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Effect of the electronic kinetic energy on the elastic strain in metallic multilayers
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A recent theory of induced strain in metallic multilayers, caused by electron transfer effects, is revised
by taking into account the electronic kinetic energy. When this is done, it is found that the predicted
sign of the strain is opposite to what was found previously. For a multilayer having abrupt composition
changes, the predicted magnitude of the strain is greater by a factor of % than what was found previous-

ly, whereas for a multilayer having smooth composition changes, it is the same as what was found previ-

ously.

I. INTRODUCTION

When two metals having different Fermi energies are
brought into contact, electric charge is transferred from
one to the other, giving rise to an electric potential which
equalizes the Fermi energies in the two metals. In a re-
cent paper,! it was shown that the total energy (electro-
static and elastic) associated with this charge transfer
could be reduced by a uniform expansion of one metal
and contraction of the other. The resulting sign of the
strain in each metal was such as to bring the Fermi ener-
gies of the two metals closer together, thereby decreasing
the transferred charge. In that analysis, however, the
electronic kinetic energy was not considered. Here we
show that inclusion of the kinetic energy leads to a
change in sign of the induced strain but to only a small
change in its magnitude.

The driving force behind the transfer of charge from
one metal to the other is the reduction of electronic ki-
netic energy. When charge is transferred, the reduction
of kinetic energy more than compensates for the increase
of electrostatic energy, the total electrostatic and kinetic
energy being less after charge is transferred than before.
It is shown here that the total energy (electrostatic, kinet-
ic, and elastic) after charge transfer can be reduced even
further by a uniform expansion of one metal and contrac-
tion of the other. The predicted sign of the strain, name-
ly, such as to push the Fermi energies of the two metals
further apart, thereby increasing the transferred charge,
is opposite to what was found previously. Somewhat
surprisingly it is thus found that, when the effect of elec-
tronic kinetic energy is included, metal layers strain in
order to transfer more charge rather than less.

II. THEORY

We consider an interface between two metals, the one
on the right (x > 0) having Fermi energy Er and the one
on the left (x <0) having Fermi energy Er. The Fermi
energy before charge transfer is then

Eg, x>0

(0 1\ —
EF(x) E}, x<O0. D

After charge transfer the local Fermi energy is constant
(in the Thomas-Fermi approximation). For clarity we
first ignore strain and treat only the two usual effects
which change the local Fermi energy from its bulk value:
electrostatic potential and electron density.

(i) An electrostatic potential ¢(x) changes the Fermi
energy by

SEp(x)=—ed(x) . (2)

(i) In a free-electron model the Fermi energy is related
to the electron density n through Ep=#k%/2m and
ki=3w"n. To first order, a charge density p=—edn
therefore changes the Fermi energy by

8Ep(x)= —4meAipp(x) , 3)

where App=(7#’/4me’ks)!’? is the Thomas-Fermi
screening length. In lowest order the effect of the
transferred charge on the screening length can be neglect-
ed. Consequently, in the Thomas-Fermi approximation

EQP(x)—ed(x)—4meAig(x)p(x)=const , 4)

where the Thomas-Fermi screening length on each side of
the interface is

Arp, x>0

A‘TF(x )= (5)

Atpy x <O0.

Far from the interface, the charge density vanishes.
Using Eq. (4) to equate the local Fermi energy at
x =+ o to the local Fermi energy for x >0 yields

—e[d(x)—¢(0)]—dmer2ep(x)=0 (6a)
for x >0. Similarly equating the local Fermi energy at
x = — oo to the local Fermi energy for x <0 yields

—e[d(x)—¢(— )] —4meMEp(x)=0 (6b)

for x <0. Finally, by equating the local Fermi energies at
x =t 0, we obtain the potential change across the inter-
face,

¢(0)—@(—o0)=AEp /e, (7)

where AEp=Ep— Ej, is the Fermi-energy difference.
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The electrostatic potential can be chosen arbitrarily at
a point; it is convenient to take ¢(0)=0. Using Poisson’s
equation in conjunction with Eq. (6) to solve for ¢(x),
matching the solutions for ¢ and d¢/dx at x =0, and us-
ing Eq. (7), we find

AEp  Arp
——[1—exp(—x /Arg)], >0
e ATF'H\'TF[ Y )] X

- AEF }V,rl:
e AptAre

o(x)= (8)

[1—exp(x /A7E)], x <0.
The electrostatic energy per unit area
= 1 [dg
U= —
! f—— o 87

2
dx dx 9)
is then?

