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We present a microscopic theory of the fractional quantum HaQ effect and its hierarchy struc-
ture on the basis of a Chem-Simons gauge theory. Our Hamiltonian contains a renormalized term
(~a)/m) igi4 which plays important roles. It is shown field theoretically that the system of the planar
electrons in a strong magnetic field yields a hierarchy of the fractional quantum Hall states, which
are a condensed phase of the bosonized electrons and vortices. It is discussed in detail how the
Coulomb interaction between electrons plays a crucial role in this phenomenon.

I. INTRODUCTION

The discovery of the fractional quantum Hall effect

(FICHE) revealed that the two-dimensional electron sys-
tem has a rich ground-state structure in a strong mag-
netic field. i Depending on the Landau-level filling factor
v, the system exhibits a beautiful hierarchy of new quan-
tum states. A microscopic theory has been presented
to account for the FICHE and its hierarchy by using
the Laughlin wave function as a variational functionz
or by exact numerical calculations on a system of a
few particles. s Although these approaches have produced
many useful results, they are still unsatisfactory from a
purely theoretical point of view.

Recently, an approach was initiated by Girvin, 4 in
which the FQH states are interpreted as a kind of
bose condensate of electrons bound to fluxes, and where
Laughlin s quasiparticles are identified with vortex soli-

tons arising on such a condensate. This approach is most
conveniently realized in Chem-Simons (CS) gauge the-
ories. In fact, based on them Landau-Ginzburg models
have been proposed. s s However, these models have some
problems. First of all, microscopic derivations of these
models are not well established. Next, it is not certain
whether the constraint for electrons being in the low-

est Landau level is correctly imposed. Furthermore, the
role of the Coulomb interaction between electrons is not
clear, although the Coulomb interaction must be an es-
sential agent which makes the system incompressible for
the FQH states. Finally, there are many undetermined
parameters in these models.

Using a CS gauge theory, we have presented a field-
theoretical formulation o of the FICHE, where the hier-
archy structure of the FQH states is derived from a ba-
sic Hamiltonian. However, this work also contains some
of the problems we have, pointed out for the Landau-
Ginsburg models. The aim of this paper is to refine our
field-theoretical approach by solving these problems to
some extent.

Our strategy is to regard planar electrons as anyons

with an odd statistics parameter, o./n = odd integer.
We are free to represent the anyon by the boson field or
the fermion field, and for our purpose it is convenient
to use the boson field. Physically, this is to decompose
an electron into a boson and a flux quantum. Equiv-
alently, starting with a particle mechanics describing a
set of anyons, ii we naturally arrive at a CS gauge the-
ory which is microscopically equivalent to an ensemble
of planar electrons. We analyze the Hamiltonian of this
system semiclassically in the thermodynamical limit. In
this approach, we first search for the ground state of the
mean-field approximation and then take account of small
Quctuations around it within the Bogoljubov approxima-
tion. The ground state is obtained by minimizing the
classical energy of the system: it is a solution of the clas-
sical field equations of the Hamiltonian. Thus, we call it
the classical ground state.

Some caution is needed in our approach. As is well

known, the expansion of the anyon state around the bo-
son states is singular at the short-distance behavior. We
can avoid this singularity by modifying the Hamiltonian
in such a way that the modified Hamiltonian reproduces
the correct short-distance behavior and the exact energy
spectrum for known cases perturbatively. We have de-
rived such a Hamiltonianiz up to the first order of n/m.
We also diagonalize the modified Hamiltonian up to the
same order of n/7r. Thus, strictly speaking, our results
are precise in the anyon system up to this order. In
the application of our formalism to the real electron sys-
tem, we assume that the mean-field approximation and
the Bogoljubov approximation are valid qualitatively al-

though o./x is not small.
We now summarize the results of our analysis. Our

system consists of planar electrons occupying the lowest
Landau level in the external magnetic field B. Our field-
theoretical formulation realizes various essential features
of the system already in the mean-field approximation.

Let us switch oK the Coulomb interaction. First of all,
there are many nonuniform solutions corresponding to
nonuniform distributions of electrons in the lowest Lan-
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dau level. These nonuniform solutions represent non-
topological and topological vortex solitons, where there
exist zero-energy modes associated with the translation
of each vortex solitons. (Topological vortices are iden-
tified with Laughlin's quasiparticles. ) Second, when
and only when the filling factor takes a magic number,
v = vr/n, there is a uniquely constant solution corre-
sponding to the uniform distribution of the electrons. It
exists only when the external magnetic field cancels pre-
cisely the statistical field of anyons. It is interpreted to
represent a condensed state of electrons bound to fluxes.
In the absence of the Coulomb interaction, all these so-
lutions have the same energy and the constant solution
does not play any particular role. The system is com-
pressible due to the degeneracy of the ground states.

When the Coulomb interaction is switched on, all the
nonuniform solutions acquire positive-definite Coulomb
energy, while the constant solution does not. Therefore,
when v = x/n, the existence of the Coulomb interaction
forces us to choose the constant solution as the unique
classical ground state with the minimum energy. Be-
cause the degeneracy is removed by the Coulomb inter-
action, the system becomes incompressible. This system
exhibits the FQHE. Nonuniform solutions describe ex-
cited states with higher Coulomb energy in this system.
As we just mentioned, only when the filling factor satis-
fies the condition v = 7r/n does the constant solution ex-
ist. On the other hand, for v P vr/o, , the classical ground
state is given by a nonuniform solution which minimizes
the Coulomb energy. The system is compressible even
in the presence of the Coulomb interaction because of
the zero-energy modes: obviously, the zero-energy modes
are given by the translation of the system itself. As we

shall mention soon after, a candidate of the nonuniform
ground-state solution at v g vr/n is the Wigner crystal
made of vortex solitons. In this way, the value of the
filling factor (v = vr/o, ) is very special in our formalism.

After choosing the constant solution in the presence of
the Coulomb interaction as the classical ground state, we

take account of small fluctuations around it. We calculate
the corrections due to the small fluctuations to the clas-
sical ground-state energy: it reads AN/(2~2)(e —/el~),
where e is the dielectric constant, E~ = 1/v eB is the
magnetic length, and N is the number of electrons in the
system. (In this paper we use the unit such that c = 1

and h = 1.) Evaluating the Hall current, we identify
this state with the FQH state at the first level of the
hierarchy.

The ground state is given by a constant solution at
v = vr/a as we have emphasized. This solution is bosonic,
and it does not satisfy the Pauli exclusion principle im-

posed on electrons. One may wonder how this constant
solution is related with the Laughlin wave function. We
can show that the ground-state wave function is indeed
given by the celebrated Laughlin wave function when we

take account of the small fluctuations around the con-
stant solution.

