

20

4.0

~ 3.5

3.0

2.5—

1500
5 I I I I I I 1 I I ~

0 500 1000 2000
T (K)

FIG. 4. I.inear thermal-expansion coefficient for the four

models compared to experimental values from Ref. 19. The

symbols have the same meaning as in Fig. 1.

I g

500 1000
T (K)

I

1500 2000

FIG. 5. Dimensionless speci6c heat for the four models corn-

pared to experimental values from Ref. 21. The symbols have

the same meaning as in Fig. 1.
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method to give a temperature about S%%uo higher for silicon
than the thermodynamic melting temperature as deter-
mined by more involved free-energy methods. Foiles and
Adams used a free-energy method to determine the
melting temperatures. This method is considerably more
involved than the present method and also subject to its
own numerical errors. A more accurate way of estimat-
ing the thermodynamic melting temperature is to intro-
duce a free surface and determine the interface velocity
as a function of temperature. By interpolating the inter-
face velocity to zero we may determine the melting tem-
perature. For the present purposes our simpler method,
which has been shown to give results to within 5% of the
correct value, is satisfactory. In Table IV we show our
results for the melting of the four models of Pd along
with the previous estimates by other workers for the
FBD (Ref. 23) and VOT (Ref. 25) potentials. We find

similarly to Wolf, Okamoto, Yip, Lutsko, and Kluge
that as the superheated fcc crystal becomes unstable and
disorganizes the minimum shear modulus (C» —C&2)/2
goes to zero. In Fig. 6 we show the minimum shear
modulus as determined in the simulations as well as the
experimental values. The low melting point of the FBD
potential is probably due to the fact that the 0 K fit to
the minimum shear modulus is too low as can be seen in
Fig. 6. Note that the final approach of the minimum
shear modulus to zero is not linear for any of the poten-
tials; this can be seen for the FBD and VOT potentials in
Fig. 6. The two new potentials have higher melting tern-
peratures than the earlier models. As mentioned previ-
ously; the main difference in the determination of the two
new potentials is to take into account the C44 shear
anomaly. The value of the shear modulus (C» —C,2)/2
is still fitted to the experimental values for the new poten-
tials as is shown in Fig. 6. Note that the VOT potential
actually fits a higher value of the minimum shear
modulus but melts at a lower temperature than the two
new models. It is also interesting that PDW5 melts at a
higher temperature than PDW3, which is what one
would expect since extending the potential to more neigh-
bors should increase the stability of the crystal because
these more distant neighbors are in the attractive part of
the potential. Our estimate of the melting temperature of
PDW5 is 1828 K compared to the experimental value of
1825 K. The FBD and VOT potentials both melt at too
low a temperature.

40
O
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CU

o 20

4h
500 1000 1500

T (K)

FIG. 6. Minimum shear modulus vs temperature for the four
models compared to experimental values. The symbols have the
same meaning as in Fig. 1.
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By subtracting the enthalpy of the solid from the liquid
at the estimated melting temperatures, we obtain an esti-
mate of the latent heat of the phase transformation.
These results for the four potentials are shown in Table
V, along with the density of the liquid at the estimated
melting temperatures determined in the simulations.
Table V also contains the experimental latent heat and
liquid density. The latent heat is low for all four mod-
els, while the density of the liquid is in satisfactory agree-
ment with the observed value. We do not have an ex-
planation of why the latent heat is low for the EAM mod-
els, although it is interesting that Kluge, Ray, and Rah-
man found that the melting point was reasonable for sil-
icon but the latent heat was only half the observed value.
The calculation of the latent heat using traditional con-
densed matter theory is a dif6cult problem due to the fact
that this is a highly nonequilibrium process.

