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We study a generalization of the Frenkel-Kontorova (FK) model where the usual harmonic spring po-
tential between neighboring atoms is replaced by a phenomenological potential identical in form to a
sixth-degree Landau free-energy functional proposed by Devonshire. The resulting model is a natural ex-

tension of current FK-type models with nonconvex interactions. It also provides a first step toward the
construction of a theory of the structure of an epitaxial film that undergoes a first-order phase transition

from a high-symmetry phase to a degenerate low-symmetry phase. The phase diagram is obtained as a
function of temperature and misfit (for representative choices of the remaining parameters) by use of the
effective potential method of GrifBths and Chou. Among other unusual features, we find commensurate

phases and soliton structures in which all competing phases are present simultaneously.

I. INTRODUCTION

The Frenkel-Kontorova (FK) model' characterizes a
one-dimensional chain of harmonically coupled particles
subject to an external sinusoidal potential. As such, it is
the simplest description of the competition between bulk
and interfacial free-energy effects which determines the
structure of an epitaxial thin film. More generally, it
serves as a prototype for any situation where competing
interactions lead to a modulated ground state.

In this paper, we study an extension of this model
where the usual quadratic spring potential is replaced by
a phenomenological potential identical in form to a
sixth-degree Landau free-energy functiona1 introduced by
Devonshire in connection with a study of ferroelectrici-
ty. As a function of a single parameter (which we shall
regard as the temperature), the potential changes smooth-
ly from a quadratic single well to a symmetric triple well
and finally to a symmetric double well (Fig. l). This func-
tional, of course, is a standard model free energy for a
material which undergoes a first-order structural phase
transition from a nondegenerate high-symmetry state to a
degenerate low-symmetry state. By use of the so-called
effective potential method of GriSths and Chou, the ex-
act phase diagram of this model is obtained as a function
of temperature and the lattice misfit between the sub-
strate and the chain for several representative choices of
the remaining parameters.

Because the spring potential we employ generally is a
nonconvex function of the separation between neighbor-
ing atoms, our results contribute to the evolving under-
standing of this class of generalizations of the basic FK

model. Our principal motivation, however, comes from
real experimental situations where an as-grown film ex-
hibits single-crystal epitaxy with its substrate but then
undergoes a first-order structural phase transition as a
function of a change in conditions. Examples include
temperature-induced transitions in epitaxial films of fer-
roelectric and high- T, (Ref. 9) material and film
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FIG. 1. Evolution of the phenomenological spring potential
as a function of the dimensionless energy parameter Az in (1).
Successive curves from top to bottom correspond to progres-
sively lower temperature. The two substrates discussed in the
text have well depths of 0.14 and 0.4 in the scale of the vertical
axis.
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thickness-induced transitions in systems, e.g., a-
Sn/CdTe, ' where the overlayer is epitaxially stabilized in

a bulk-unstable (or metastable) structure. Although the
Devonshire free energy is not strictly applicable to, say, a
pure cubic-to-tetragonal structural transition (the pres-
ence of a cubic invariant drives the transition first order
in that case" ), we adopt the point of view advocated by
Falk' and others' whereby the essential point is the pos-
sible coexistence of the high- and low-temperature
phases.

This fact is important because a common feature of all
the experiments noted above is that the transformed sys-
tem is still epitaxial but no longer single crystalline. In-
stead, a characteristic twinned morphology is observed.
Such a result is expected on the basis of macroscopic elas-
ticity calculations' ' and may be understood as a mech-
anism of epitaxial strain relief. In the context of the re-
lated problem of bulk martensitic phase transformations,
twinning of this kind was studied in an approximate way
by Marianer and Bishop' with a double-well version of
the FK model. As expected, we recover some of their re-
sults in the appropriate (low-temperature) limit of our
model. On the other hand, our exact numerical approach
permits us to study the competition between this form of
strain relief and the mechanism of misfit dislocation (soli-
ton) generation familiar from the standard FK model.