Possible excitations in our ground state with uniform
density are topological vortex solitons, which may be con-
sidered as Laughlin s quasiparticles (vortices) or quasi-
holes (antivortices). It is curious but a fact that there

are only antivortex solitons as classical solutions describ-
ing collective modes of electrons in the lowest Landau
level. Now, suppose we remove one electron from the
FQH state at v = 1/k (k—:a/vr). Then, k antivor-
tices appear since each vortex carries the electron num-
ber —1/k, and a state with N —1 electrons is formed.
Apart Rom the cyclotron energy of electrons, the energy
of the state is higher than the ground-state energy by k
times of the Coulomb energy of the antivortex soliton,
which is a chemical potential (y, ) at v = 1/k when we
approach at v = 1/k from v ( 1/k. Numerically, it is
given by p, 0.13(e /sf~) at the filling factor v = s.

We conjecture that vortex solitons are identified with
a bound state of k —1 antivortices and an electron. Then,
when we add one electron to the FQH state, k vortices
will effectively appear to make a state with 1V+ 1 elec-
trons. The energy of the state is higher than the ground-
state energy by k times of the Coulomb energy of the vor-
tex soliton, which is a chemical potential (p+) at v = 1/k
when we approach from v & 1/k. We have a discontinu-

ity in the chemical potential at the magic filling factor,
which originates in the difFerence of the energies of an
antivortex and a vortex.

It is very difficult to say something definite for the
ground state at v P 1/k. However, we can make the
following physical picture. When more electrons are re-
moved from (added to) the FQH state, more antivor-
tices (vortices) must be created. The ground state at the
vicinity of the magic filling factor will be described by an
ensemble of topological vortices. We would expect that
these topological solitons occupy on a triangular lattice to
minimize the Coulomb energy, and form a Wigner crys-
tal; see Ref. 14 for more details. Thus, when the filling
factor is given by, e.g. , v & 1/k, the addition or removal
of an electron implies the removal or addition of k an-

tivortices. Hence, there will be no discontinuity in the
chemical potential.

When a sufficient number of topological solitons is

created as the filling factor decreases or increases, they
would eventually condense. In this way, a new condensed

phase of electrons and solitons would appear, which will

be the FQH state at the second level of the hierarchy. In
order to understand the hierarchy of the FQHE, we make
a field theory of the solitons by regarding them as point-
like particles. This can be done with the aid of a sin-

gular gauge transformation, which precisely introduces
localized vortex solitons (Dirac strings). It is straight-
forward to construct a second quantized field theory of
such localized solitons by introducing a new CS gauge
field. The basic physics is that the vortex solitons feel
the fluxes of bosonized electrons and of themselves and

they behave as anyons. We again search for the ground
state of the mean-field approximation by minimizing the
energy of the system consisting of electrons and vortices.
Only when the total fluxes due to the external magnetic
field, electrons, and vortices are canceled does the con-

stant solution exist as a state with the minimum Coulomb

energy, thus determining the classical ground state to-
gether with the magic filling factor at the second level of
the hierarchy. This ground state is incompressible. Ex-
amining the Hall current, we identify it with the FQH
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state at the second level. We can generalize this scheme
to obtain the hierarchy of the FQH states at any lev-
els. Our scheme presents a field-theoretical realization of
the hierarchy construction due to Haldane and Halperin. z

However, we should mention that the derivation of our
Hamiltonian of vortices is by no means rigorous but is
based on plausible arguments.

This paper is composed as follows. In Sec. II, our basic
Hamiltonian is constructed by second quantizing a set of
anyons. In Sec. III, the ground states are analyzed in the
mean-field approximation when the Coulomb interaction
is switched oK and on. In Sec. IV, small fluctuations are
taken account around the classical ground state in the
presence of the Coulomb interaction. In Sec. V, we derive
the ground-state wave function in our framework, which
is found to coincide with the Laughlin wave function. In
Sec. VI, antivortices are obtained as topological solitons
in this system. In Sec. VII, we construct a local field
theory of the vortex solitons. In Sec. VIII, the hierarchy
of the FQH states is derived field theoretically. In Sec.
IX, we discuss some remaining problems. We have also
prepared two appendixes for some detailed calculations.

II. FIELD THEORY OF ANYONS

In this section we review a nonrelativistic particle me-
chanics of anyons and its second quantization. In par-
ticular, we show how a second-quantized Hamiltonian is
modified for a perturbative description of anyons from
the boson limit. This is the starting point of our formal-
ism of the FICHE.

We start with a Lagrangian describing a system of N
free anyons moving nonrelativistically on a plane:

x -X.'8(x„—x, ) = arctan x' —x'
T' S

(2.2)

It is understood that two anyons never cross each other,
i.e., x„g x„so that the azimuthal angle 8(x„—x, ) is well
defined. The second term in (2.1) is a total derivative
in time, and does not contribute classically. However,
quantum mechanically, it produces a phase e'~ when two
anyons are interchanged. It is natural to consider that
the statistics parameter o. is defined mod2x because the
physical quantities are periodic in n In Appendix A. we
argue that it is indeed the case in a finite-temperature
theory, and that the term r = s can be included in the
sum in (2.1) by making an appropriate regularization for
8(x —x„).

The canonical momentum is defined as

p„' = mx'„+ a, (x„),
with

(2 3)

~rn dx~~ z ct ~ dL=).—( ') + —) —e(z, —z.).
r=l r&8

Here, rn is the anyon mass, (x„,x„) is a vector specify-
ing the location of the rth anyon, and 8(x„—x,) is the
azimuthal angle between two anyons, i.e. ,

N

a, (x) = —) 0,8(x —x, )

where

2 X —gd y, ,zp, (y),
7r (x —y)

(2.4)

~.(y) =).~'(y-x. ) (2.5)

represents the density of anyons. It is convenient to char-
acterize a~ (x) by the constraint equation

1

2A
~*i&'G~(*) = ~.(*) (2.6)

together with the gauge condition 8;a, = 0. Then, the
Hamiltonian is given by

N

).Y —o&(x.)]'
f'=1

(2.7)

together with the constraint equation (2.6).
According to the correspondence principle, second-

quantization can easily be done by introducing bose field
operators @ and Q't, satisfying

[4(x) @(y)] = I4'(x) 4'(y)] = o, (2 8)

and making the replacement such as pi ~ i,8~ and p, ~—
Qt Q in the Hamiltonian (2.7) and the constraint equation
(2.6). Then, the second-quantized Hamiltonian reads

d2 (2 9)

together with the constraint equation

2A
e;,Bia, =Q Q,t (2.10)

and the gauge condition 8;a; = 0, which determines a~.
Indeed, this may be solved as

xA: A:

o(x)=-—~k dy 4 4(y),
vr

' (x —y)s
(2.11)

which corresponds to (2.4) in the particle mechanics.
It is well knownis that the Hamiltonian (2.9) together

with the canonical commutation relations (2.8) leads to
the correct quantum-mechanical Schrodinger equation of
anyons with this operator ordering. However, in this pa-
per we analyze the anyon system perturbatively in a, in
which we expand an anyonic state in terms of bosonic
states. In such a case a modification of the Hamiltonian
is necessary as we have discussed in detail in Ref. 12.
(See also Ref. 16.) Let us briefly review the essence.

