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The lattice dynamics of C60 has been studied first by means of group theory and then by diago-
nalizing the dynamical matrix for two recently proposed intermolecular potentials. The libron and
phonon energies are calculated as a function of momentum along various symmetry directions with
and without phonon —libron interactions. The effects of these interactions on the density of states are
also discussed. Explicit expressions for the energies of these modes at zero wave vector are given. It
is found that both potential models have nearly the same phonon but a somewhat diferent libron
spectrum. The calculated libron energies agree reasonably well with currently available experimental
results.

I. INTRODUCTION

Recently it has been established that Csc molecules
in solid Cso undergo an orientational ordering transition
at a temperature T, of about 250 K.r For temperature
T )T, the molecular orientations are uncorrelated over
distances of more than a few lattice constants. 2 In this
phase the molecular centers form an fcc Bravais lattice
with space group Frn3m (Ref. 3) and the molecules are
freely rotating. 4 For T & T, an orientationally ordered
structure is formed with four molecules per unit cell. ~

It has been shown that there are only three possible
space groups for completely oriented icosahedra centered
on fcc lattice positions such that there are four molecules
per unit cell. It has been establisheds 7 that the ordered
structure is that of the space group Pa3 (Ths). In this
structure the center of gravity of each molecule remains
on its fcc lattice position. This structure may be viewed
as consisting of four interpenetrating simple cubic sub-
lattices, on each of which molecules assume a given fixed
orientation as shown schematically in Fig. 1. For each
sublattice this orientation is obtained by rotation about
the local threefold axis through a setting angle P ~ 24'
from an initial standard orientation in which twofold axes
are aligned along [100] directions. One choice of the local
threefold axes is listed in Table I. Although the Pa3 space
group has no fourfold rotation or fourfold screw axes, cu-

bic symmetry is attained by screw axes which result in
the different [111]directions being equivalent. Since there
is long-range orientational order, we know that there will
be elementary orientational excitations, called librons,
which describe orientational properties near the orienta-
tional ground state and which are the focus of the present
paper.

(+)

(+)

x(v)
(0, 0, 0)a

(-,', 0, —,')a

(0, -', -')a

(2, 2, 0)a

Local threefold axis

[111]

[111]

[111]

[111]

TABLE I. Molecular positions and threefold axes of sym-
metry for sites in the unit cell. Here X(p) is the position of
the center of mass of the molecule p in the unit cell and a is
the simple-cubic lattice constant.

(+)
FIG. 1. The crystal structure of solid Ceo (Pa3) (Refs.

5—7). For each molecule, the arrows indicate which of the
crystal [111]directions corresponds to the local threefold axes
as listed in Table I. Molecules with solid arrows are in the
z = 0 plane and those with dashed arrows are in the plane
z = 2a. The end of the arrow labeled (+) points out of
the page. To get the equilibrium orientational configuration,
each molecule must be rotated from its standard orientation
through the setting angle, C, about the local axes indicated
by arrows. Values of C are given in Refs. 27 and 6 as 22' and
26', respectively. The orientations of the single and double
bonds are represented as they would appear before rotation
through the setting angle C.
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Although we will be concerned with Cso in its Pa3
phase, we should note that the structure and phase dia-
gram of pure solid Cso is still controversial. Very recently,
there have been suggestions of further phase transitions
in pure Cso at temperatures below 250 K. For instance,
evidence has been obtained for a glass transition at about
90 K.s There is currently much debate as to whether or
not this is a true phase transition as contrasted to a grad-
ual evolution in dynamics which one would see when the
experimental time scales become comparable to the re-
laxation time. However, a transition such as this does
not necessarily indicate that the Pa3 structure becomes
unstable at low temperature. A possible transition which
would have greater relevance for the calculations of the
present paper is that suggested by the electron diffrac-
tion and microscopy study of Tendeloo et al.s They inter-
pret their experimental data as showing a doubling of the
unit cell parameter along all three [100] directions. The
structure they propose is one in which molecules seps
rated by a displacement a along each [100] direction are
alternately rotated by angles +P and —P. This sugges-
tion seems implausible to us. An alternative structure of
this type would be one in which each molecule is rotated
by a small displacement angle bP relative to their equi-
librium positions in the usual Pa3 structure. A distorted
structure of this type would give rise to additional Bragg
reflections (not yet seen in other experiments) and would
also give rise to anomalies in the libron spectrum. Since
the structure is not yet confirmed by several experiments,
we do not consider it here.

A calculation of the libron spectrum requires an ori-
entational potential which is consistent with the Pa3
ground state. By now two such potentials have been
proposed. ic ii Li et aLi2 have given libron spectra from
their potential, and our results confirm theirs. Here we

calculate the libron and phonon spectrum from the po-
tential proposed by Sprick, Cheng, and Kleinii in order
to compare results from the two potentials. These cal-
culations can be carried out in a standard formalism re-
viewed by Ref. 13, for instance. An appropriate way to
carry out these calculations is to assume that deforma-
tions of the molecule require much more energy than the
elementary excitations due to intermolecular translations
or rotations. i4 Since there are four molecules per simple
cubic unit cell, we expect to have 4 x 6 = 24 modes in the
phonon —libron spectrum. If we neglect coupling between
librons and phonons, each of these degrees of freedom
will have 12 modes for each allowed wave vector.

It is useful to recall the results for other systems hav-

ing the same crystal structure, Pa3. In particular, many
of the diatomic molecular solids have this structure, in-

cluding those of Nz, is CO, s and Hz. ir is The main dif-

ference in the case of diatomics is that each diatomic
molecule has only two angular coordinates, whereas the
rigid body C60 has three such coordinates. We will show
below a dispersion relation for librons in solid Hg. This
calculation shows that the dispersion in the libron band
is smaller than or comparable to the average libron en-

ergy. In other words, librons are mell approximated by
neglecting completely their dispersion, in which case they
are so-called Einstein modes. Of course, in experiments

where a quantity similar to the libron density of states
is observed, such an approximation should not be used.
The complete libron —phonon excitation spectrum calcu-
lated by Mertens and Biemzo for solid Hz shows that the
libron —phonon coupling is quite small. 2i*22 As we shall
see, the libron spectrum for C60 is quite similar to that
for solid H2 even though the physics behind the orien-
tational interactions is quite diferent in the two cases.
Seemingly the constraints of group theory are quite se-
vere.

Here we calculate only a few of the properties which de-
pend on the libron and phonon frequencies. As we have
mentioned, our results for the libron and phonon dis-
persion relations and density of states do reproduce the
results of Li et aLi2 for their potential. Concerning the
elastic constants we do have a minor discrepancy possibly
caused by some confusion concerning the scale of wave
vectors. Also, we give mean square amplitudes of vibra-
tion and rotation, which show that quantum zero-point
motion is indeed very small. Using a Lindemann crite-
rion, we estimate the melting temperature to be of order
1700 K. However, such a criterion may not be definitive
for such a large molecule. Our results also include the
symmetry of the libron and phonon modes. This infor-
mation, not given by Li et aL, could presumably help in
the identification of modes as potentially observable via
inelastic neutron scattering. The quantities we calcu-
late will facilitate an experimental test of the potentials
heretofore proposed and will therefore be helpful in fur-
ther refinements of these potentials.

Briefly this paper is organized as follows. In Sec. II
we review the formalism to be used in our calculations.
The group theoretical analysis is outlined in Sec. III, but
most of the details are given in Appendixes A and B.For
instance, in Appendix B we give the block-diagonal form
of the dynamical matrix at zero wave vector. This form
could easily be used to obtain libron frequencies at zero
wave vector for other orientational potentials. Section
IV contains our results. Here we show dispersion curves
and density of states for both potential models. We give
results both with and without the inclusion of libron-
phonon interactions. We tabulate the elastic constants
implied by our lattice-dynamical calculations. Here we
also give a brief discussion of the implications our results
have for optical and scattering properties. In Sec. V we
estimate the amplitude of thermally excited translational
and orientational excitations. We then employ a Linde-
mann criterion to estimate the melting temperature of
Css. Our conclusions are summarized in Sec. VI.

II. LATTICE DY'NAMICS

In this section we discuss the calculation of the libron
and phonon dispersion relations within the harmonic ap-
proximation for perfectly rigid C60 molecules. We first
give the generalized coordinates needed to discuss the ori-
entational and translational excitations out of the ground
state. We then use these coordinates to form the dynam-
ical matrix from which the normal modes of small oscil-
lations are obtained. Next we discuss the conditions for
equilibrium. These conditions provide the relation be-



7880 T. YILDIRIM AND A. B. HARRIS 46

tween the lattice constant and the setting angle of the
molecule and parameters used in the intermolecular po-
tential. Finally, we describe the recently proposed inter-
molecular potentials for which we carry out calculations.