II. THE MODEL

The generalized FK model considered in this paper is
defined by the potential energy

H = g I Ai(x„+i —x„—y) —Aq(x„+i —x„—y)

+26(x„+,—x„—y) +V(1—cos2mx„)j .

Here, x„ is the position of the nth atom and y is the lat-
tice constant of the presumed high-temperature "cubic"
phase of the film material. Both are measured in units of
the substrate lattice constant so that the quantity 1 —y is
seen to be identical with the conventional definition of
lattice misfit. ' The energy parameter V measures the
strength of the substrate potential while Az is imagined
to be a linear function of T —T, . A4 and A6 are fixed
positive constants. The anharmonic spring potential thus
fixes three lengths: a particle in the middle (M) well of
the spring potential denotes a unit cell of the film with a
lattice constant equal to that of the high-temperature
"cubic" phase, while a particle in the left (L) or right (R)
well of the spring potential denotes a unit cell of the film

with a lattice constant equal to, respectively, the shorter
or longer lattice constant of the low-temperature "tetrag-
onal" phase. This denotation will be used consistently
below, although, of course, the substrate induces inhomo-
geneous strains into the chain.

Since the absolute scale of energy is immaterial, the
model as defined has four free parameters. Even so, the
parameter space is still too large for practical study by
our methods. Hence, in what follows, we present the

x„=na+P„a . (2)

Figure 2 illustrates this quantity for an 11-atom cycle.
To determine the detailed structure of the film, i.e.,
whether each unit cell is associated with the "cubic" or
one of the "tetragonal" phases, one simply compares the
slope of each segment of this curve to the slopes of the
lines which correspond to P„ for each of the three purely
incommensurate phases: M, L, or R. For this example,
one finds that the cycle is LRLRMMMMMRLR or
(2LR )(4M)RLR, in a simplified notation to be used

phase diagram in rather great detail as a function of
misfit (y) and temperature (A2) for four choices of the
remaining two parameters. We focus on a wide well

spring potential where the magnitude of the tetragonal
distortion is about 0.3a and a narrow well spring poten-
tial where the magnitude of this distortion is about 0.03a.
The ratio A 4/A 6 is held fixed in order to guarantee that
the same interwell energy barrier obtains in the two
cases. Two values of the substrate potential strength are
examined as well: a strongly corrugated case where V is
30% greater than the energy barrier between wells at T,
and a weakly corrugated case where V is 30&o less than
this energy barrier. Due to the symmetry of the spring
potential, it is sufhcient in every case to choose the range
of y from a maximum value of unity (where the high-
temperature M phase is lattice matched to the substrate)
to a minimum value just below the point where the low-
temperature R phase is so lattice matched. We focus on
a temperature range within about 25go of r, since the
high- and low-temperature' limits are well understood.

The phase diagram is obtained by use of the effective
potential method of Grii5ths and Chou with the numeri-
cal implementation suggested by Floria and Griffiths. '

The method is exact in the sense that it seeks the absolute
minimum of the potential energy rather than merely
identifying extrema of the energy as in other approaches
to this problem. The eScacy of the method is determined
entirely by the choice one makes for the discretization of
the spatial continuum available to the variables x„. More
precisely, one chooses a grid of 1V points per interval of
length a. The now-discrete model based on (1) is solved
by a systematic search for the cycle of X atoms or less
with the lowest total energy. It is important to note that
the solution one obtains is periodic although the physical
length of the period (cycle) along the substrate is not fixed
a priori.

Typically we chose N =1000, although at selected
spots much larger values were used to confirm the ground
state. Such checks occasionally produced minor cycle
length changes although the ground-state configuration
was always qualitatively unchanged. As noted by Floria
and GriSths, ' convergence generally is slower when the
ground-state cycle length increases or there are nearly de-
generate states near the ground state. In these situations
we found that values of N as large as 10 were required to
ensure accurate results.