We take the Hamiltonian (2.9) in the presence of the
external magnetic field, by replacing (i' + ai) with
(i,8~+a~ —eAi), where Ai is the external electromagnetic
potential. We try to solve such a Hamiltonian system
perturbatively with respect to the statistics parameter
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n/vr. We expand the Hamiltonian, the eigenvalue, and
the eigenfunction as follows:

H(a) = Ho+ Ho—+ 0(—)
E(a) = Eo + E—o + 0 (

—
)

@(a) = 4o + & —o, + 0 (
—

)

(2.12a)

(2.12b)

(2.12c)

(2.13)

where the unperturbed quantities Hp, Ep, and iIr, are
those of the boson limit; Hp]@p) = Epl@p). The first-
order correction is given by

Ei = (@olHil@o)

ditional repulsive force associated with the anyon statis-
tics. The repulsion due to statistics is already imposed
through the CS term.

Strictly speaking, the modified Harniltonian has been
derived only in the first order of the n/x. However, in
this paper we assume that this can be used for any values
of n/n, especially when n/x = an odd integer where the
anyon is a fermion. As we shall see in the rest of this pa-
per, this assumption gives us physically quite reasonable
results at least qualitatively.

It is straightforward to derive the Lagrangian density
from the Hamiltonian. (We do not introduce the external
potential A~ in this section for a notational simplicity. )
Introducing a field ap to implement the constraint equa-
tion (2.10), we obtain

in the naive perturbation theory, where 1
& = 0'(iBo+ ao)0 — I(iBI + aa)gl'

2m
Hi ——— d x@ (iB) —eAI, )ai,g O(n/m).=1 2 t

m
(2.14)

(QtQ) — e"" a„B,a), . (2.17)
m 4n

We call a„ the statistical field or the CS field.
In this paper it is necessary to consider also a sys-

tem consisting of two distinguishable anyons. We have
in mind electrons and vortex solitons. Let n and P be
their own statistics parameters and p be their relative
statistics parameter. The Lagrangian governing such a
system is

Now, the two-anyon system can be exactly solved quan-
tum mechanically, i~ and we can check if the first-order
perturbation result (2.13) is correct. We can also check
it for the many-anyon systemis where the spectrum has
been partially obtained. By an explicit calculation we
can provei2 that instead of the naive expectation (2.13)
we have

a = (&ol(a+ f&*a: Io(l':) I&o) (2.15)
'=&-2(do )+ "& «8(* --*)"~ m ds~~ n d

r(s

+&.T( ~o") + —&. oe(o —o*)
M dy~ z P . d

r r(s

Consequently, in performing a perturbation expansion,
we need to adopt the modified Hamiltonian given by

1
H = dz [(iB~ + a~ —eA~)g] (i8~ + a~ —eA~)g. 2m

+lnl . (~t~)2. (2.16)
m

+-) -8(*.—y. )dt
(2.18)

f'i S

Repeating the same procedure as we did for a system of
one type of anyon, we can derive the following second-
quantized Hamiltonian density:

Z = 2' [(iB, + a, )y]t(iB, + a, )q+ 2: (q~q)':

+,M [( B +b, )4]'( B, +b, )4+ —,':(4'4)':

+h: e'e~'~:, (2.19)

where the CS gauge fields a~ and b~ are fixed by the
constraint equations

e,,B,a~ =2n@'q+2p4

B,bi = 2pp (t'+ 2 Yg g,
(2.20)

and the gauge conditions B,a; = B;b, = 0. The coupling
constants gy, g@, and h are determined as

2IPI (m+ M)'~= m'
in the first order of perturbation. Just as before, we

assume to use the above Hamiltonian for arbitrary values

of the statistics parameters n, P, and p.

up to the first order of n/7r, where the dots: 8:denote
the normal ordering of the operator G.

We can understand the origin of the extra term quan-
tum mechanically as follows. Let us consider a two-
anyon system in a harmonic potentialis or in an external
magnetic field. In general, anyon wave functions van-
ish with a fractional power of r as Q,„„,„(r) ~ r ~

when two anyons come close. However, unperturbed
boson states (n = 0) do not involve this fractional
power of r; their wave functions vanish like r~ with /
being angular momentum. Hence, we cannot expand
anyon states in terms of the unperturbed boson states
which have the standard partial waves. Instead of doing
so, we may expand r ~~ g~„„„byusing the standard
partial waves. Schematically the expansion looks like

Q,„„0„——r ~ (+partial waves). This expansion leads
to a modification of the perturbation series of n/x Es-.
pecially, in the first order of n/m, we have to add to the
naive Hamiltonian a b-function-type repulsive force with
the strength 2lnl/M, which leads to the: (Qtg): term
in (2.16) field theoretically. Namely it is a renormalized
interaction term in the perturbation of n/vr.

It should be remarked that the role of the extra term
: (@tg)2: is just to reproduce the correct behavior as
r ~ 0 in perturbation theory, and not to introduce the ad-
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(2.22)

Here, parameters X, Y', and Z are defined by

The Lagrangian density is easily constructed from the
Hamiltonian. Introducing two fields ao and bo to imple-

ment the constraint equations (2.20), we obtain that

& = @'(~Bo+ao)4 — l(i'+ ~a)AI
1 2

2'
+4'(iBo + bo)4 —

2M l(iBa + 4)4 I'—"(~'~)' —"-(~'~)' h~-'~~'~

4X

s QyBv4.p,vA

term is given by

V[41 = — d'*A: H'4(~) —p)
26

x (@ g(y) —p):, (3.4)

where e is the dielectric constant. Here, we have added
a uniform background charge ep to the Coulomb term

V for charge neutrality. The boson field Q is identified
with the electron bound to statistical fiux, which we call
bosonzzed electrons.