A. Generalized coordinates

The coordinate basis used in the present work is now
described. To implement the rigid-body approximation
mentioned above, we introduce a set of molecule-fixed
coordinates, whose origin is at the center of gravity of
the molecule. In this set of coordinates the atoms are
located at positions x(k) for k = 1, 2, ..., 60. We may
then express the n component of the position of the kth
atom of the pth molecule in unit cell a as

X (a, p„k) =X (a, p)+t (a, p)+) I'"exp(k),
P

B. Dynamical matrix

The analysis of the vibrational dynamics of a crystal
by diagonalizing the dynamical interaction matrix is to
be found in almost all solid-state physics texts and will
be very briefly paraphrased here merely to establish a
convenient notation.

After expanding the potential energy of a molecular
crystal in terms of u'(a, p) and u" (a, p), writing down the
equations of motion (in the harmonic approximation),
and taking advantage of the translational symmetry by
the following Fourier transform:

u'(q, p) = ) u'(a, p,)e '~ ~''l, i =t, r, (5)

where N is the number of unit cells, we get the following
system of equations determining the normal modes and
frequencies of the system:

where X~(a, p) denotes the equilibrium position of the
center of mass of the pth molecule in cell a (see Table
I) and z~(k) is the pth component of the position of
the kth atom in the molecule-fixed coordinate system.
Here F~ is the rotation matrix whose elements I'" give
the direction cosine between the crystal-fixed n axis and
the molecule-fixed axis p. Also, t~(a, p) is the a com-
ponent of the translational displacement of the center of
mass of the pth molecule in unit cell a. Since we shall
treat the translational and rotational motions along with
their coupling in the same framework it is convenient to
define three translational coordinates as mass-weighted
displacements of the center of mass along the three di-
rections of the Cartesian axes by the relation

(2)

~~u' (q, p) =) (D"p(q; pv)u~p(q, v)
p, v

+D'"p(q; pv)up(q, v)},
~su" (q, p) = ) (D"p(q; pv) up'(q, v)

p, v

+D""p(q; pv)up(q, v)).

Here

D"p(q; pv) = ) V'p(op; bv)e'
mimi'

b

(7)

where M = 1.2 x 10 kg is the mass of Cso.
For the three degrees of rotational freedom, we define

three rotational coordinates as inertia moment-weighted
rotations around the three molecular axes

where I' = M, I for i = t, r, respectively, and the
V'&(op; bv) is the force constant given by

a'V,

where I = 1 x 10 43 kgm~ is the moment of inertia of
Cso. The relation between the crystal-fixed Cartesian co-
ordinates and the rotations 8~(ap) can be obtained from

Eq. (1) once the dependence of the direction cosines I'"
on the rotations 8&{a,p) is specified,

I'~ =A~ +) A" e p 8 (a, p,)

where VI is the interaction potential and ( ), signifies
that the derivatives are to be evaluated with all molecules
in their respective equilibrium positions and orientations.

We may write Eqs. (6) and (7) in the following matrix
form:

D(q)U(q) = ~'U(q)

where D{q) is the 24 x 24 dynamical matrix

(4)

where A~~ is the equilibrium value of F" . The in6nites-
imal rotation 8p(a, p) is taken about the molecule-fixed p
axis. e ~ takes the value zero unless all three indices are
different. It is equal to 1 if the indices are in the cyclic
order xyz and —1 for the order zyx.

and U(q) = (u~ (q, 1), . . . , u~ (q, 4), u" (q, 1), . . . , u" (q, 4))
with u'(q, p) = (u~(q, p), u„'(q, p), u', (q, p)) are the
eigenvectors.

For the construction of the dynamical matrix elements
given in Eq. (8) we need to specify the form of the crystal
potential. Neglecting multimolecule interactions, the in-
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&i = -) ) O(ap;bv),
ap, 5v

(12)

termolecular potential may be expressed as the sum over
all pairwise interaction between molecules

where C(ap;ap, ) = 0.
It is convenient to express the dynamical matrix in

Eq. (8) as a sum of diagonal and ofF-diagona1 parts in
sublattice indices p and v. Namely from Eqs. (8) and
(12) one gets

(13)

The explicit expressions for the force constants

( BzC(op, bA) i ( 824(op, bA)

(Bu~ (o, p)Bu'p(o, p) ) (Bu' (o, p)Bu'p(b, A) )
can be found in Ref. 25.

After having introduced the harmonic approximation,
it is important to establish the form of the total equi-
librium conditions. These equations provide the rela-
tion between the lattice constant and setting angle of
the molecule and parameters used in the intermolecular
potential.

For total equilibrium we have to satisfy both force- and
stress-free conditions which are, respectively, given by

).(BC( po„bv))

Bun(o, p) ) 0

&8&i ')
(16)

where P is the setting angle whose equilibrium value is Ps.
Note that for solids of linear molecules, such as solid H2
(Refs. 17 and 18) or Ng or CO (Refs. 15 and 16) (which
crystallize with the same space group, Pa3, as Css), ro-
tation about the linear axis is meaningless. Thus in these
systems there is no such (b coordinate and consequently
there is no condition analogous to Eq. (16)

The stress-free condition fixes the equilibrium shape of
the unit cell. A discussion similar to that for the force-
free case shows that for cubic symmetry there is only one
symmetric deformation of the unit cell. The cube can
only be uniformly expanded. As a result there is only one
independent stress-free condition,

and

i =t r, n=xyz, p, =1234 (14) (Ba), , (17)

). &84(oIJ,) bv) )
& Bu'. (b, v) ),

+l, '
l

& (orb»I =0, rrr=zyz,fBO(oIJ„bv) )

In summary, for Cso in the Pa3 structure, we have
two independent conditions for equilibrium given in Eqs.
(16) and (17). Thus there are two constraints on the
parameters in the potential.

C. Intermolecular potential model

where R, (op, bv) = u' (b, v) —u' (o, p). Since there are
four molecules in the unit cell, the force-free condition
gives 24 conditions while the stress-f'ree condition gives 6.
However, the number of these conditions is considerably
reduced by the symmetry of the crystal.

From group theory we know that molecules ishich
are interchangeable by rotations (proper or Ampraper) to-
gether form a crystallographically distinct species and if
one of the member is force free all are force Pee. Since
orientationally ordered Css forms a simple cubic system
with four symmetry-related molecules in the unit cell,
the number of independent force-free conditions is re-
duced to 6. A further reduction in this number is a con-
sequence of the site symmetry Ss(3). According to Eq.
(14) the gradient of the potential must vanish at equi-
librium. This condition will be satisfied if the gradient
involving coordinates which are invariant under the site
symmetry operations vanishes. The only such invariant
(totally symmetric) coordinate is the uniform rotation of
all molecules about their local threefold axis. Thus the
force-free condition is simply

We now discuss models for the intermolecular poten-
tial 4 in Eq. (12) for which we perform calculations.
Recently two difFerent potentials to describe the inter-
actions between Cso molecules have been proposed. io ii
In both cases, the part of the intermolecular potential
independent of the molecular orientation is contained in
a Lennard- Jones (12-6) atom-atom potential. The de-
pendence of the Lennard-Jones potential on orientation
is weak and it also predictszs that the cubic structure is
unstable relative to a tetragonal distortion, contrary to
experiment. To remedy this defect, it is necessary to use
a more realistic orientational potential. In particular, it
has recently been realized that it is important to take
proper account of the charge density. In the two models
proposed, allowance is made for enhanced electron den-
sity in the double bonds relative to that in the single
bonds, as we will see in a moment.

The potential proposed in Ref. 10 (denoted potential
I) is modeled by introducing efFective charges q and —2q
(q = 0.27e) located on the centers of the single and dou-
ble bonds, respectively. Thus the total interaction be-
tween two molecules is
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C(ap„bv) = ) ) 4s
0 l" ( 0.

kk' 2 & ""')

) ) qmqn

meap nebv

(18) -1.8

(a)

where Rkk (R „) is the distance between kth C atom
(mth bond center) of the molecule ap, and k'th C atom
(nth bond center) of the molecule bv and q~ is the ef-

fective charge of bond m. The parameters s and o are
taken to be s = 2.964 meV and n = 3.407 A..