The nature of the solution is encoded in the phase vari-
able (t „defined as the deviation of the position of the nth

atom from the nth substrate minimum:
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FIG. 4. Phase plot for an incommensurate M ground-state
cycle.

FIG. 2. Phase plot for the 11-atom cycle (2LR)(4M)RLR.

henceforth. The fact that ((I„has exactly the same value
at the beginning and end of the cycle indicates that there
is one-to-one correspondence between the particles of the
chain and the wells of the substrate.

To illustrate this point, Fig. 5 shows the phase plot for
the ground-state cycle R (19M), which occurs at the same
temperature as the cycle in Fig. 4 but with @=0.950.
This structure contains no solitons. Indeed, there are no
solitons present anywhere within the M/R phase field.
Instead, the lattice misfit is accommodated by the inser-
tion of a periodic array of R unit cells embedded in an
otherwise pure M phase. To understand this, one need
only read the vertical axis of Fig. 5. There, we observe
the atoms associated with the majority M phase "walking
across" the bottom of the substrate wells until an R de-
fect is inserted. The latter abruptly moves the next atom
to the same height on the opposite side of its substrate
well. The majority phase then continues until the cycle
completes. It is remarkable that R defects are used for
this purpose since (as may be seen from the correspond-
ing spring potential curve drawn as a heavy line in Fig. 1)
they each cost an amount of energy greatly in excess of
the total substrate well depth. Presumably, the net cost
to employ solitons is even greater.

The density of R defects in the M/R phase increases as

y decreases. Ultimately, the ground-state cycles are best
described as M defects within a majority R phase. This
R/M phase persists as the misfit increases further until
the pure R phase locks in at a value of y somewhat larger
than that required to exactly match the R phase lattice
constant to that of the substrate. It is interesting to note
that the domain of absolute stability for the R phase per-

III. RESULTS AND DISCUSSION

Figure 3 illustrates the temperature-misfit phase dia-
gram for a system with the weakly corrugated substrate
potential and the wide well springs defined above. At
high temperature, we observe the conventional FK tran-
sition from a commensurate M phase to an incommensu-
rate M (IM) phase as a function of increasing misfit (de-
creasing y). A plot of P„at a representative point in the
incommensurate phase (Fig. 4) makes clear that the one-
to-one correspondence between the chain particles and
the substrate wells discussed above is lost by the insertion
of an extra atom every 22 substrate wells at this value of
the misfit (y =0.945). Following conventional terminolo-

gy, we refer to these defects as solitons. Actually, Fig. 4
corresponds to a temperature just below the point marked
P in Fig. 3 so that a small increase in y drives one not
into the pure M phase but instead horizontally across a
phase boundary into a phase denoted M/R.
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FIG. 3. Global phase diagram for the case of the wide well

spring potential and weakly corrugated substrate potential. The
horizontal dashed line marks the value of A& where the M
phase is degenerate with the L and R phases, i.e., T =T, . The
lattice misfit is equal to 1 —y. See text for further discussion.
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FIG. 5. Phase plot for the 20-atom cycle R (19M).
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sists to a temperature well above the bulk transition tem-
perature back to M. This is a simple example of the
phenomenon of epitaxial stab&'lization of a bulk unstable
(metastable) phase. ' In real materials, this occurs only
in thin films where the interfacial energy is competitive
with the condensation energy in the bulk of the film. For
the monolayer problem studied here, the effect is quite
substantial.

As the misfit is increased still further, the R phase be-
comes unstable with respect to soliton generation. Just as
for the case of the M-IM phase transition, this occurs
when the R phase lattice constant shrinks to the point
where it is no longer energetically favorable to strain to
match the substrate. However, the solitons are of a very
different character than in the M phase case. More pre-
cisely, the strain accommodation typically is accom-
plished by the insertion of several unit cells of the other
phases. Thus, one finds, e.g., MMM-type solitons [Fig.
6(a)] at high temperatures near the phase boundary with
the IM phase. Indeed, the transition from IM to this in-
commensurate R (IR ) phase may well be continuous. Fi-
nally, at the lowest temperatures, the solitons of the IR
phase convert to LL-type since the cost of an M-phase
unit cell becomes prohibitive.
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FIG. 6. Phase plot for a ground-state cycle which contains
{a) an MMM soliton in a region where the R phase lattice con-
stant is less than the substrate lattice constant and (b) an MLM
soliton in a region where the R phase lattice constant is greater
than the substrate lattice constant. The text refers to the latter
as an "accidental*' soliton. Note that, in both cases, every ma-

jority R phase atom resides very near the bottom of a substrate
well.