It is convenient to rewrite the Hamiltonian in the fol-

lowing way. First, we use the Bogomol'nyi decomposi-
tion:

aP—
2

(2.23)
IDI @I' = l(Di —&Di)41' —

&gi Bg(0 '&Di 0) :~i~@—'0:,

(3 5)

In the same way we may include any number of distin-
guishable anyons into the system, which is actually rel-
evant in discussing the FICHE at the nth level of the
hierarchy.

III. PLANAR ELECTRONS
AND CLASSICAL GROUND STATES

2 D 2+ . f 2. +

together with the constraint equation (2.10), where
iD„= iB„+a„—eA„. Equivalently, the Lagrangian
density reads

& = 0'&Do@ — IDall' — (0'4)'
2m m

e"""a B„ap —V[/].4n
(3.2)

Here and hereafter, we use a notation
~
Di,@~

for
simplicity, but this should always be understood as
(Di,@)f(Di,g). Our convention is that an electron car-
ries electric charge —e, and the external electromagnetic
potential is given by

I,A = ——eIx.2 23 (3.3)

We choose eB ) 0 and a ) 0. The Coulomb interaction

We consider a system of N electrons in the presence
of an external uniform magnetic field B perpendicular to
the plane. We assume that the spin degrees of freedom
can be ignored since the system is completely polarized
by the strong magnetic field. Because such electrons are
considered as anyons with a/z being an odd integer, they
are described by the Hamiltonian density (2.16) with the
inclusion of the Coulomb interaction term V for electrons.
In what follows, for definiteness, we use the notations

Q and ai, for the quantum fields and Q and ai, for the
classical fields.

Thus, our basic Hamiltonian is

where &uk = cA, —eAA, and uiq = Bicuz —Bzui. Substituting
this into the Hamiltonian we get that

H = f1'z ~(D, —iD~)gp+-,'~ 0'4+7 (3.6)

In this section we discuss the ground state @of the mean-
6eld approximation.

with a, = eB/m being the cyclotron frequency. Note
that the term: (QtQ)s: has been canceled out in this
Hamiltonian.

It should be emphasized that our bosonic Lagrangian
describes a microscopic theory of planar electrons inter-
acting each other via the Coulomb interaction V. In this
respect it is conceptually difFerent from all the Landau-
Ginzburg-type Lagrangians. s r In the latter case, for in-
stance, on the basis of Laughlin's wave functions one
"derives" the type of the Lagrangian (3.2) without the
Coulomb term V: thus, Q is not a quantum field op-
erator but is a complicated order parameter containing
already the eifect of the Coulomb interaction and other
interactions. Furthermore, the mass m is not really the
mass of the electron but a parameter depending on the
Coulomb interaction in their approach. 7

When the Coulomb interaction between electrons is
switched off, we know very well what the ground state
of planar electrons in the external magnetic field is. All
electrons in the state are in the lowest Landau level, and
the ground-state energy is given by

EN = z(u, N,—1

where N is the number of electrons. Ground states are
highly degenerate. It has been argued physically that this
degeneracy must be removed by the Coulomb interaction.

In our field-theoretical formalism let us see how we
can understand the ground-state degeneracy and its re-
moval depending on the absence and the presence of the
Coulomb interaction. In the semiclassical approach we
take account of small fluctuations around the ground
state @ of the mean-field approximation by setting

(3.8)



7770 Z. F. EZAWA, M. HOI I'A, AND A. IWAZAKI 46

The ground state is described by the c-number func-
tion Q, satisfying f d x~@(x)~ = N, which minimizes
the classical energy of the system. The classical energy
is given by

(3.9)

where ak in Di, is a c-number function given by (2.10).
Let us neglect the Coulomb term V temporarily. Then,

the classical ground state is given by solving the self-dual
equation

(3.10)

since it minimizes the classical energy (3.9). All the so-
lutions have the same energy; thus, the corresponding
states are degenerate. It is interesting that the "classi-
cal" energy gives precisely the exact result (3.7). This
suggests that there should be no corrections due to the
fluctuations q, which we shall prove in the next section.

When the external magnetic field does not exist,
Jackiw and Piis is have analyzed this self-dual equation
in detail. In this case, this equation is reduced to the
Liouville equation, and all the solutions can be obtained
explicitly. Physically, they represent an ensemble of non-
topological vortices.

In the presence of the external magnetic field, it is im-
possible to solve all the solutions explicitly. Nevertheless,
we can easily derive some essential features of the solu-
tions. First of all, the self-dual equation is translational
invariant: The translation of the system is compensated
by the gauge transformation in Ai, and Q. Second, there
are topological vortex solutions in addition to nontopo-
logical vortex solutions. 20 Nontopological solitons exist at
any filling factor v, while topological solitons exist only
when the constant solution exists. This is the case if and
only if the filling factor v takes a particular number given

Furthermore, other nonuniform solutions besides vortices
might exist. All these nonuniform solutions have at least
two zero-energy modes associated with the translation of
the system itself. In any case, we have nonuniform solu-
tions as well as the uniform (constant) solution. They are
all degenerate in the absence of the Coulomb interaction.
Therefore, the system is compressible.

Now, let us switch on the Coulomb interaction between
electrons. It is a crucial fact that all the nonuniform
solutions acquire the positive-definite Coulomb energy
through the Coulomb term (3.4), while the constant so-
lution does not. As we have explained, when v g m/n,
the constant solution does not exist. Thus, a nonuniform
solution with the minimum Coulomb energy is a ground
state. However, as we have pointed out, the zero-energy
modes necessarily exist associated with the translational
invariance of the system itself. Hence, the system is still
compressible.

The situation is entirely different for the case v = m/n
In this case the constant solution exists and minimizes
the Coulomb energy, and gives the unique ground state.
Indeed, there are no zero-energy modes associated with
translational symmetry. The translation of the system
simply produces a phase factor e'~ in Q = ~p. The phase
factor, however, is removed by the gauge transformation
in the CS gauge field. Indeed, as we show in Sec. IV,
no zero-energy modes exist associated with small fluc-
tuations g around the classical ground state. Although
there are other excitations given by topological vortex
solitons, their excitations cost a Coulomb energy. There-
fore, when v = x/n, there exists the unique ground state
of the constant solution. This is the explanation of the
incompressibility of the ground state at v = m/n in the
mean-field approximation.