In Ref. 11 the intermolecular potential (denoted po-
tential II) is modeled by the interacting bond model
in which the 60 atomic 12-6 t sites are supplemented
with 30 similar 12-6 D sites located at the centers of
double bonds. Furthermore, the stability of Pa3 struc-
ture is enhanced by assigning a negative bond charge q~
(q~ = —0.35e) to the D sites and a compensating pos-
itive charge qc = —gzz to the C atoms. The explicit
expression for the potential energy between molecules ap,
and bv is

-1.9

-2.0

-1.7
(b)

30 90

[111]
[110]
[110]

1

I

l
/

I

60

4 (degree)
120

12 6

+ )
I k) ~ ( kk j ( kk ) J

keD k'eD
qkqk

k, k'eC, D
(19)

-2.0
-90 -60 -30 0 30

0 (degree)
60 90

where k (k') runs over the C and D sites of the molecule
ap, (bv). Here Rkk is the distance between sites k and
k' and qk are the effective charges at the centers of the
bonds and on the C atoms for k = D, C, respectively.
The values of the parameters s, o~~) o~~) and o~~ are
1.293 meV, 3.4 A, 3.5 A, , and 3.6 A, respectively.

A detailed study of potential I is given in Ref. 10 and
is not repeated here. Figure 2(a) shows the variation
of potential II with setting angle P. The potential en-

ergy has an absolute minimum at P = 25.36' which is in
good agreement with the experimental values 22' (Ref.
27) and 26'.s Figures 2(a) and 2(b) show the potential
II as a function of angular displacement of the molecule
located at (0,0,0) away from its equilibrium configuration
for various rotational axes. Note that there are many lo-
cal minima which are separated by a potential barrier of
height about 150 meV. This value is half of that of po-
tential I in Ref. 10 indicating that it would give a lower
glassy transition temperature T~ than the one given in
Ref. 10.

III. GROUP THEORETICAL ANALYSIS OF Ceo

Before we discuss our numerical results obtained from
two potential models introduced above, we shall present
the group theoretical analysis of the Cse crystal. Since
the available experimental data are not enough to test

FIG. 2. (a) Top: Variation of the crystal potential energy
with setting angle C) according to potential II. (Molecules in
each sublattice are rotated about their [111]directions. ) The
potential energy has an absolute minimum at 4, = 25.36'.
(b) Bottom: The potential energy for a CM molecule located
at (0,0,0) obtained from potential II as a function of rotation
angle away from its equilibrium orientation. [Here only the
molecule at (0,0,0) is rotated. ] The curves denoted by solid
line, long-dashed line, and short-dashed line correspond, re-
spectively, to rotations about [ill], [110], and [110] axes of
the crystal.

( ( ) ())' (20)

the present potential models the results from group the-
ory which are independent of the force model of the crys-
tal, are most valuable, especially for the analysis of the
infrared, Roman, and neutron scattering of the crystals.

From group theory~s 2s one can predict the degeneracy
of normal modes for any q vector in the Brillouin zone.
One classifies the normal modes according to the trans-
formation properties of their polarization vectors with re-

spect to symmetry operations, and hence determines the
polarization vector of the normal mode when it is given

by the symmetry alone. Finally, group theory facjhtates
the factorization of the dynamical matrix. This requires
first the construction of the set of unitary matrices
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where

T(q; R) =

with

f A(1, l)R A(1, 4)R)

(A(4, 1)R ~ ~ A(4, 4)R)
(21)

A( ) b( P(p R)) eig. [x(P)—Rx(v)) (22)

Here R are 3 x 3 rotational matrices which are elements
of the group of suave vector q, G(q). The quantity
6(p, E(v, R)) describes interchanges in the sublattices, if
any. It is a Kronecker delta, and vanishes unless p corre-
sponds to the sublattice v via R, in which case it is equal
to unity.

In Eq. (20) we used the fact that the transformation
properties of both translational and rotational coordi-
nates are the same except that u" (q, y, ) transforms like
the component of an axial vector. Note that det(R) = +1
for proper and improper rotations, respectively. There-
fore, the transformation matrix for u" (q, p,) differs from
that for u4 (q, p) by inclusion of the factor det(R). Fur-
ther, because u~o(q, p) and u" (q, p) transform indepen-
dently of each other, the oiF-diagonal parts of S(q; R) in
Eq. (20) are zero.

The matrix S(q; R) commutes with the dynamical ma-
trix D(q) given in Eq. (11) for all R in G(q) and thus
the set of matrices S(q) = (S(q; R) ] R e G(q)) furnish
a 24-dimensional educible representation of G(q). In
order to obtain all information about the normal modes
mentioned above, one resorts to the familiar reduction
formula

c, = — ) )(('(q; R)'y(q; R),
RcG(q)

where

g(')(q; R) = Tr[r(')(q; R)],

)|(q; R) =Tr[S(q; R)],

(23)

(24)

and h is the order of G(q). The quantity c, above is
the number of times the irreducible representation (IR)

r(') (q) of dimensionality f, occurs in the 24-dimensional
reducible representation of S(q). Correspondingly, there
will be c, eigenvalues ~, 1(q),~, 2(q), . . . , ~, , (q) each
of which will be f;fold degenerate.

After having reviewed the standard group theoretical
procedure, we shall now present the results of the group
theoretical analysis of lattice vibrations of the solid Cso.

C6p molecules crystallizes in the simple cubic system,
space group T&~ (Pa3) with four molecules per unit lying
on sites of Ss(3) symmetry (Fig. 1). The positions of the
four atoms in a primative unit cell are given in Table I.
The symmetry elements that will be important are those
of the space group which leave the unit cell invariant,
in this case Th = i x T. There are eight threefold rota-
tions Cs+„(y,=l—4) along the appropriate [111]axis, three
twofold screw axes C2 (n = x, y, z) parallel to the cu-
bic axes. The direct product with the inversion operator
i yields eight Ss+„and three glide planes o . These 24
rotational elements with their corresponding V(R) (frac-
tional translation) are given in the 3 x 3 matrix form in
Appendix A. The efFect of these rotational elements on
the sublattices and Cartesian components, required for
the present work, are given in Table II.

The BZ of a simple cubic lattice, showing the high-
symmetry points pertinent to the present calculations,
is shown in Fig. 3. The 10 special wave vectors of high
symmetry in the BZ of simple cubic lattice and elements
of Tj, that leave these vectors fixed or change by a vector
of the reciprocal lattice are given in Table III.

Since I' (q = 0) is the most important point for many
aspects, we provide a detailed group theoretical study of
the lattice modes at this point in Appendix B. Particu-
larly, we first find the 24 symmetry-adapted vectors and
then after simplifying the dynamical matrix we calcu-
lated the energies of libron and phonon modes explicitly
in terms of any given potential model. Such informa-
tion is useful for testing new potentials and for anal-
ysis of infrared, Raman, and neutron scattering of the
crystal. For other high-symmetry points and lines in
BZ our group theoretical analysis is collected in Table
IV in the following manner. The first column lists the
high-symmetry points and their coordinates in the BZ

TABLE II. EfFect of symmetry operations of cubic group T on molecules and on Cartesian
components. The first four rows (i=1-4) shows how sublattice i transforms under the symmetry
operation of each column. The last three rows show the efFect of each symmetry operation on
Cartesian coordinates x, y, and z, when fractional translations are omitted. The screw operations
Cz (o = x, y, z) are chosen so that C2 = Cz[100] + (1, 1,0) 2, C2„= C2[010] + (0, 1, 1) 2, and
C2, = C2[001] + (1,0, 1) 2, where C2[R] is 180' rotation operator about axis R.

C2„

3
4
1
2

&3+i

1
4
2
3

&32
+

3
2
4
1

C+

4
1
3
2

&3+4

2
3
1
4

&si

1
3
4
2

&s~

2
1
3

&33

2
4
3
1
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Figs. 5(a)—5(e). In order to make a comparison between
the two models, we also present the phonon and libron
dispersion curves of potential I in Figs. 4(a) and 4(b).
These curves are exactly the same as those in Ref. 12.

The representations to which the modes belong at g =
0 (factor group Tj„) are indicated in the figures. The
translations are odd under inversion and the number of
lattice translation is given by

I'~ = A„+E„+3T„. (26)

Subtracting acoustic modes I'T;. = T„(which correspond
to the translation of the crystal as a whole), we get

I'& = A„+E„+2T„. (27)

FIG. 3. First Brillouin zone of a simple cubic lattice,
showing the points and lines of high symmetry pertinent
to the present calculations. 1' = (0, 0, 0), X = (0, 2, 0),
M = (~~, ~, 0), R = (2, ~, 2) in units of (—,).

according to Koster;zs the second column gives the cor-
responding point groups G(g); the third column gives
the dimension of the irreducible representations of group
G(ci); the fourth column gives the extradegeneracy due
to time-reversal symmetry if any; the fifth column gives
the irreducible decomposition of normal modes into dif-
ferent branches. The degeneracy of each branch is indi-
cated in the parentheses. The irreducible representations
for G(q) can be found in Ref. 30.