(AEg/e)?

=1 (10)
16m(App+ALp)

1

For a free-electron gas having Fermi energy Eg, the
average kinetic energy per electron is 2E.. The electron-
ic kinetic energy per unit area after charge transfer rela-
tive to its value before charge transfer is therefore

Uy=3 [ (n(0Ep(x)—n Q(0EP(x))dx , (1)
where n'”(x) and n(x) are, respectively, the electron
density at position x before and after charge transfer, and
E{®(x) and Eg(x) are, respectively, the maximum kinetic
energy at position x before and after charge transfer. It is
shown in the Appendix that

14 (AEp/e)?
5 1677( }LTF"' }v’rF) '

2 (12)
Combining Egs. (10) and (12) yields the total kinetic and
electrostatic energy per unit area after charge transfer
relative to its value before charge transfer,

9 (AEg/e)?

- R (13)
5 16m(Agp+ALp)

which, compared to the electrostatic energy alone, is
greater in magnitude by a factor of Z but of opposite sign.
Since U <O, the total energy is lowered by charge
transfer.

We now show that the total energy of a multilayer can
be lowered even further if the layers are uniformly
strained. We begin by considering a metallic sandwich
consisting of a thin layer of one metal, having Fermi en-
ergy Ep, between thick (semi-infinite) layers of another
metal, having Fermi energy Ej. Since the elastic energy
required to strain a metal includes the change of electron-
ic kinetic energy, care must be taken to count kinetic-
energy changes only once. A simple way to ensure this is
to apply strain before transferring charge. For simplici-
ty, a hydrostatic strain is assumed. The elastic energy
per unit area required for a uniform volume strain v in
the inner layer is then

Us;=1Bv’t, (14)

where B is the bulk modulus of the metal in the inner lay-
er and ¢ is its thickness. A uniform volume strain v
changes the Fermi energy of the metal in the inner layer
by

SEp=—av , (15)

where a is the rate of change of Fermi energy with strain
for the metal in the inner layer. The difference in Fermi
energies between the metals in the inner and outer layers
is then AEp—av instead of AEp. Assuming that the
inner layer is thick enough (¢# > 2Ag) that the screening
charges at its two interfaces do not overlap, the kinetic
and electrostatic energy per unit area in the strained state
after charge transfer relative to its value in the strained
state before charge transfer is given by twice Eq. (13)
with AE. replaced by AEp—av. (Since the Thomas-
Fermi screening length depends weakly on electron densi-
ty, i.e,, App=n 176 the effect of strain on the screening
length can be neglected.) The total energy per unit area
in the strained state after charge transfer relative to its
value in the unstrained state before charge transfer is
then

18 [(AEg—av)/e)?
5 167T( }\.TF"““}\,:[F)

For a=3 eV, App=A7=0.05 nm, B =10" dyn/cm?,
and t=1 nm, it can be confirmed that the quadratic
strain term proportional to a? can be neglected compared
to the quadratic term proportional to B. The optimum
uniform strain which minimizes the total energy is then
found to be

9 | (AEp)a

v=E—= - T (17
5 4m(Ap+Arp) Bet

+1Bo% . (16)

which is greater in magnitude by a factor of Z and oppo-
site in sign compared to what was found previously when
the effect of electronic kinetic energy was neglected.!?

This theory is easily extended to a metallic superlattice,
having alternating layers of one metal with Fermi energy
Er and thickness ¢ and another metal with Fermi energy
E; and thickness ?’. Let one metal have a uniform
volume strain v and the other a uniform volume strain v’.
By the same argument as before, the total energy per unit
area (per repeat period) in the strained state after charge
transfer relative to its value in the unstrained state before
charge transfer is

18 [(AEg—av +a'v’)/e]?
5 167 (App+ArE)

U= +1Bvit +1Bv"t" .