We have shown that, in the presence of the Coulomb
interaction V, the ground state of the Hamiltonian at
v = v~o& = 7r/n is given by the classical solution (3.12)
which describes a condensed phase of bosonized electrons.
In Appendix 8 we show that, when the external electric
field E), is applied, the Hall current is induced such that

275'p 7C

! (3.11)

as is easily derived from (2.10) and (3.10), and the con-
stant solution is given by

e(J ) = ——(Q D, Q) = e Eg. (3.14)

Hence, the Hall conductance is given by cr» ——es/2n =
v~ &(e /2vr), as is expected. We may identify our ground
state with the FQH state at filling factor v = v~0~.

ag = eAg. (3.12)

—+0

for nontopological vortices, and

(3.13a)

(3.13b)

The equation ai, = eA), means that the statistical field
and the external magnetic field cancel each others pre-
cisely. Vortex solitons are characterized by the asymp-
totic behaviors as ~x~ ~ oo:

IV. BOGOL JUBOV APPROXIMATION

In this section we only consider the case when the fill-

ing factor takes a special value given by (3.11). As we
have argued in the preceding section, there exists the
unique nondegenerate ground state (@ = ~p) with the
minimum Coulomb energy in the mean-field approxima-
tion. We now consider small fluctuations around it.

We substitute Q = ~p+q into the Hamiltonian density
(3.5), where

for topological vortices with the flux 2vrn, where n is an
integer and 8 is the azimuthal angle. See also Sec. VI.
The positions of vortices can be taken arbitrarily and
represent zero-energy modes of the classical solutions.

ipx7/= ~) ape
pg0

(4.1)



46 FIELD THEORY OF ANYONS AND THE FRACTIONAL. . . 7771

with V being the volume of the system, and

[ap, a~t] = bp~, [ap, a~] = [apt, at] = 0. (4.2)

We eliminate the gauge potentials by using the constraint
condition (2.10) or

a; —eA; = —e—;z d y (g g —p). (4.3)
a! z x~ —p
x " (x —y)2

Keeping only the terms up to quadratic in rI and gt, we
obtain

e = —'x+ f&'n(
' ()~n'()~n+: (n+n')':) +ff&'*&'n in(*)+n(*)'I'" *

"In(n)+ n(n)'I

e2 1
qy +~y) . (4 4)

Using (4.1), the Hamiltonian reads

c t tt 2ap2 2
H = N + ) Lpapap + Up(2apap + a a + apa p) +

2 .~0 m p
(4 5)

where

p2
2m'

20. p ere p Gp
mp2 .]p[ m

By way of the Bogoljubov transformation

(4 6)
where

2 2s B I~cs &g

(4.14)

(4.15)

ap =gp p ~p p-
with h2 = gz —1 and

(4.7)

(4 8)

if; is diagonalized as

H N+ Eq+ ) Epbptbp (4 9)

with

p& q pq) [bp, b~] = [bpt, b~t] = 0. (4.10)

The ground state ~g) is such that

b, [g) = 0.

Here,

E =e +4eU

(4.11)

+c + P (4.12)

and

1 p i ale p
Eq ——) — Ep-

2m '& .]p[ . (4.13)

The correction due to the fluctuation rI to the ground-
state energy is given by Ez. This is proportional to the
total number N of the electrons in the system, and it is
explicitly calculated as

It is the Coulomb energy per a particle of the ground
state ~g).

The excitation spectrum is given by (4.12). There is
a gap energy (d, The m. ode represents the excitation of
the center-of-mass motion across the Landau-level gap.
This shows the absence of the zero-energy modes associ-
ated with the small fluctuations around Q = ~p whether
ez = 0 or not. In the preceding section we have argued
that when ez = 0 the uniform state is degenerate with
many nonuniform states. A transition from the uniform
state to a nonuniform state is impossible by small fluc-
tuations. It occurs, for instance, by exciting topological
vortex solitons. Thus, the actual gap energy of the FQH
state is not given by the dispersion relation (4.12), but
the creation energy of topological solitons. This is dis-
cussed in Sec. VI.

In the presence of the Coulomb interaction (e g 0),
there is a finite correction (b.E g 0) to the ground-state
energy zoic% in the mean-field approximation. On the
other hand, there is no correction (AE = 0) in the ab-
sence of the Coulomb interaction (e2 = 0). These prop-
erties are what we expect physically since the system is
reduced to an ensemble of noninteracting electrons when
e2 = 0. It should be mentioned that we have obtained
these results due to the extra: (@tg):term we added
in the modified Hamiltonian (3.1). Indeed, without the
extra term we would obtain a diverging result for LE
even in the case e2 = 0. The extra term is necessary for
expanding anyon state (a g 0) in terms of bosonic states,
as we have remarked in Sec. II.

In these calculations the unperturbed bosonic states
are given by the states implied by the Hamiltonian (4.5)
or (4.9) when we set n = 0 (u, = 0) therein. From (4.12)
it is obvious that the state represents a superfmuid with
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the phonon dispersion E~ oc egplpl as ]pl —+ 0. We
should mention that what we have done in this section
is the calculation of perturbative corrections in the erst
order of n/vr to the unperturbed state of the superfluid
under the condition eB/2vr p = e/vr. We have found that
the condensed state continues to exist as a stable ground
state with the gap energy cu, = (2p/m)a up to the or-
der of n/vr Si.milarly, the Coulomb energy AE we have
found is correct to the same order of u/n. . In the physical
application to the FICHE in the electron system the pa-
rameter n jm is not small, and in general AE will receive
higher-order corrections in a/m. Furthermore, there are
corrections due to virtual excitations of topological soli-
tons. Therefore, it is rather natural that our numerical
result (4.15) does not coincide with the previous results
obtained in the Laughlin theory. However, it is interest-
ing to note that their results on b,E at n/x = 3, 5, and 7
have a tendency to approach our result as n/x decreases.

V. GROUND-STATE WAVE FUNCTION

As we have emphasized, the ground state is given by
the constant solution at v = vr/a in the mean-field ap-
proximation. It is important to see how this constant
solution is related with the Laughlin wave function. To
make this paper self-contained, we now give a brief dis-
cussion on this point based on a work given in Ref. 13.

The ground-state wave function is defined by

(5.1)

where Q(2:) l0) = 0, and lg) is the ground state given by
(4.11).

It should be commented that the classical field Q rep-

resents the expectation value of the operator g with the
ground state lg), Q = (g]Qlg). In the mean-field approx-
imation the wave function is reduced to the product of
the c-number functions:

same in yielding the self-dual equation (5.3). It should
be noted that the contact interaction term does not af-
fect the anyon wave functions as far as they vanish when
two anyons come to the same point.

