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Force sum rules, stress theorems, and Thomas-Fermi treatment of a 90 jellium edge
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A quarter-space jellium or 90 jellium wedge is considered a highly idealized element of real metallic
surfaces with ledges or with atomic-scale sharp edges such as those in quantum wires and quantum dots.
Using the concept of energy density, an edge energy is defined. Force sum rules are summarized, relat-

ing the electric field that arises from the dipole layer along the background discontinuity with density
derivatives of the surface energy (of a half-space jellium) and of the sharp edge energy. %ithin the
Thomas-Fermi approximation, the electron density is determined. Besides sharp edges, nonsharp edges
with finite curvature are also considered, the latter characterized by the recently introduced curvature
energy.

I. INTRODUCTION

From a total-energy point of view, an ideal crystal is
characterized by a bulk energy (per unit cell} and an ideal
surface by a surface energy {per unit area). Recently
there is increasing interest in regularly stepped (vicinal)
surfaces with a periodic array of ledges or steps. A single
ledge may be considered as a pair of edges, consisting of
an "upper" one (90') and a "lower" one (270'). Instead of
directly calculating the characteristic energy of such a
single ledge, we simplify this problem in a twofold way:
(i) we get rid of the multicenter problem by replacing the
system with a jellium model, and (ii) we consider first a
single 90' edge only, i.e., a quarter-space-filling jellium.
Such a 90 jellium wedge can be considered as an ideal-
ized model for atomic-scale sharp edges as they might ap-
pear at quantum wires or quantum dots. Long before the
advent of quantum wires or dots, the 90' jellium wedge
was treated by Kesmodel and Falicov theoreticaHy in
view of "the different chemical reactivity of metallic
edges, corners and steps"; they determined the potential
from an approximate model electron density. '

Sharp edges are hmiting cases of nonsharp edges,
which are, in turn, examples of more general curved sur-
faces. The latter are finding recently more and more in-
terest and are to be characterized by a curvature ener-

gy. %'e introduce the sharp edge energy to characterize
the sharp jellium edge; to this end we make use of the
concept of energy density. The desire to deal with a
sharp jellium edge was also motivated by studying the
surface stress theorem of half-space jellia and correspond-
ing force sum rules, ' which can be easily derived from
the local momentum balance for the quantum-mechanical
stress field. "' Surprisingly, the stress parallel to the
surface led us automatically to the need to consider a
half-space jellium cleaved perpendicularly to its surface
in such a way that one-half was shifted infinitely far
away. Thus a quarter-space jellium is left with electrons
spilled out and, following from this, an electric field,
which causes Hellmann-Feynman forces on the (unre-
laxed) background. We found that certain integrals (mo-
ments) of this Hellmann-Feynman force density are relat-

ed to density derivatives of the surface and the edge ener-
gies.

The paper is organized as follows. First we summarize
the theorems, specify energy density and stress field for
the gradient expansion approximation (GEA) of the
density-functional theory (Sec. II). Then we present the
solution of the problem within the Thomas-Fermi ap-
proximation (TFA): numerical procedure (Sec. III) and
results (Sec. IV). Finally, an outlook is given (Sec. V).

II. JELLIUM EDGE AND FORCE SUM RULES

We consider a jellium with a background density

p(x,y) =n,e( —x)e( —y),
an electron density n (x,y), and an electric field (times ~e~ )

E(x,y) = —t}p(x,y)/Br .

The latter arises from the dipole layer near the back-
ground discontinuity, i.e., at x=0 (y &0) and y=O
(x ~ 0). The condition

J dx f dy [p(x,y) n(x, y) ]—=0

expresses the neutrality of the total system.
To define a characteristic edge energy for this system

we use the concept of energy density ' ' ' which, within
the GEA of the density-functional theory, takes the
form' '
e(r)= —

2
+g{n(r),s(r)},1 [E(r)]

4m@
2

s(r)=—1 t)n (r)
(1)

2 Br

where e =e /4vrso and g(n, s) comprises both the
kinetic-energy density t(r) and the exchange and correla-
tion (XC) part of the potential-energy density. The first
term of e(r) is the Hartree or electrostatic part of the
potential-energy density. Local-density approximation
means the neglect of density gradient terms
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g (n, s) =go(n) =no(n),

with

d , 1 E (x)
Plp 1 6 = dX +

2de 0 4~@2

s'= fdx [e(x)—e( —x)nos],

e,'= fdx f dy [ e (x,y) —e( —x)e (y) —e( —y)e (x)

+e( —x)e( —y)nos] .