(18)

As before, the quadratic terms proportional to a?, ad',
and a'? can be neglected in first approximation. The op-
timum uniform strains which minimize the total energy
of the superlattice are then

9 1 (AEp)a

p=—= (19a)
5 4m(Apt+Afp) Be’t
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b=+ . (19b)
5 477'( )\.TF+ A’TF) B'e“t’

The uniform strain in each layer is inversely proportional
to the thickness of that layer but independent of the
thickness of other layers.

We next consider a metallic superlattice in which the
composition modulation is smooth rather than abrupt.
We let E{”(x) be the Fermi energy at position x before
charge transfer. Instead of a stepwise variation of

E{?(x), we suppose a sinusoidal variation

EP(x)=(E®)+1AELsin(2mx /A) , (20)

about an average value ( E{”’) with amplitude JAE and
wavelength A. By following the preceding analysis, it can
be shown that the total energy of a composition-
modulated superlattice can be lowered by a sinusoidal
uniaxial strain (in the growth direction)

e(x)=gysin(2mx /A) , (21)
with
go=—m(AEp)a/2Ce?A? , 22)

where C is the elastic modulus appropriate for a uniaxial
strain.> This result is equal in magnitude but opposite in
sign, compared to what was found previously when the
effect of electronic kinetic energy was neglected.'

II1. DISCUSSION

Induced strain caused by electron transfer effects has
been proposed! as a possible explanation of the observed
dependence of elastic constants in metallic superlattices
on modulation wavelength.* In a recent experiment,’ it
was found that the elastic response in the metal-insulator
superlattice zirconium nitride-aluminum nitride also de-
pended on modulation wavelength. This shows that an
electron-transfer mechanism, which only predicts anoma-
lous behavior in metallic systems, cannot be the complete
explanation of elastic anomalies in multilayers. In con-
trast to what is observed in metallic superlattices,®”!°
however, the changes of the average perpendicular lattice
constant in the metal-insulator superlattice zirconium
nitride-aluminum nitride are small and uncorrelated with
changes of the elastic response. Thus, although an
electron-transfer mechanism cannot explain elastic-
constant changes in metal-insulator superlattices, it still
may play a role in explaining such changes in metallic su-
perlattices.

Two main criticisms have been raised regarding our
previous treatment of charge-transfer-induced strains in
which electronic kinetic energy was neglected:! (i) since
both electrostatic and elastic energies are positive, the to-
tal energy was greater after charge transfer than before,
and (ii) although it was shown that a uniform strain

throughout each layer lowered the total energy, it was
not shown that it was the state of lowest energy. Both
criticisms are valid. The first objection has been
answered here by showing that, when electronic kinetic
energy is included, the total energy is reduced by charge
transfer. The second objection, which still applies, will
be addressed in the future by examining the spatial
dependence of the strain field which minimizes the total
energy of a metallic multilayer.
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APPENDIX

The change of electronic kinetic energy as a result of
charge transfer, Eq. (11), can be expressed as the sum of

U =3[ [n(x)=n""(x))Ep(x)dx (A1)
and
U2b=%f_°° n (%) Ep(x)—E{(x))dx (A2)
Substituting
Ep(x)=const+ed(x) (A3)
in Eq. (A1) and using conservation of charge gives
Us, =%f_°°we [n(x)—n'9x)]¢(x)dx . (A4)

Substituting p=—e(n —n'?), using Poisson’s equation,
integrating by parts, and using Eqgs. (9) and (10), we ob-
tain

6 (AEp/e)?
Upy=—"F7"—"T"7—. (AS)
5 16m(Arp+ALr)
Substituting
Ep(x)—EP(x)=—4me A2 e(x)p(x) (A6)

in Eq. (A2), using Poisson’s equatlon for p(x), and substi-
tuting for n'?(x) and Arp(x) gives

® (0)
Uy, = 5 67Te f (x) —ﬂdx . (A7)
Using Egs. (1) and (8) for E‘FO)(x) and ¢(x) yields
(AEg/e)?
Up=—S——F° (A8)

Combining the results for U,, and U,,, we thus obtain
14 (AEg/e)?

Uy=—-"——" (A9)
2 5 16m(App+Alp)
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