Introducing the complex coordinate z = x+iy for each
electron, we rewrite the self-dual equation as

+ z„—— 4g =0.
sgr

This equation is easily solved as'~

(5 4)

iIIg ——f(z) lz„—z,
l

~ exp — ) lz„l
r&s

(5.5)

eg ——p~~' og + p-' og x„g 2:, g +

Here, f is an arbitrary entire function of z„. This ar-
bitrariness corresponds to the degeneracy of the ground
states in the absence of the interaction. Formula (5.5)
agrees with the well-known quantum-mechanical resultis
for the ground states of the bosonized anyons. [To see
the wave function of anyons it is necessary to perform
a singular gauge transformation which results in replac-
ing lz„—z, l~~~ with (z„—z, )~~~. In our convention the
conjugate coordinate z appears instead of z.]

In the presence of the Coulomb interaction, it is impos-
sible to determine the ground-state wave function pre-
cisely. However, we can do it perturbatively. Because
the Coulomb interaction removes the degeneracy, the
ground-state wave function of the interacting case must
approach one of the entire function f(z) in the limit of
the vanishing coupling constant (ez ~ 0). Our idea is
to determine this function from our unique mean-field
solution.

Within the present approximation the ground-state
wave function is obtained as follows. Substituting Q =
~p+ g into its definition (5.1), we find that

@g(» " »):-0(»)" 0(») (5.2)
r&s

(5 6)
and it is bosonic. It does not satisfy the Pauli exclusion
principle of electrons. To restore it we need to go beyond
the classical approximation.

Before discussing small fiuctuations around g, we re-
call that the ground-state wave functions are exactly ob-
tained in the general N anyon system in the absence of
the Coulomb interaction. is We can reproduce their re-
sults in the following way. When all anyons are in the
lowest Landau level, the state lg) satisfies the self-dual
equation

(5.3)

which results from the Hamiltonian (3.6) with V = 0.
Note that this equation is precisely the one that deter-
mines the ground state in the model of Girvin et aL22

Their Hamiltonian contains a contact interaction term
: (@t@):by definition, while ours contains it to perform
a consistent perturbation. Thus, their origins are quite
different. Nevertheless, their mathematical role is the

(5.7)

because of (4.7), or

(0]n(~)n(y)lg) = g(~ —y)(olg),

with

g(2' y) = 1 + w Ap )p()( y)
V gp

(5.8)

(5.9)

Here, h~ and g~ are defined by (4.8) and (4.6).
Let us calculate the ground-state wave function ex-

plicitly up to the order of n/vr. It is easy to see that
g(z)/p = 0(o/n), and hence

where the terms not displayed explicitly are represented
by the products of p i(0lg(z)i7(y)lg). The ground state
lg) is defined by (4.11), which implies
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'4 =8"(ola)(~+~ ') q(*.-*.)+e(~ Y),l

1
d xg1Q = dz"aq,

2A
(6.2)

= ~""(olg)( "' ""'+e(~'/e')).
r&s

(5.10)

In the limit e —+ 0 we can make an integration in (5.9):

there is a relation between the statistical charge Q and
the statistical Bux 4 of the vortex soliton. In our nor-
malization the charge density and the number density are
the same. These quantities are trivially calculated as

1 z eB
2z&p @2+eB

= ——Ko(~&~&eB)

= -h'a+»(l&l&eB/2)j+ o(&'/~') (5.11)

1Q= 4= —n,
2A A

where

0 = f&'*(0'0 p)-

(6 3)

(6.4)

where we used the fact that eB = 2ap. Here, Ko(y) is
the modified Bessel function and p@ is the Euler constant.
Consequently, we get

aild

O = ]dec(ee —eAe). (6.5)

@,=C ~z„—z~ ~,
~ ~ 4

r)s
(5.12)

exp — /2:„fz

with C being a constant. This is to be compared with
the wave function (5.5).

We comment on the exponential factor in (5.5), which
may be rewritten as

Here, we have defined Q and 4 by subtracting the
ground-state contributions, p = (e/2cI) e;~8;A~.

The electric charges of these vortices are given by

7r—eQ = en—, -
A

(6.6)

since a vortex is made of Q of bosonized electrons; recall
that electrons carry the charge —e. The mass of the
vortex can be determined20 zs by calculating the kinetic
energy of the vortex soliton. We may also determine
it by examining a time-dependent solution describing a
vortex soliton making cyclotron motion. 24 In any of these
analyses we get

(5.13)
M = rn(Q/. (6.7)

where we have separated the coordinate of the center of
mass from those of the relative motions. Because of the
translational invariance in our mean-field approximation,
our wave function does not involve the term depending on
the center-of-mass coordinate. Furthermore, the remain-
ing terms f$ ~z„—x,

~
do not appear in the large limit of

N. Consequently, we have found that the ground-state
wave function agrees precisely with the Laughlin wave
function in the limit of the vanishing coupling constant.
The correction term in the first order of e2 is found in
Ref. 13.

VI. TOPOLOGICAL VORTEX SOLITONS

We have shorn that at the magic Blling factor the clas-
sical ground state is given uniquely by the constant so-
lution (3.12) in the presence of the Coulomb interaction.
It represents a condensed phase of electrons bound to
fluxes. In the condensed phase of the bosonized electrons,
it is expected that there are vortex solitons carrying the
statistical flux. A vortex sitting at the origin of the co-
ordinate is characterized by the phase of the bosonized
electron field asymptotically as

~p ~(r)+its (6.8)

The interpretation of this formula is simple: since a vor-
tex is made up of Q of the bosonized electron, its mass is
the sum of those of each constituent. It is notable that
the charge-mass ratio of the vortex soliton is the same as
that of the bosonized electron: ~eQ/M( = e/m.

Vortex solitons may be identified with Laughlin's
quasiparticles (n = 1) or quasiholes (n = —1). They
are collective excitations of electrons in the lowest Lan-
dau level. To see this, it is enough to show that there
are vortex solutions to the self-dual equation (3.10). It is
curious but a fact that there are only antivortices (n ( 0)
as classical soliton solutions to the self-dual equation, as
we shall soon see. Although there are vortex solutions
(n ) 0) to the Euler-Lagrangian equations of the system
(3.6), they are not self-dual;zo in this case the creation
energy of the vortex is of order of the cyclotron energy ur„
and hence it cannot be a collective mode of the electrons
in the lowest Landau level.