IV. RESULTS AND DISCUSSION

In this section we discuss our numerical results. In
Sec. IV A we give the libron and phonon dispersion rela-
tions in the direction of high-symmetry lines in BZ (Fig.
3) and we use these results to calculate the elastic con-
stants. The density of states with and without inclusion
of libron —phonon interactions is given in Sec. IVB. Opti-
cal and scattering properties are considered in Sec. IVC.

A. Dispersion curves

The dispersion curves for six relevant directions in the
Brillouin zone obtained from potential II are shown in

The librations are even and given by

I'R = As + Eg + 3'.
Thus at point I', we have pure five translational and
five librational modes with one onefold, one twofold, and
three threefold degeneracies. From Fig. 4(a) we see that
potential I does not give this result. There is a nearly ac-
cidental fivefold degeneracy A.s shown in Fig. 5(a) there
are no accidental degeneracies for potential II. For the
phonons at this point both potential models give results
as expected from group theory. The main difference is
the lowest-energy mode which is A„ for potential I while

T„ for potential II. At this point, all libron modes are Ra-
man active, while only T modes (except acoustic modes)
are IR active. However, due to the high symmetry of
Csp the observation of libron modes by a Raman exper
iment may not be practically possible. In Appendix B
we present the more detailed study of these modes from

purely symmetry arguments, like explicit expressions for
eigenvalues, eigenvectors, and the most simplified form
of the dynamical matrix.

For the b, (0, n, 0) direction, the group of the g vector
is isomorphic to Cz„(y) and as a result all degeneracy
is supposed to be removed. We have four difFerent rep-
resentations b, i, A2, As, 64. As we see from Figs. 4(a)
and 5(a) the libron dispersion curves from both poten-
tials are all nondegenerate as occurred in group theory.
For the phonon dispersion curves in this direction, po-
tential I has two twofold nearly accidental degenerate
branches; one is the highest-energy optical mode and the

TABLE III. High-symmetry points and lines in the BZ and the elements of Tq that leave the
vrave vector 6xed or changed by a vector of the reciprocal lattice. The symmetry operations RI, are
given explicitly in Appendix A.

High symmetry points
r
X
M
R

a(FX)
Z(FM)
A(FR)
S(XR)
Z(XM)
T(MR)

and lines in BZ
(0,0,0)-
(0,1,0)-
(1,1,0)—
(1,1,1)-

(O, n, O)
—"

(n, n, n)-"
(n, l, n)-
(n, 1,0)—,

(1, l, n)—

Elements of Tg that leave q invariant

R] y
~ ~ ~

y R24
R1) R7) R13)R19) R4& R10) R16& R23
R1 ) R7& R13) R191R4) R10) R16) R23
R1, ..., R24
Rl y R13 y R10 i R22
R1, R1Q

R1, R2, R3
R1 ) R$6
R1 y R&9 y R16 ) R20
R1, R7, R16, R22
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TABLE XV. Group-theoretical analysis of C60, as explained in the text.

r

R
LL(1'X)
Z(I'M)
A(I'R)
S(XR)
Z(XM)
T(MR)

Points

(0,0,0)-
(0,1,0)—
(1,1,0)—
(1,1,1)—

(O, a, O)-
(n, a, O)-
(a, n, a)-

(a, 1,0)-
(1, l, a)-

Point symmetry

G(q)

Dih.
Dga
+h

C"(W)
C (z)

C3
C (~)

C2 (z)
C2~(z)

Dimension of irr.
representation

1
2
2
2

1
1
1
1
2

Time reversal

degeneracy
no
no
yes
yes
no

no
yes
yes
yes

Number of branches
and degeneracy

2(1)+2(2)+6(3)
12(2)
6 (4)
6 (4)
24(1)
24(1)
8(1) + 8(2)
12(2)
12(2)
6(4)

20

18

~ 16
U

Pal
~14
CRt

12

Tg

Ag

10

X Lh, (O, a, 0) F E (a, a, 0) M T (l, l, a) R A (a, a, a)

50

45

40

35
I

v 30

&25

$20
15

10

(b) A ~ Tu

F-u
U

Au

Tu
X A(0a 0) F Z(aa0) M T(l 1 a) R A(aaa) F

FIG. 4. (a) Top: Harmonic libron dispersion curves ob-
tained from potential I (in the absence of phonon —libron in-
teraction) in the directions X ~ I', I' ~ M, M -+ R, and
R —+ I'. Curves are labeled by the irreducible representa-
tions according to which the wave functions transform, Along
b, (0, a, 0) the labels 1, 2, 8, and 4 denote the representations

Zk3, and b,4, respectively. Along Z(n, n, 0), the mi-
nus sign indicates modes which are odd under the glide-plane
operation R10 of Appendix A. Modes which are unlabeled
in this direction are even under Rgp. Along T(1, l, a) all
modes transform according to the representation T. Along
A(n, a, a) modes are labeled according to how they transform
with respect to the threefold axis. Modes labeled A trans-
form according to the identity representation. The unlabeled
modes transform according to the two complex conjugate E
representations, which are degenerate. The symmetry of the
modes at I'(0, 0, 0) is indicated in the right-hand margin and
is discussed in detail in Appendix B. (b) Bottom: Harmonic
phonon dispersion curves for potential I, as in (a). Along
E(a, a, 0) the modes which are even under Rqp are explicitly
labeled +,

other is the lowest-energy acoustic mode, while poten-
tial II has no such accidental degeneracy [Figs. 4(b) and
5(b)]. The other important remark is the small splitting
of the branches along this direction, as shown in Fig. 5(b),
which are proportional to the order parameter. Conse-
quently, these splittings disappear in the orientationally
disordered fcc phase due to the higher symmetry. As
shown in Fig. 4(b), these splittings are negligibly small in
the case of potential I. In this regard potential I appears
to be more symmetric than the crystal structure requires.
Also, we note that the efFect of the libron —phonon inter-
action is stronger in this direction than in the other sym-
metry directions. Thus in Fig. 5(e) we see relatively large
splittings in the b(0, a, 0) direction at the places where
either the longitudinal or transverse phonons cross the
librons dispersion curves. At point X = (0, 1,0), due to
the time-reversal degeneracy each branch is twofold de-
generate and this is the case for both models even though
the lowest-energy phonon modes of potential I are almost
fourfold degenerate.

For the Z(a, n, 0) direction, only a glide mirror plane
is preserved and the group of the g vector is isomorphic
to C, (z). Now, only two representations Zq and Zq oc-
cur and the large number of branches which arise in the
absence of degeneracy interact (acoustic modes interact
with the optical modes) and give rise to a very complex
pattern for both potential models. At point M(1,1,0) we
have fourfold degeneracy which is caused by self-stocking
of the branches. Along Z and at the point M transla-
tional and librational motions are mixed.

Along the direction T(1,1,n) and at point R = (1,1, 1)
the fourfold degeneracy is preserved. While transla-
tional and librational modes are mixed along T, they
are separated into pure translational and pure librational
modes at point R (belonging to the Rq and R2 irre-
ducible representation, respectively). For the phonon-
dispersion curves obtained from potential II there is a
eightfold nearly accidental degenerate branch at point R
[Fig. 5(b)). Including next-nearest-neighbor interaction,
this degeneracy may be removed.

For the direction A(a, a, a), only threefold rotation
axis is preserved and thus the group of the q vector is
isomorphic to Cs and as a result only two representations
occur; one double degenerate (labeled 8 = (A2, As))
and the other nondegenerate (labeled A = Aq}. The
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double degenerate is caused by time-reversal symmetry.

It is important to note that the acoustic branches have

large dispersion and in the absence of libron —phonon in-

teractions the nondegenerate acoustic branch A interacts
with the corresponding optic branch arising from T„and
A„at q = 0 for potentials I and II, respectively. Also,

for both potential models, the previously pure librational

branches at point R are split up and cover a wider range

of frequencies as we go to I' along A. This change is
strongly reflected in the density of states shown in Figs.
7 and 8.