5. Energy and volume versus temperature

In Figs. 7 and 8 we show the energy (enthalpy) and
volume versus temperature for the four models. Note the
liquid phase points above the solid phase points in the
high-temperature part of these figures. The lowest tem-
perature liquid point shown in Figs. 7 and 8 for each of
the potentials gives our upper bound estimate of the melt-
ing temperature. In general, the volume and energy of
the four models behave in a similar fashion as a function
of temperature except at the highest temperatures where
the FBD and VOT potentials are close to becoming un-
stable.

TABLE IV. The mechanical instability temperatures and es-
timated melting temperatures of the four models of Pd. The
6rst two columns are results of this study. The last column is
from previous studies.

TABLE V. The latent heat and liquid density at the melting
temperature for the four models of Pd along with experimental
values from Ref. 27.

Potential

FBD
VOT
PDW3
PDW5

'Reference 23.
Reference 25.

Instability
temperature

(K)

1800
1950
2200
2300

Melting
temperature

(K)

1480
1588
1728
1828

Melting
temperature

(K)

1390'
1520+150

NA
NA

Potential

FBD
VOT
PDW3
PDW5
Expt. '

'Reference 27.

Liquid
density
(g/cm )

10.97
10.81
10.81
10.72
10.5

Latent
heat

(kJ/mo1)

7.79
9.96

10.2
9.84

16.7
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FIG. 7. Volume vs temperature for the four model potentials.
This is the zero pressure zero tension volume for the 500-
particle system. The symbols have the same meaning as in Fig.
l.
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FIG. 8. Energy (enthalpy) vs temperature for the four model
potentials. The symbols have the same meaning as in Fig. 1.

V. SUMMARY AND CONCLUSIONS

We have given a detailed and quantitative comparison
of four EAM potentials for the element palladium from
the point of view of the temperature dependence of
selected thermodynamic properties as well as the melting
properties of the models. Due to the fact that Pd has an
elastic anomaly in C44 we have modified the EAM pro-
cedure and fit to a higher value of this property so that
the calculated value in the temperature range 300-400 K
is close to the experimental values. One of the new mod-
els, PDW3, is a third-neighbor model, whereas, the other
model, PDW5, is a fifth-neighbor model. Because we
have taken the elastic anomaly into account, the mechan-
ical properties of the two new model potentials should be
better than the previous models in the temperature range
of most interest, 300-400 K.

Most EAM models have been third-neighbor or less
models and we constructed the fifth-neighbor model to
test whether including more neighbors would change the
temperature dependence of thermodynamic properties in
an important way. From a study of Figs. 1 —8 we con-
clude that it is sufficient to consider only third-neighbor
models for this system. The difference between PDW3
and PDW5 is probably not significant from the point of
view of modeling within the current EAM scheme, al-
though the two models do have difFerent melting temper-
atures because of the more rapid softening of the elastic
constants of PDW3 at elevated temperatures. It is possi-
ble that the melting temperature of PDW3 could be
elevated by increasing the calculated value of C44 in
Table I, but we did not explore this possibility. By study-
ing the exponential fallofF' of the electron density one
would suspect that the third- and 6fth-neighbor models

would have similar properties and this is indeed the case.
The two new models are more similar to each other than
to the previous models and are more like the VOT poten-
tial than the FBD potential.

In all models the melting of the crystal takes place by
an elastic instability in the minimum shear modulus
which ultimately approaches zero in the superheated
crystal. Upper limits on the melting temperatures were
determined by slowly heating the crystal to the point of
mechanical instability and then allowing the melt to cool
to a final temperature which is an upper bound on the
thermodynamic melting temperature. The two new mod-
els have melting temperatures in better agreement with
experiment.

The linear thermal-expansion coefficient and the
specific heat at constant pressure of the four models show
satisfactory agreement with experiment as the tempera-
ture is elevated. In summary, we have presented two new
EAM models for palladium and given a quantitative
comparison of finite temperature thermodynamic proper-
ties calculated by molecular dynamics, which contain all
anharmonic effects. The two new models have better
mechanical properties than the previous models and have
melting temperatures nearer the correct value.
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