Given the foregoing, the entire low-temperature por-
tion of Fig. 3 is easy to understand. Suppose we begin in
the R phase. As the misfit decreases, L defects appear
periodically (R/L phase) to relieve the strain. In com-
plete analogy to the discussion of the M/R phase, the de-
fect density increases until, as y~l, one obtains pure
RL. This is almost obvious because, by construction, the
length of an RL "microtwin" is equal to the length of two
unit cells of M phase.

Evidently, we could refer to each distinct cycle within
the R /L, M/R, and R /M phase fields as a "phase" in its
own right and search for the corresponding "phase"
boundaries. This is the strategy employed in analyses of
ANNI-type models. ' Except for the designation of the
RM phase, we do not pursue this line of investigation
here (nor have we attempted to determine whether the
various phase boundaries in Fig. 3 correspond to first-
order or continuous phase transitions) because of our fu-
ture interest in a more realistic model of epitaxy which
takes account of domain-wall contributions to the total
energy. The strain gradient terms required to do so'
may be expected to radically alter the microtwin charac-
ter of the aforementioned "phases" and perhaps the glo-
bal topology of the phase diagram as well.

We turn now to two rather unusual features of Fig. 3.
First, observe that there are two small regions of the
phase diagram (denoted "S")where solitons appear even
though the length of an R unit cell renders the insertion
of extra atoms unnecessary. In the upper region, the soli-
tons are of the MLM variety [Fig. 6(b)] while in the lower
region one finds MM and (kL) whe—re k is an integer-
solitons. The source of this phenomenon is that the
length of each of these defects is very nearly equal to a
multiple of the substrate wavelength in this range of
misfit. By this artifice, the system accommodates almost
all the misfit within the soliton so that each majority R
unit cell can remain near the bottom of its substrate well.
It is worth noting that both soliton types place atoms
near maxima of the substrate potential. This explains
why they disappear in the immediate vicinity of T, : the
insertion of an extra L(M) atom to form an LL(MLM)
soliton then produces no spring energy benefit.

The second atypical feature of this phase diagram ap-
pears between the M/R and R /L phase fields. We find a
region of commensurate states where M, R, and L unit
cells appear in the ground-state cycles simultaneously.
As revealed in Fig. 7, this LMR region has a very com-
plex shape and most resembles an archipelago. More-
over, each "island" displays an odd-shaped boundary.
Consider the island which abuts the M phase. A cycle
like MMRLR is typical of those that occur near the rath-
er smooth upper phase boundary. When the temperature
is raised so that the phase boundary is crossed, the
ground state adjusts to MMMMR. This is another exam-
ple of the replacement of RL by MM as discussed earlier.
Upon reducing the temperature, the MMRLR cycle is
stable until the lower phase boundary is crossed and an
R/L-type cycle is obtained. But it turns out that this
simple behavior arises only because the total vertical ex-
tent of the LMR phase field is rather narrow at this value
of misfit (@=0.9425). If, instead, we choose a point
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where the phase field is very wide, e.g., a value of misfit
like y'=0. 9075, which is coincident with one of the nar-
row peninsulas of the island, a considerable change in the
ground-state cycle is observed as the peninsula is
traversed from top to bottom. Generally speaking, the
original M content of the cycle decreases and the relative
number and distribution of R and L unit cells varies until
they approach that found in the corresponding R/L cy-
cle across the lower phase boundary.