Along other directions Z(l, a, O) and S(a, l, n), due
to the time-reversal degeneracy all branches are twofold
degenerate as obtained from both potentials [Figs. 5(c)—
5(d)j

Prom these dispersion curves shown in Figs. 4(a) and

18 Tg (c)
50

—16
t

8

14
+P

K

12

ccI
4e 10-

Tg

A Ag

6

X b(0a0) I' Z(a, aO) M T(11a) R A(a aa) F

16

8
14

Va
5'
Pal
Os 12-

45

35

30a

25

20

45

—40
I' 35

& 30

25

20

15

(b)
Tu

Eu
AU

U

10

8

M Z(a, 1,0) X S(a, l, a) R

15

10

5

0
M Z(a, 1,0) X S(e, l, e) R

0 Tu
X A(o, a, o) F E (a, , o) M T(1,1, ) R A (a )

(e)

40

35

6 30

p5 25

i
20

15

10-

0
X K(O, a, 0) F E (a, a, O) M T (I, l, a) R jl (a,a, a)

FIG. 5. (a) Harmonic libron dispersion curves obtained from potential II (in the absence of phonon —libron interaction) in
the directions X —+ I', I' ~ M, M ~ R, and R —+ I'. The notation for the symmetry labels is the same as in Fig. 4. Along
b, (0, a, 0) the symmetry labels in increasing order of frequency (along the dashed line) are (1, 4, 3, 2, 1, 4, 2, 1, 3, 4, 3, 2). Along

Z(n, a, 0) the symmetry labels in increasing order of &equency (along the dashed line) are (+,+, —,—,+, +, —,+, —,—,+, —).
(b) Harmonic phonon dispersion curves for potential II, as in (a). Along b, (0, a, 0) the symmetry labels in increasing order of
frequency (along the dashed line) are (4, 3, 1, 2, 1, 3, 2, 4, 4, 2, 1, 3). Along Z(a, a, 0) the symmetry labels in increasing order
of frequency (along the dashed line) are (+, —,+, +, —,—,+, —,—,+, —,+). (c) Harmonic libron dispersion curves obtained
from potential II (in the absence of phonon —libron interaction) in the directions M ~ X and X -+ R. (d) Harmonic phonon
dispersion curves obtained from potential II as in (c). (e) Harmonic libron and phonon dispersion curves obtained from potential
II (in the presence of phonon-libron interaction) in the directions X —+ I', I' -+ M, M —+ R, and R -+ I'.



46 LA I I ICE DYNAMICS OF SOLID C60 7887

TABLE V. Sound velocities along various high-symmetry directions and elastic constants obtained from both potential
models.

Propagation directions

Potential I
Potential II

[1001'
Cg

2.17
2.10

C~

2.93
2.84

C~

3.31
3.19

Sound velocities (lan/s)
[110)

C
Cg&

2.17
2.10

Cg

1.77
1.74

C~

3.43
3.30

C11

0.149
0.141

Elastic constants
(Mbar)

C12

0.069
0.060

C44

0.081
0.077

Along this direction we have two nondegenerate transverse acoustic branches. However, as discussed in the text, the two
transverse mode energies have the same slope in the long-wavelength limit, so that number of elastic constants is still 3, as
expected for cubic symmetry.

This is the transverse mode having displacements in the xy plane.
'This is the transverse mode whose displacements are perpendicular to the xy plane.

30-

g„28

26

g 24

22

~ 20
Do 18

~ r6

)4,—

( I,OP ) (I,1,0) (0,0,0',

4(b) and Figs. 5(a)—5(e) the main conclusion made is
that potential model I is more symmetric than model II
in the sense that model I gives rise to nearly accidental
degeneracy at many points and lines.

The other interesting remark concerns potential II.
Note that the upper two libron bands in Fig. 5(a) are
surprisingly similar to the entire libron spectrum of solid
Hs, ~s shown in Fig. 6. The lowest band of four libron
branches in Fig. 5(a) corresponds predominantly to spin-
ning libration of molecules about their local threefold
axis. For diatomic molecules there is no such orients
tional motion. Thus we cannot expect to see (in Fig. 6)
any analog of the lowest band of librons in Fig. 5(a).

Potential II not only gives similar results to that of
Hs for libron dispersion curves but also for phonon-
dispersion curves as well as density of states. so s~ If po-
tential II is the correct model for Cso we can expect many
similarities in the dynamical properties of Csp and Hs.
However, we have to take into account the fact that Cso
is a thr""-dimensional molecule with much bigger mass
and more symmetric structure than that of solid Hz. For
instance, for Hs anharmonic librons play a crucial role
in the lattice dynamics while this is not the case for Css
due to its big mass.

From the slopes of acoustic phonon modes, one can
get the sound velocities from which elastic constants of
Cso at low temperature are obtained. (This procedure is
simpler than an analytic treatment of the acoustic mode

energies in the long-wavelength limit. ) These results are
summarized in Table V. One sees that both potential
models give almost the same results. The values of the
elastic constants we find are half as large as those given
in Ref. 12, possibly indicating that their result is subject
to some confusion in the scale of wave vectors.

The above determination of the elastic constants in-
volves the sound velocities in the asymptotic long-
wavelength limit. In this limit the sound velocities of
the two transverse modes along 6(0, q, 0) are required to
be identical for a cubic crystal. However, this degeneracy
of the frequencies of the two transverse modes need not
persist to higher than first order in the wave vector q. In
particular, for the Pa3 space group, these two transverse
modes are not degenerate, as can be seen in Fig. 5(b) for
potential II. [For potential I the removal of degeneracy
is too small to be seen in Fig. 4(b).] If the molecular
orientations were disordered, we would have an fcc Bra
vais lattice, for which the transverse modes are required
to be degenerate for wave vectors along 6(0, q, 0). Thus
the removal of degeneracy is due to sublattice formation
caused by orientational ordering and the difFerence in en-

ergy between these two modes must be proportional to
the orientational order parameter. In view of the de-
generacy in the asymptotic sound velocities, this energy
difFerence must occur at higher than first order in q, i.e. ,
probably at order qs.

Not all of the results discussed in this section are likely
to have an experimental confirmation, at least not un-
til there is an increase in the resolution for neutron-
difFraction experiments, since 24 branches in the lattice
region lie too close together Also, a lar. ge single crystal
of C6p will be needed. However, assuming the existence
of such a crystal, along the T(M ~ R) lines and at points
M and R the fourfold degeneracy makes such an exper-
imental attempt much more reasonable, since not only
the separation between branches is fairly large, but the
degeneracy should enhance considerably the difFracted
intensity. More generally, the symmetry properties we
indicate could be helpful in identifying the type of modes.

( V,O,O) ( V,V,O) ( I, I,V) (V, V,V)

REOUCEO NAVE- V ECTOR COOROINATE V B. Density of states

FIG. 6. Harmonic libron dispersion curves along four sym-
metry directions for solid H2 taken from Ref. 19.

Figures 7 and 8 show the density of states of phonon, li-
bron, and phonon —libron (including interaction} obtained
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FIG. 7. (a) Top: For potential I, the spectrum pg(u) +
pi (~) in the absence of libron —phonon coupling. The his-
togram results from sampling 32768 points in the Brillouin
zone. The width of the channels AP in which the contribu-
tions to the density of states is stored is indicated. The verti-
cal axis is defined as I/N times the number of states per unit
of frequency where N is the number of unit cells. In inset we
present the same spectrum by using wider channels of width 4
cm ~ 0.5 meV which is about same order as the experimen-
tal resolution normally obtained at present. (b) Bottom: As
in (a), for potential I, the spectrum of the combined phonon-
libron density of states, po(u), when libron —phonon coupling
is included.

from both potential models. These curves were obtained
by dividing the irreducible part of the BZ into 16x 16x l, 6
parallelograms of the same shape as the BZ and then di-
agonaizing the 24 x 24 matrm at the wave vector q in
the center of each parallelogram. The width of the chan-
nels in which the contributions to the density of states is
stored are indicated in Figs. 7 and 8.

For potential model I, Fig. 7(a) shows that the density
of states in the absence of interactions is highly double
peaked between 11 and 20 cm . With the inclusion of
interactions [Fig. 7(b)] the second peak gets broader and
weaker and also splits up into two small peaks, while
the first peak gets narrower and sharper. Its amplitude
changes from about 4 to 5. At higher frequencies (higher
than 20 cm i) the interactions have almost no effect, as
expected In the inse.t of the same figure we present the

FIG. 8. Same as Fig. 7 but here for potential II.

same density of states with channels of 4 cm 0.5 meV
width, which is about the same order as experimental
resolution. Librons give rise to one strong peak centered
around 15 cm i with width 4 cm i.

The curves for density of states obtained from poten-
tial II are different from the one discussed above. The
most important remark about density of states of librons
as shown in Figs. 8(a) and 8(b) is that there are al-
most no states in the region between 10.2 and 11.6 cm i.
This result agrees very well with one given in Ref. 11 in
which densities of librons are obtained for 32 molecules
via molecular-dynamic simulations. From these figures
we see that when there is no interaction, three peaks
[corresponding three bands in Fig. 5(a)] can be identified
between the ranges 7—10 cm, 12—14 cm i, and 14—18
cm . The eKect of phonon-libron interactions on these
peaks is strong and shown in Fig. 8(b). The peak be-
tween 14 and 18 cm disappears. In the insets to Figs.
8(a) and 8(b), the same spectrum is shown with a scale
of experimental resolution. We have one peak between
energies 10 and 18 cm

Recently, well-defined librational excitations have been
observed at about 2.5 meV (20 cm ) (Ref. 31) in the
low-temperature ordered phase of solid C6p. The sharp-
ness of the peaks indicates that the intermolecular poten-
tial does not depend strongly on the axis of the angular
displacement. However, from the insets to Figs. 7 and 8
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we see that both potential models give a librational band
centered at 15 cm i (1.86 meV) and the width of the
band is 4 cm i (0.5 meV) for potential I and 5 cm i

(0.6 meV) for potential II implying that the orientational
potential models are not as symmetric as the results in
Ref. Sl indicate.