The existence of self-dual vortex solutions can be ana-
lyzed as follows (see details in Ref. 20). We parametrize
the bosonized electron field as

(r -+ oo), (6.1)
Substituting this ansatz into the self-duality equation
(3.10), we find that

where n is an integer and (r, 8) is the polar coordinate.
Because of the constraint equation (2.10) or Gg —eAg = nBIC8 —Cif;IBItl(F) (6.9)
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cPu 1 du cIP
dz2 z dz Bu

where

(6.10)

We then substitute (6.8) and (6.9) into the constraint
equation (2.10): 1.2

1.0

0.8

I I I

f

I I [

U=2u —e", (6.11) 0.6

and z is the rescaled radius defined by r = z/gap =
+2zI, J3.

The boundary condition at the vortex center reads

0.4

0.2

lim u(z) = —oo,
z-+0

lim u'(z) = ——,
z~0 Z'

for n g 0, while at infinity it is

(6.12a)

(6.12b)

o.o
0.0 1.0 2.0

I I I I I I I I I

3.0 4.0 z

FIG. 1. Numerical solutions for topological vortices with
u = —1 (solid line) and n = —2 (dashed line).

lim u(z) = 0. (6.13)
(v} = e2

(6.15)
The conditions (6.12a) and (6.12b) follow from the re-
quirements @ ~ 0 and ag -+ eAg, respectively, at the
vortex center (r = 0) in order to avoid the multivalued-
ness and the singularity at that point. The condition
(6.13) is necessary since the vortex configuration should

approach the classical ground state asymptotically.
Near the vortex center z = 0, approximate solutions

are easily found:

Z2 Z
u(z) ———n ln —.

2 ZO
(6.14)

Because of the boundary conditions (6.12a) it is necessary
that n ( 0. Hence, only antivortices (quasiholes) are pos-
sible. It can be provedsP that there are indeed antivortex
solutions. We have performed a numerical computation
of antivortices with n = —1 and —2. The method reads
as follows. We integrate Eq. (6.10) by assuming an ap-
propriate initial data zp in the asymptotic solution (6.14)
at the vortex core, and examine whether or not an ob-
tained solution satisfies the boundary condition (6.13)
at infinity. We repeat this process by changing the ini-

tial data. We find that zp = 0.828791 for n = —1 and

zp = 1.03666 for n = —2. See Fig. 1.
A vortex soliton is an extended object whose size is

z —1 or r —E~, the magnetic length. Because the
vortex solution approaches very rapidly its background
constant outside of its size, it is expected that there is a
solution containing several of these antivortices which is

approximately given by their superpositions. This can be
proved mathematically. 25 The positions of the antivor-
tices are free parameters and they become zero-energy
modes of the classical solution.

Until now we have not included the Coulomb interac-
tion. It is possible but very difficult to solve vortex solu-

tions in the presence of the Coulomb interaction. How-

ever, since the Coulomb interaction is very small with re-

spect to the kinetic energy (i.e., zu, for each constituent
electrons), we may treat it as a perturbation. Then, we

may estimate the Coulomb energy of vortices simply by
using the above self-dual vortex solutions:

where

C =
s d zid zq (I' (zi) —1)

P'(») —1),
uzi

—z2/
(6.16)

with F(z) = e"('). By a numerical calculation we find
that C i 0.044 for the antivortex with n = —1 and
C q

- 0.14 for the antivortex with n = —2, where we
have chosen o,/x = 3 for definiteness (i.e., v = si). These
Coulomb energies are the creation energies of the an-
tivortices. Since C q ) 2C i, it is concluded that two
antivortices with n = —1 are much more easily excited
than a single antivortex with n = —2. Hence, in what
follows, we only consider an antivortex with n = —1.

We have shown the existence of antivortices (quasi-
holes) as solutions to the self-dual equation. Now, we
consider the excitation energy (gap energy) due to these
antivortices. Suppose that the ground state ~g) contains
N electrons. We remove one electron from this Hall fiuid.
Then there appear k antivortices since each vortex carries
the electric charge —e/k, where k = o, /m. The energy of
the state is given by

(-,'~, + aE)(N 1) + k(y}, -

E' =—(-,'~. + AE)N + k(V) + E~, (6.17)

where E~ is the bound energy of one electron and k an-

tivortices. We estimate the gap energy as

where the energy due to the Coulomb interaction between
diferent vortices is neglected. Let us then dope one elec-
tron back to the system. The doped electron will bound
to the antivortices by the Coulomb interaction and make
an excited state, or it will annihilate the antivortices and
recover the ground state ~g}. Therefore, the excited state
consists of one electron and A: antivortices, with the en-

ergy being
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Es,p = E' —(zi~, + b.E)N
= k(V) + Egg

e2 e2
3C i 0.13

GAB EEB

(6.18a)

(6.18b)

at k = 3 (ij = s) by neglecting this binding en-

ergy. It should be recalled that the gap energy has
been calculated as Es,~ 0.097(e /el~), which is ob-
tained by Monte Carlo methods based on Lauglin's wave
function. zs z7

As we have stated, there are no vortex soliton solutions
in the self-dual equation. However, we conjecture that
a vortexlike object is formed as a bound state of one
electron and k —1 antivortices at the filling factor v =
1/k. The object has the electric charge —e/k and one
unit of the CS magnetic flux. Thus, we may identify a
vortex excitation. Then its energy (V)„ is given

(V). = (k - 1)(V)+E.', (6.19)

where Ez is the binding energy between one electron and
k —1 antivortices.

When we add one electron to the Hall state at v = 1/k,
k such vortices appear. On the other hand, when we
remove one electron, k antivortices appear. The chemical
potentials are given by

pp ——zi~, + bE+ k(V)„,

p = —ziu, —bE+ k(V).

(6.20a)

(6.20b)

Hence, the discontinuity of the chemical potential is given

k((v)„—(v)) = (k —2)(v) + E,', (6.21)

which is (k —2)/k times of the gap energy Es~& when the
binding energy is neglected.

We have shown that the gap energy at v = ]./k is given

by (6.18a), i.e., Es,&
——k(V) + Egg. This is the Coulomb

energy of k antivortices and the binding energy between
one electron and k antivortices. Equivalently, this can be
regarded as a binding energy of a vortex and an antivor-
tex, where a vortex is composed of one electron and k —1
antivortices. Therefore, the gap energy is physically the
same as the so-called magnetoroton energy. 2s

VII. FIELD THEORY OF VORTEX SOLITONS

We have shown that there are topological excitations
of antivortices on the FQH state at v = m/a. When one
electron is removed from the ground state, n/ir antivor-
tices must be created to form a state with N 1electrons. —
As more electrons are removed, more antivortices will be
created. The ground state at the vicinity of the filling
factor v = vr/a must be described by such an ensemble
of the vortices. In order to minimize the Coulomb energy
they would form a Wigner crystal, as we have discussed
in a separate paper. 4

When a sufBcient number of antivortices are created
as the filling factor decreases, the antivortices condense.
We then obtain a new condensed phase of electrons and
antivortices. In order to describe such a phase, it is con-

venient to construct an efFective field theory of antivor-
tices. This is the main topic of this section. The present
theory may be considered as a nonrelativistic version of
the formalism given in Ref. 10. In the next section, us-

ing the effective field theory of vortices, we discuss the
hierarchy structure of the FQH states.