The LMR phase field contains cycles of extraordinary
complexity. For example, well below the upper phase
boundary, most of the ground states may be character-
ized as a background R phase within which are embed-
ded both a periodic array of L defects and a second
periodic array of M defects. This behavior may be under-
stood either by careful study of the associated P„dia-
grams or from general discussions of the effective interac-
tion between such defects. Occasionally, however, we
observe cycles such as

(2LRRR )LRR (5LRRR)LRR (5LRRR )LRR (2LRRR

where the M defects are not symmetrically arranged. The
extreme sensitivity of the ground-state cycle to misfit can
be judged from the fact that the long peninsula of com-
plex phases discussed above is bounded (towards lower y )

by a pronounced gap where the R /L phase field directly
adjoins the M/R phase field. The ground-state cycle
within this gap is simply LRR. Our model thus conforms
to the general observation that short period cycles exhib-
it relatively greater stability intervals than long period
cycles.

At this point, it is appropriate to ask whether the
phase diagram of Fig. 3 is robust. That is, which features
survive variations in the parameters of the model and
which do not? As noted earlier, we have studied three
other choices of spring-substrate parameters. In all cases,
the phase diagram is qualitatively similar to Fig. 3 except
for the "S"regions. For example, the vertical extent of
the LMR archipelago shrinks considerably for the nar-
row well case but does not disappear. However, the "un-
necessary" solitons are observed to vanish if either the
substrate adhesion becomes too strong or the tetragonal
distortion of the film becomes too small. This is not
difficult to rationalize given our earlier account of the ori-
gin of these structures.

A final, interesting result of this survey concerns the
fate of the microtwin structures found in both the com-
mensurate and incommensurate portions of Fig. 3. For
the "narrow-well" case, these objects still inhabit the
R/M, M/R, and R/L commensurate phase fields but
disappear from the IR phase. Instead, the IR solitons are
extended and generally have the form (pM)(qL)(pM),
where p and q are integers. The maximum values of p
and q scale inverse1y with the magnitude of the tetragonal
distortion. Moreover, the ratio p/q increases steadily as
one heats the IR phase. We suspect that these extended
solitons may be amenable to study by analytic means.

IV. SUMMARY AND CONCLUSION

We have introduced and investigated a nonconvex ex-
tension of the Frenkel-Kontorova model where the usual
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FIG. 7. Blowup of the global phase diagram in the vicinity of

the boundary between the M/R and R /L phase fields.
Ground-state cycles at two values of y (indicated by vertical
dashed lines) are discussed in the text. The lattice misfit is equal
to 1 —y.
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harmonic spring potential is replaced by a sixth-degree
polynomial in the interparticle spacings. The latter was
chosen to serve as a model for the free energy of a film
which undergoes a first-order transition from a high-
temperature "cubic" phase to a low-temperature "tetrag-
onal" phase. The usual subtle interplay between the sub-
strate and spring potentials characteristic of the conven-
tional FK model is enriched by the presence offour com-
peting lengths: the substrate periodicity, the length of
the "cubic" unit cell, and the long and short lengths of
the "tetragonal" unit cell. An exact numerical algorithm
was used to obtain the phase diagram as a function of
temperature and lattice misfit for representative values of
the other model parameters. In addition to the homo-
geneous lattice-matched bulk phases, we find (i) epitaxial
stabilization of a bulk metastable phase, (ii) simple com-
mensurate phases where a periodic array of microtwins
disrupts otherwise homogeneous structures, (iii) an
archipelago-shaped commensurate phase field where unit
cells of all three structural species are present simultane-
ously, and (iv) incommensurate phases where both con-
ventional and unconventional solitons provide misfit ac-
commodation.

In subsequent papers, we plan to report generalizations
of the work presented here which more nearly approxi-
mate the situation in real epitaxial films. These studies,
currently in progress, involve the addition of a strain gra-
dient term to the potential energy' and the coupling of
multiple FK chains together to form a thin film. '
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