C. Optical and scattering properties

Here we discuss the observation of the normal modes
whose dispersion curves we have given in Figs. 4 and
5 and whose density of states is shown in Figs. 7 and 8.
We start by discussing the optical observation of the nor-
mal modes. As is well known, infrared absorption may
be observed for optical modes at zero wave vector with
T„sym metry. Of course, in the disordered phase, when
the system is described by an fcc Bravais lattice, there
are no optical modes. Accordingly, in the orientationally
disordered phase, we expect no infrared absorption due
to processes involving a single intermolecular phonon.
(The present discussion is not concerned with intramolec-
ular phonons. ) In the ordered phase, we do have optical
modes with T„symmetry. These modes, shown in Figs.
4(b) and 5(b), have energies of order 30—45 cm i. Fur-
thermore, since the intensities of these absorptions vanish
in the disordered phase, we intuit that they are propor-
tional to the square of the order parameter. In the case of
orientationally ordered solid N2, Schnepps2 showed that
the infrared absorption cross section at zero tempera-
ture was proportional to the square of the quadrupole
moment. More general argumentsss indicate that the
absorption cross section at nonzero temperature is pro-
portional to the square of the (quadrupolar) orientational
order parameter. We expect the same type of result to
hold here, except that here the order parameter is de-
fined (see Ref. 5) in terms of averages of sums over atoms
of sixth-order spherical harmonics. Therefore the mea-
surement of the temperature dependence of the oscillator
strength of the optical phonon provides an alternative ex-
perimental way to access the temperature dependence of
the order parameter.

With regard to Raman scattering, symmetry indicates
that the libron modes are in principle observable. In
the case of solid Nz or solid H2 the mechanism for Ra-
man scattering involves an interaction with the radia-
tion field proportional to nEz, where n is the polariz-
ability. It is important that the molecular polarizability
is anisotropic, and thus depends on the orientation of the
diatomic molecules. Expanding this orientational depen-
dence in terms of libron amplitudes shows that in Ra
man scattering one can observe creation of single libron
modes at zero wave vector. (Anharmonic libron —libron
interactions permit creation of two librons during Raman
scattering. s4) But here, the molecular polarizability, be-
ing a second-rank tensor, is isotropic, at least if distor-
tions of the molecule away from icosahedral symmetry
are neglected. Thus, in the independent molecule ap-
proximation, the polarizability is independent of libron
amplitudes, and hence gives rise to no Raman scattering
due to librons. However, in principle there will be a small

anisotropy in the polarizability due to the multipole field
of one molecule acting on its neighbors. When the multi-
poles are dipoles, this effect is called the dipole-induced-
dipole mechanism. ss Such a mechanism might give rise to
a Raman cross section from simultaneous creation of one
or possibly several librons. We are presently pursuing
such calculations.

Recently, van Loosdrecht, van Bentum, and Meijerw
have performed Raman experiments on single-crystal Cso
samples. Several of their results are quite provocative.
For instance, they see reasonably well-defined features at
energies of 56, 80, and 109 cm. i. Since the energy sep-
aration between these features is of order 25 cm i, one
is tempted to identify them ss arising from multiple li-

bron processes. In such an interpretation these features
would represent simultaneous creation of three, four, and
five librons, respectively. In this scenario, the two-libron
feature might be obscured by the very intense unshifted
Lorentzian central peak in their Fig. 5. In view of the
libron energ es ob~rved by Ne~ann et aL31 it is lms
attractive to attribute the three features to two-, three-,
and four-phonon processes. Before any definitive inter-
pretation of these results is given, it is clearly important
that these results should be confirmed as being intrinsic
to bulk solid Cso.

With regard to inelastic scattering of neutrons the
meaning of our results is rather clear. We would em-
phasize that by comparing results for different scatter-
ing vectors, all of which are equal modulo a vector of
the reciprocal lattice could prove interesting. Suppose,
for instance, one performs such an experiment for two
scattering vectors Ki and Kz which are equivalent, i.e.,
which difFer by a vector of the reciprocal lattice. Within
a harmonic version of lattice dynamics, the phonon fre-
quencies for these two scattering vectors will be identi-
cal. However, their intensities will be proportional to the
square of the magnitude of the Fourier transform of the
phonon polarization vector within the unit cell. Thus by
comparing intensities at several such equivalent scatter-
ing vectors it should be possible to recover information
on the phonon polarization vector of each modes. This
type of analysis could be done both at zero wave vector
(for optical modes) and at nonzero wave vector.

V. ROOT-MEAN-SQUARE DISPLACEMENTS

In this section we shall discuss the validity of our small-
amplitude expansion. For this we first derive a formula
for the root mean square of the amplitude of rotational
and translational oscillations. After expanding the po-
tential energy of the molecular crystal in terms of u'(a, p,)
and u"(a, y, ) in the harmonic approximation and then
de6ning the crystal normal coordinates through the lin-
ear transformation

n = x, y, z, p = 1—4, (29)
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where i = f,, r for translational and librational motions,
respectively, the Hamiltonian becomes

12

& =
2 ) ).).(Q*(q)Q'.(-q)+~.'(q)Q'. (q)Q'. (q))

i=t, r q v=1

(3O)

Now we are ready to calculate the average root
mean square of displacement and libration amplitudes( t (a, y,)s &, & 8a(a, p, )z &. Due to the translational
symmetry these quantities do not depend on the unit cell
indices a. Furthermore, since four sublattices are symme-
try related, the averages do not depend on the sublattice
indices p, either. Finally, due to the site symmetry Ss(3),( t~(a, p) & and ( 8 (a, p)2 & do not depend on the
Cartesian components n = x, y, z. Thus we shall calcu-
late the following quantities:

thogonality of the eigenvectors E„(q) we get

& U' &= ——) ),. & Q'(q)Q'( —q) &. (34)

(35)

where n = (e" /" —1) ~. Thus by substituting this in
Eq. (34) we get

&U' &= ——) ),. cothi
1 1 . 5 (hu)~)

(36)

From this equation it is possible to estimate the averages
as a function of temperature. For this from the Hamilto-
nian in Eq. (30) we equate the mean potential energy of
each normal mode to one-half the mean total energy of
a quantum oscillator of the same frequency,

1 1 2&8'&=&8s+8z+8', &=4—) ) ).&8-(a p) &
Q

(31)

1 1 ~ 4 2&=( t +ts+t, &= 4P)
Q P 0!

(32)

Using the notation & U'
& e &, respectively, and Eqs. (2) and (3), we get

&U' &=-—) ) ),&u'(a p) &, (33)

where rn' = M, I for i = t, r.
From inverse transformation of Eq.(29) and using or-

which, for potential model II, at zero temperature gives
the following results:

«'&= —
I zi ~ p) ). =(150')'

and

&t'&/R'=- i, i

—) ) =(0.0049)',
1 ( h i 1 . . 1

(38)

where R = a/v 2 is the distance between nearest-
neighbor molecules in the crystal. Due to the big mass
of Csp these values are very small indicating that har-

monic approximation is a very good approximation for
solid Cso. For other temperatures the values of g& t2 &

and g& 8 & are given in Table VI for both potential

TABLE VI. Estimates of v'& t2 &/R (where R = a/v 2 is the nearest-neighbor distance) and y ( 8 & as a function of
temperature for potentials I and II. The values of the lattice constants, a, at different temperatures are taken from Ref. 8.

Temperature

(K)
0

20
50
115
T 8

300b
1000 "
1500 "
1650 '
1800 "
2000 "

Lattice
constant

(A)
14.041
14.043
14.048
14.060
14.101
14.160
14.335
14.460
14.498
14.535
14.585

Potential I
g& t' &/R

0.0048
0.0054
0.0075
0.0115
0.0185
0.0219
0.0548
0.0866
0.0988
0.1130
0.1363

g&e'&
1.39'
2.03'
3.10'
4.77'
7.50'

Potential II
v'& t2 &/R

0.0050
0.0057
0.0079
0.0122
0.0195
0.0232
0.0578
0.0910
0.1043
0.1193
0.1439

g&e'&
1.45'
2.36'
3.64'
5.67'
9.15'

These data are meant to be associated with the orientationally ordered phase just at the orientational ordering transition. We
used the value T, = 260 K according to Ref. 8.