(2)

(3)

The following Hellmann-Feynman force sum rules can be
proved:

E(n) =to(n)+ Exc(n),

the bulk energy (per particle) of the homogeneous jellium.
to(n) is the kinetic energy (per particle) of the corre-
sponding noninteracting Fermi gas

f2
ro(n ) ep eF kF kF 3+n

2m

and sxc(n }is the XC energy of the homogeneous jellium.
The jellium wedge is characterized by the following

asymptotic behavior. For y~ —~ the situation of a
half-space jellium with background density p(x) and
characteristic quantities n (x), E(x), e(x) arises:
n (x, —ao )=n (x), E„(x,—~ ) =E(x), E~(x, —~ )=0,
e(x, —oo )=e(x). The corresponding statement is true
for x~ —oo: n ( —ao,y) =n (y), E„(—~,y) =0,
E~( —~,y)=E(y), e( —00,y)=e(y). Besides this,
n( —~)=no and e( —00)=noe with e =e(no). Now,
keeping this behavior of e(x) and e(x,y} in mind, the
surface energy c' and the sharp edge energy e.

' can be
defined as

+ n —n(n'g, )'2 dE
dtl n(x)

e'= dx — +(n') g, ~„~„~
E (x)
4m.e

(10}

From this it can be seen that in the lowest order of the
GEA, i.e., g, =0 or g =go, the surface energy is always
negative. For comparison, within the Kohn-Sham treat-
ment due to Lang and Kohn, '

e,'&0 only for r, &2.
Similarly as in Eqs. (8) and (9), the density derivative of
the edge energy is related to integrals of the edge-stress
field [which, within GEA, is determined by g(n, s) and
E(x,y), n (x,y)] (edge-stress theorem ).

To obtain n (x,y), the electron distribution of a jellium
wedge, one has to solve the corresponding Euler and
Poisson equations under the constraint of fixed p(x,y)
and the neutrality condition. (The analogous interface
problem is studied in Refs. 15 and 18.)

—e( —x)n
dc
de 0

On the right-hand sides of Eqs. (8) and (9), the concept of
quantum-mechanical stress fields is used. "" While the
weighted sum, i.e., twice (9) plus (8) (note that this is just
the trace of the surface stress), gives the surface virial
theorem, the difference of Eqs. (8) and (9) yields an ex-
pression (a sum rule) for the surface energy:

d
no e= f dx E(x),

d"o 00
(4) III. THOMAS-FERMI CALCULATION

As a first calculational step, we treated the TFA, which
is a special case of the GEA, corresponding to g =gp and
furthermore to c= t0, i.e., c.xc=0. %e solved the coupled
system of Thomas-Fermi (Euler) and Poisson equations

$2
[3n n(x, y)] ~ —y(x,y)=0, (11)

2m

s o
"o 'eno dx x«x»

de p
—00

(5)

(6)

no —1 s'=no f dx f dy[ E„(x,y) E(x)], —
dPl p

—co —oo

0 0
no e =no f dx f dy x [E„(x,y) —E(x)]

deal 0 00 00

(see Refs. 7—9, 16, and 17). Equation (4) is a "bulk-
surface theorem, " Eq. (5) is a "surface-surface theorem, "
Eq. (6} is a "surface-edge theorem, " and Eq. (7) is an
"edge-edge theorem. " In addition to the force sum rules
(5) and (6), the surface stress theorem holds~ ' ' '
which, within GEA, takes the form

—b,q&(x,y) =4me [p(x,y) —n (x,y)], (12}

an appropriate sealing

directly numerically. This numerical solution consists
of the following steps.

(i) With the abbreviation
' 3/2

4e 2m
377 A)2

d, 1 E(x) 2dE
no s'= dx —— + n n(n'g )'—

dn 0 2 4~p2 dn

' 2/3
4~& ~o

and 1 =(Cq' ')

+(n') g,
n (x)

is introduced which, in terms of atomic units
(ao=R /me ), is given by

—e( —x)n2 dE,

de 0

1 9m
0'0=

2

2/3
1 62

r Qp
2 (13)
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and
1/6

I =— r'"a1 3m
0 2 2 s 0 (14)

The dimensionless equation for p(x,y} then reads

Eq =~3' —e( —X)e( —y)

with y=plqc, x =x/lc, y =y/lc, and E=lcb, .
(ii) Coordinates

—2 =2
g =—arctam7, ri =—arctang

7r 7r

(15)
0

Lp

-6 -4 -2
I l I

0 2 4 6
are introduced, which vary only between —1 and +1. So
we obtain from (15) a (little more complicated)
difFerential equation for y(g, ri), with the boundary condi-
tions y(g, rt)=tp(ri, g), y( —1, —1)=1, (p(+1, +1)=0,
q&(

—l, ri)=q~„(71), and tp(g, —1)=ps'(g), where @st&
is the (dimensionless) potential of a half-space jellium,
which is known for the TFA in analytical form. '

(iii) Discretization of the g and ri intervals. The
differential equation for y(g, ri) is transferred by means of
three-point formulas into a set of nonlinear algebraic
equations for the values y(g, , ri ) at the mesh points in
the g-rl plane with

g;, ri; = —1+2(i —1)/(N —1),
i =1, . . . , 1V. N is chosen between 31 and 101.