For T & T, there is no long-range orientational order and thus (& 8 &) ~ is meaningless.
'The lattice constant at this temperature is estimated by linear extrapolation of the data in Ref. 8 between temperatures
T = 300 K and T = 2000 K.



LAl I ICE DYNAMICS OF SOLID C 7891

models. At T= 115 K, for potential II g( 8 ) is 5.67',
which agrees very well with the experimental value 5.7.si

As shown in Table VI, the mean-square values obtained
from potential II are slightly larger than those of poten-
tial I, which is consistent with the values of transition
temperature obtained from both potential models. For
instance, T, is 215 K for potential II (Ref. 11) and 270
K for potential I, while the experimental values 250 K
(Ref. 1) and 260 K (Ref. 8) are somewhat between these
two values. At temperatures T ) T, we do not have
orientational order and thus one should use the isotropic
part of the potential models to estimate the mean-square
values of the translational displacements. However, as we
have seen in the preceding section the orientational de-
pendence of the potential only causes a small splitting of
the branches [Fig. 5(b)) and thus it is still a good approx-
imation to use it in calculation of g( tz ). Within this
approximation, at temperature 1650 K y ( t2 )/8 is

0.1, and thus according to the Lindemann criterion, the
melting point of solid Css is around 1700 K. Even though
the validity of Lindemann criterion is not well defined for
such large molecules where the size of molecule is almost
1/3 of the distance between the center of two molecules,
this value is of the correct order of magnitude. s~

VI. CONCLUSION

In this paper we have studied the lattice dynamics
of solid Css within the harmonic approximation and
reached the following conclusions.

(1) Both of the recently proposed potential models give
almost the same result for phonon modes while potential
II gives a slightly lower libron frequencies. Nevertheless,
according to the experimental data in Ref. 31 both poten-
tials need to be somewhat modified in their orientational
dependence.

(2) We showed that the quasiharmonic approxima-
tion (based on harmonic phonons in a crystal with a
temperature-dependent lattice constant) is valid up to
about 1000 K for phonon modes. (The criterion we used
for the validity of the harmonic approximation was that
the root-mean-square displacement was 5%%uo of the separa-
tion between centers of nearest-neighboring molecules. )
Thus the temperature dependence of many quantities,
such as the elastic constants, energy spectrum, etc. can
be calculated by simply assuming the only efFect of tem-
perature is to change the lattice constant.

(3) In Table V we give values for the elastic constants
from the calculated sound velocities. These values repre-
sent corrections from the results of Ref. 12.

(4) We give the symmetry labels of the libron and
phonon modes for the wave vector along high-symmetry
directions. This information is useful in considering op-
tical properties of zero-wave-number modes and might
even aid in the identi6cation of modes obtained by in-
elastic neutron scattering.

(5) From purely symmetry arguments we showed that
the dynamical matrix depends on only eight independent
parameters to describe the orientational dependence and
five independent parameters to describe the center-of-
mass dependence of the elastic potential energy.

(6) At q = 0 the dynamical matrix reduces to block di-
agonal form in which A and E symmetry blocks are one
dimensional and T symmetry blocks are three dimen-
sional. We also gave the 24 symmetry-adapted vectors
and expressions for the energies of libron and phonon
modes as a function of any given potential model at this
point. Such information is most valuable not only for
the quick test of new potential models but also for the
analysis of the infrared, Raman, and neutron scattering
of the crystal.

(7) Using the Lindemann criterion, we estimate the
melting temperature of solid Css from these potentials
to be about 1700 K.

(8) Observation of single-libron excitations via Raman
scattering is problematic in view of the nearly spherical
symmetry of the molecules. However, it is possible that
one might observe multiple libron processes involving
higher multipole generalizations of the dipole-induced-
dipole mechanism. Such a mechanism might explain
the features observed by van Loosdrecht, van Bentum,
and Meijerm in their single-crystal Raman experiments
near 100 cm i. However, before accepting such an ex-
planation, it is important that these Raman features be
confirmed as being intrinsic to bulk Css. If so, they may
arise from processes involving simultaneous creation of
three, four, and five librons.
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APPENDIX A; MATRIX REPRESENTATION
OF GROUP ELEMENTS

In this appendix we give the matrix form of 24 ele-
ments of the group Tg together with the corresponding
fractional translation. Note that trace of the matrices
E, Cz+„, Sz„ that leave one of the sublattices unchanged
(see Table II) are ail zero except Ri ——E. Thus from Eq.
(25) we get g(q; Ri) = 24 and y(q; R, ) = 0 for + =other
elements of G(q). Now from Eq. (23) decomposition of
the reducible representation of the G(q) can be easily
obtained as shown in Table IV.

(a) V(R) = (0, 0, 0):

100 001 010
010, Rg ——C~~ —— 100, R3 ——C3$ 001

' 001 010 100
(Al)
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R4 ——I =
100
010 )

001
R5 = Ssi

001
100
010

010
001
100

(A2)

(b) V(R) = a (z, 0, z):

&7= C2z =
100
0 10, Rs = Cs+4 ——

001

001
100
010

Rs=Css=
010
001
100

(A3)

RM =az =
100
010
001

Rll = S54 ——
001
100
010

Ris = Sss ——+
010
001
100

(A4)

(c) V(R) = a (0, 2, si):

Ris = Czs =
100
010, Ri4 = Cs2 ——

001

001
100
010

) R15 C34 =
010
001
100

R]s = (Ty

100
010 ) Rip ——Ssz—
001

001
100
010

010
Ris = S54 —— 001

100J

(d) V(R) = a (2, zi, 0):

A19 = Cg~ =
100
010 ) R2p = Cs+s ——

001

001
100
010

010
001
100

(A7)

100
010
001

) R2s =Sss =
001
100, R24 = Ss+2 =
010

010
001
100

(A8)

Dtt
D(F) D (I') 0 (Bl)

vrhere

APPENDIX B:GROUP THEORY OF Cep
AT F(q = 0)

In the text we have seen that the calculations of ex-
ternal modes of Csp in Pa3 structure requires the di-
agonalization of the 24 x 24 matrix. Considerable help
in accomplishing this can be had, however, using group
theory. Besides simplifying the diagonalization of the
dynamical matrix D(q), group theory is also of value in
classifying and labeling the various modes. The present
section is devoted to a discussion of these topics at the
point F(q = 0).

Since Csp is a spherical top, for convenience we shall
choose the principal axes to be parallel to the crystal-
fixed Cartesian axes illustrated in Fig. 3. Furthermore,
we shall use the fact that there is no coupling between
phonons and librons at I' and write the 24 x 24 dynamical
matrix as

with the 3 x 3 matrices D"(I', pv),

D"p(I', pv) = ) I"p(oy„bA),
bA

(B3)

T(I';R) =
7

A{41)a . A(44)R
(B4)

where A(pv) = b(p, F(v, R)) is given in Eq. (22) and R
is an element of Th and given in Appendix A.

As an illustration, we construct the matrix T(I'; R) for
R = R2 = Csi. From Table II we see that under the
symmetry operation R2 the sublattices p = 1, 2, 3, and 4
goes to v = 1,4, 2, and 3, respectively. Thus using Eqs.
(B4) and (22), one can easily get

1 f BzO(op, bA)

m' (Bu' (o, p))9u~p(b, v))
Consider now the classification of the modes at I'. This
requires first the construction of the set of 12 x 12 ma-
trices

A(11)R A(14}R

D"(F) =
D"(F, 11}. . D"(F, 14}

D"(I', 41}. . - D"(I, 44}

i =C, r, (B2)
Rg 0 0 0

T(FR) 0 0 Rq 0

. 0 Rg 0 0.
(B5)
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)((I', R ) =12, y(I', R,.) =0, 7', =2, . . . , 24. (B6)

The decompositions of S(I') = (S(I';R) I
R e Tg$ are

now immediately obtained using the reduction formula
Eq. (23),

cAg =1, c@ =1, Cg =3, (B7)

cA =1, c@ =1, (B8)

and thus 24 modes are divided into pure translational
and pure librational modes,

where R2 is the 3 x 3 matrix given in Appendix A. Sim-
ilarly, other matrices can be constructed. After having
done this, the trace of these matrices are easily deter-
mined to be

man active. However, due to the high symmetry of the
molecules, it may not be possible to observe these modes
in practice. Since in the decompositions given above, Ag
and Eg modes occur once and Tg three times, the libra-
tional part of the dynamical matrix (same for phonon
part too) can be put into block diagonal form with three
1 x 1 and three 3 x 3 matrices. %'e shall therefore be
able to get explicit expressions for the energies of the Ag
and Eg modes. For the energies of Tg modes we have
to diagonalize 3 x 3 matrix which is much simpler than
diagonalizing 12 x 12 matrix.