(iv) The solution of this system of algebraic equations is
accomplished with the boundary conditions of (ii} by
means of a Newton-Raphson method where, for each
Newton-Raphson step, the relaxation method of
Southwell (because of the large matrices) and a mixing
procedure are applied. The Newton-Raphson iteration is
started with

This is an expression similar to the approximation for
n (x,y) used in Ref. 1 [their Eq. (3)].

IV. RESULTS

(i) Electron density and potential The numer. ical accu-
racies of y that are obtained are 10 " for N =51 and
10 for %=101,but the plots y(X,y) practically agree
for both cases. Such a plot of the scaled potential p(X,g)
is shown in Fig. 1. From these "universal" curves, the
electronic density n( ,x)yean be obtained according to
Eq. (11) via

n (x,y) =nc[p(x/lc, y/lc)]3~~

Friedel oscillations are not present as a consequence of
the TFA.

(ii) Sum rules. We tested the sum rules (5)—(9). The re-
sults for r, =1 are presented in Table I with N =101 for
the first two lines. The values found in the last line of
Table I are obtained when N =51; if N =101 is chosen,
then the values 0.017 and 0.036, respectively, are ob-
tained, indicating that insufBciently accurate values of
E(x,y) are obtained for this choice of N. Note that for
other values of r, the numbers of Table I are to be scaled

L0

FIG. 1. Universal contour plot of the scaled electrostatic po-
tential (times ~e~ ) ylx y) for a quarter-space jellium with back-
ground density noe( —x)e( —y) in TFA. Note that

y r. )=f'oy(&/Io y/'1, 0).

only; this is a consequence of the r, scaling of yo and lo
according to Eqs. (13) and (14).

(iii) Edge energy. For the sharp edge energy (3), via (1)
within TFA we obtained a simple scaling with r,

0.045 Ry 0.61 eV
E

r4 ao r4 ao
(16)

Recently, Perdew and co-workers ' studied curved sur-
faces like jellium spheres and spherical voids with the aim
of estimating vacancy formation energies. They intro-
duced, in addition to the known bulk and surface ener-
gies, a curvature energy via the total energy E of an ex-
tended system of volume V and surface S:

E=n c.V+c.'S+y—1 ds
2 R

(17)

results; within GEA, Engel and Perdew obtained, for
r, =2, 4, and 6, the values y=0.04, 0.01, and 0.002
eV/ac, respectively. For a nonsharp edge with the cur-
vature radii R, ( ac and Rz —+ ac, the last term of Eq. (17)
results in y(n/8)L, with L being the edge length. While
Eq. (17) holds for large R

&
(Ref. 22) the limiting case of a

sharp edge (R, ~0) is described by 3

TABLE I. Test of the sum rules, Eqs. (5)-(9), for r, =1. lhs
and rhs denote left- and right-hand sides, respectively.

lhs

(5)
(6)
(7)
(8)
(9)

—0.229 1
—0.076 35

0.0134

—0.229 3
—0.078 92

0.013 2
—0.229 0
—0.07635

R is the local curvature of the surface-area element dS,
with R '=

—,'(R, '+R& '), where R& and Rz refer to the
principal axes. Within TFA,

0.46 eV
4 ar ao
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E =npKV+6S+F L (18)

While in Eq. (17) terms 0 (1/R, ) are omitted, in Eq. (18)
terms 0(R, ) are left out. Thus y and s' are different
quantities.

V. OUTLOOK

Because the TFA is a rather poor approximation, one
should perform Lang-Kohn-type calculations for a 90'
jellium wedge to have a reference system for extended
quarter-space crystals, just as with the Lang-Kohn data
for planar metallic surfaces. To this end Eqs. (1), (8), and
(9) must be replaced by the corresponding Kohn-Sham
expressions. ' '" Self-consistent solutions of the Kohn-
Sham equation for the jellium wedge should confirm (or
correct) the enhancement of Friedel oscillations, which
has been stressed by Kesmodel and Falicov. ' It should
also be of interest to study how the results change if sta-
bilized jellium ' ' or nonsharp edges are considered.
Next, the lattice structure via pseudopotentials should be

taken into account, as this has been done similarly for
surfaces. ' '

Recently, electronic-structure calculations have been
published for a single step at an aluminum surface and
for stepped metal surfaces [relaxation of the Al(331) sur-
face]. Within the jellium model, the electron density
has been determined approximately for a single step on a
Jellium surface with the help of an appropriate ansatz
and self-consistently for the stepped jellium surface. ' It
remains (among other things) to derive from such calcu-
lations characteristic step energies. Another interesting
problem is the stress Seld surrounding a wedge.
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