In order to get the information mentioned above we
now take up the construction of the symmetry vectors.
This is done through the use of the projection operator
technique. First we shall consider the projection operator
for the Ag mode

I'bb = Ag + Eg + 3Tg )

I trans = An + En + 3Tu ~

(B9)

(B10)

P(A, ) = ) & (A„R)T(r;R).
R&G.(r)

(B11)

Above, one of the T„modes corresponds to the acous-
tic modes in which the whole lattice translates together
and thus may be ignored. The other two T„modes are
IR active while all librational modes are in principle Rs

The quantity )((Ag; R) is the character corresponding to
element R in the irreducible representation Ag and is
equal to 1. Thus using the matrices T(I', R) defined in
Eq. (B4) it is easily seen that

(Ry + Rg + R3) (Ry + Rys + Rgp) (R8 + R» + Rg].) (Rg + Ry4 + Ryg)

P(A i (R7 + Rs + R9) (R1 + R14 + R21) (R2 + ii15 + R19) (+3 + ii13 + R20)
(R» + Ry4 + Ryg) (R3 + R8 + Ryg) {Ry + Rg + R2p) {Rg + Ry + R21).(Ryg + Rgp + Rgy) (R2 + Rg + R») (R3 + Ry + Ry4) {Ry + Rs + Rys)

(B12)

and from this matrix we see that the eigenvector for the Ag mode is

& Ag I= & 111 111111 111
I
.

12
(B13)

This mode corresponds to the librations in which each molecule librates about their [111]directions in the same way.
For the A„mode the eigenvector is the same, but now molecules make displacements along their [111] directions
instead of librations.

We now consider the projection operator for Eg modes

P(Eg) = ) y'(Eg, R)T(I', R),
R~a. (r)

and from the matrices T(I', R) and )('(Eg; R) we get

{Ry + eRg + e'R3) {Ry + eRy5 + e Rgp)

P(E ) (R7+ 4'Rs + 4R9) (+1 + 4R14 + e'R21)
(R»+ eRp4+ e'R~5) (R&g + eR8+ e'R3)
.(Ryg + eR2p + ~'Rgy) (R» + eRg + e'Rg)

(R13+ 4Rs + 4'R21)
(Rqg + &RE + e Rq~}
(R], + &R2p + & Rg)
(R~+ ~R~4+ ~'R3)

(Ryg + eRy4 + c Rg)
{R»+~R&p+ "R3)
(R~+ «~+ "R2~)
{R~+~RS+ "R~s) .

(B14)

(B15)

where 5 = e ~~ ' or we can take it as (5+ 5')/2
By applying this operator on the 12 orthonormal

basis vectors (1, . . . , 0), . . . , (0, . . . , 1) we project three
nonzero vectors of which only two are linearly indepen-
dent. These, after normalization, have the folloming com-
ponents:

For the polarization vectors of the Tg modes, the pro-
cedure is a little complicated. First, we get three diferent
projection operators P& &(Tg) (A=1—3) defined by

P„(T)(9) =
I I, I ) „„'(I';R)'T(I';R), (B18)

ReGo (I')

& Eg I= & 112 112 112 112
24

& Eg I= & 110 110 110 110 I.

(B16)

(B17)

where w& & (I'; R) is the Arith element of the matrix cor-
responding to the element R in the irreducible represen-
tation 7 ( ~). By applying this operator systematically on
any 24 orthogonal vectors we can project out three or-
thogonal vectors. Each of these three vectors mill trans-
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form according to the Ath row of the IR r(+~). The part-
ners of these vectors may be generated by applying to
them the operator

where

6= 1
2~6' (B30)

P„,A(T) =
~

—„~ ) „„'(I';R)'T(I';R) (pgA).
ReG {1')

(B19)

In this way, we can obtain three orthonormal sets corre-
sponding to the three occurrences of T~ in S(I'). Here is
the result:

Before carrying out this block diagonalization, we need
first to discuss the restrictions imposed by symmetry on
the structure of D(F). For simplicity, we consider only
the librational part of D(F) in Eq. (Bl) and write it as

D(ll) D(12) D(13) D(14)
D(F) D(21) D(22) D(23) D(24)

D{31)D(32) D(33) D(34)
D(41}D(42) D(43) D{44}

&T,']( =

& T,' [2=

&T,' is
——

&T,' ~2=

& T,']3=

& 112 112 112 112
24

& 121 121 121 121
24

& 211 211 211 211
1

24

& 110 110 110 110
8

1
& 101 101 101 101

8
1

& 011 011 011 011
8

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

where D(pv) are the 3 x 3 matrices with the matrix ele-
ments

1 .f' 82VI

I ~- (Be (o.p)Bet.3(b v))
(B32)

R,D(pv)R+ = D(p'v'), (B33)

Now it is possible to discover interrelations among the el-
ements of D(F) using purely symmetry arguments. The
simplifications sought for arise basically from the commu-
tation relation [D(F),T(I'; R,)] = 0 for any operation R,
of the point group Tj,. Actually, from these commutation
relations one can show that

(B27)

aaaaaaaaaaaa
b b 2b b b 2b b b 2b b b 2b

ccOcc0cc0ccO
b b 2b b b 2b b b 2b b b 2b

c c 0 c c 0 c c 0 c c 0

& T ig = & 111 ill 111 ill (B26)
12

& Tg ~2
= ( ill 111 111 ill

12

(T ~3 = & 111 111 111 111
~

. (B28)
12

Since As and Es modes occur once, the symmetry-
adapted vectors ] As & and ] E &, ] E & given in Eqs.
(B13), (B16), and (B17) can be taken to be eigenvectors
of the dynamical matrix. For the Ts modes, eigenvec-
tors are the linear combinations of the vectors

~

T' &~,
i, j=1—3. Using these symmetry-adapted vectors, one can
construct the diagonalizing matrix Q(F) which serves to
transform D(F) into block diagonal form D(F) =

P

ic P P k q —6~ A q h 6 —A

P n P p ~ A —A h 6 —6 k

PPn 6-Ah
k p 6 a P —P h 6 A e A

—AP n —P 6k —p —Ah —6—

6A h -P-P a --A-q ~ -& 6

e —Aph —6 —Aa —PP
A h 66 k —p —P—n —P —p

6 k A —p e P —P n 6 A h

h-6A ~ -A-qk-q6 ~-p-p
6 k p A h 6 —p e A —P n P

—Ap~ —p 6k 6 —Ah —PP—n—

where p, ~ p,
' and v -+ v' under the operation R, .

With use of this equation simplifications of the dy-
namical matrix is a straightforward matter and thus we
directly give the final form of the dynamical matrix which
has eight independent parameters and is given by

q(r) = aaaaaaaaaaaa
b 2b b b 2b b b 2b b b 2b b

cOccOccOccOc
aaaaaaaaaaaa
2b b b 2b b b 2b b b 2b b b

Occ0ccOccOcc

(B29) (B34)

For translational modes the number of independent pa-
rameters in D(F) can be reduced further Since w. e
have three acoustic modes in which the whole crystal
moves together, the eigenvectors & 100 100100 100 ],
& 010010010010 ~, & 001 001 001 001

]
must have

zero eigenvalues. Thus we have the following constraints:

aaaaaaaaaaaa o, +k+e+h =0, (B35)



LA I LICE DYNAMICS OF SOLID Cg) 7895

P+p-A-6=0.

(B36) Since D(I') and Q(F) are known, evaluation of Eq. (B38)
is a straightforward matter (with use of the computer
program REDUCE). The resulting block-diagonal matrix
17(F) has the form

V(r) = q(r)D(r)q(r)+. (B38)

The form deduced above for D(F) is the most general
one consistent with crystal symmetry. We observe that
whereas by considering the Hermitian property alone
there will be 72 independent elements in D(F), system-
atic use of group theoretical arguments shows that there
are only eight independent elements for libron and five
for phonon modes.

What remains now is to bring D(F) into the block-
diagonal form 27(F). This is done by performing the
transformation

v(r) =
z(w )

@(E )
g(@ )'

z(T;)
E(r, )

E(T' )

(B39)

E(Es) = a + h —e —k —(P + A —b —p),
and 3 x 3 symmetric matrix E(Ts) is

(B41)

where the 1 x 1 matrices E(As), E(Es) are

E(A, ) = o, + h —e —k + 2(P + A —b —p), (B40)

E(T.) =
3(a-P)+a(a+8)-5~+S+a-W

3
C(S+W)—a+8

~3
~fS-a-X-8-~(a+~)]

3~2

2f8-It -A-8-2(h+p)]
3v2i[a+ay~-. ]

~6
3&a+ZP)+Z(a+~-X) -a+a+8

3

(B42)

For phonon modes these expressions become much simpler due to the constraints given in Eqs. (B35)—(B37).
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