We would like to construct a local ield theory of vor-
tex solitons with vorticity n = —1. Although vortex soli-

tons are extended objects, we take the pointlike limit.
Then their local field theory describes correctly the ef-

fects whose scale is larger than the scale of the vortex
soliton. The scale is given by the magnetic length and is
independent of n.

A localized vortex is a flux concentrated in a small
domain. Such a flux is easily introduced by considering
a singular gauge transformation such that

Q ~ e'fQ, a~ ~ ap+apf, (7.1)

where f(z) = —P„"i8(x —z„), and 8(z —z„) is the
azimuthal angle defined by (2.2). We get

e,ia,a, ~ ~;ia,ai —2vrp„(x),

where

(7.2)

p„(x) = ) 6 (x —z„)
r=1

(7.3)

describes a set of local vortices sitting at z" = z„"(t) in the
two-dimensional space at time t, where r = 1,2, . . . , N„,
N„= total number of vortices.

Performing this singular gauge transformation to the
Lagrangian density (3.2), we obtain

g ~ g + bgvortex

with

(7.4)

bZ""""= —a„K"+ ByG,
A

(7.5)

where a4, is given by the reciprocal relation in terms of
Ol)

vr
2

Ay = ——.
&

Here,

(7 6)

K~ = (1/2 )) .~""a„a„e(& z„)-
=) z~6z(*-z„), (7.7)

This quantity is not well defined when two vortices coin-

which represents world lines of the local vortices; s& =
(t, z"). On the other hand,

G' = (I/4~') ) .~""a„e(~- z„)a„a,e(*-.,)
r, s

= (1/2ir) ) K"a„e(x—z, ). (7.8)
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Ay = ———2''p)
0,'

(7.9)

with p being an integer.
Integrating over the two-dimensional space we get

cide, i.e., for r = s. In Appendix A it is argued that this
coincidence can be neglected, and that the quantity ay
is only defined mod2vr. This ay represents the statistics
of the Laughlin quasiparticles. Therefore, we can replace
a~ in formula (7.6) with o.y which obeys the generalized
reciplocal relation,

which follows from

N„

c, (z) = ~ ) O, e(x —z,). (7.15)

ID' '0l'+ —:(4'4')': +&:O'A'rt:
2M ~ 2

In second quantizing the system of vortices, it is neces-
sary to introduce a field operator P which annihilates vor-
tices with n = —1. Then, the second-quantized Hamilto-
nian density is

N„
d2 ggvortex ) o r + 4 ) g(z z )

dz" n . d

cr, , "dt )r dt

(7.10)

with (2.21) and

iD& ——i', +cA, + —ai, .~ (&) 7r

G

(7.16)

(7.17)

+ ~ ) —e(z„—z, ), (7.11)

where e(z„—z, ) is the azimuthal angle (2.2) between the
rth and sth vortices. The total Lagrangian is given by
8 + 2"e'ie" with (3.2) and (7.11). Taking the variation

bao we obtain a constraint equation:

which describes how local vortices interact with the back-
ground CS field ai, and among themselves.

So far we have treated the vortex solitons as point par-
ticles, and have analyzed their interaction terms, i.e., po-
tential terms. In order to find their kinetic terms we have

to carefully analyze so-called collective coordinates of the
solitons. 2s But it is natural to guess that the terms are
given by 2Mz2 in our nonrelativistic formulation, where
M is the mass of the soliton, as given by (6.7). Hereafter,
we assume this kinetic term.

Therefore, the particle mechanics of local vortices is
described by

N„ dzk~.M (ck„)
T=1

". .M dz„" 2 7r dz,"= ) — " + -ai, ' + -ao(z„)
; . 2 dt a dt n

Here, ai, and ci, are determined by the constraint equa-
tions

(7.18a)

(7.18b)

which follow from (7.12) and (7.14) by the correspon-
dence principle. When we set

bk ck + ak
A

(7.19)

e,& B,az ——2n@t Q + 2n Pt P,

e;~8,b~ = 2~gtg —4gnrgtg. (7.20)

Comparing these expressions with (2.20), we find that the
bosonized electrons have their own statistics parameter
n, the vortices their own statistics parameter P, and they
have the relative statistics parameter p, where

P = —2gnr, (7.21)

the total Hamiltonian H+ H~ertex has the standard form
given in (2.19), and the constraint equations (7.18a) and

(7.18b) read

(7.12)

which determines a~. Here, we assume that Q is simply
a classical field of the bosonized electron, not a quantum
operator. After second quantization of the vortices we

regard @ as the quantum operator.
When the particle-mechanical Lagrangian of vortices

is known, its second quantization proceeds precisely as
we described in Sec. II. First, the particle-mechanical
Hamiltonian reads

HFqHE —R + H (7.22)

with (3.1) and (7.16) describes the total system consisting
of vortex solitons as well as bosonized electrons. Using
the Bogomol'nyi decomposition (3.5) we rewrite it as

Hence, vortices are actually bosons. Nevertheless, the
relative statistics between an electron and a vortex is
fermionic.

The Hamiltonian density

~vartex ) p ——Gg —cg (z„)2M (
' o. )

together with the constraint condition

1
&~a~&a = p~)

2ay

(7.13)

(7.14)

(~) ~ (~)
FICHE

d +FICHE

d x Dq —iD2 + -u,N+
2m

C

d x ~(Di —iD2'l)P~ . (7.23)
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This Hamiltonian is very interesting. First, let us switch
ofF the Coulomb interaction. Although our system con-
tains both electrons and vortices apparently as indepen-
dent degrees of freedom, this Hamiltonian implies that
the ground-state energy of the system receives the con-
tribution only from the kinetic energy of the electrons,
i.e., zu, N S.econd, the Coulomb interaction acts di-
rectly only on electrons. Nevertheless, we can see that
vortices also interact through the Coulomb interaction.
These features are physically correct because vortices are
really collective modes of electrons in the lowest Landau
level.

The derivation of the Hamiltonian (7.23) is by no
means rigorous, and it is a plausible one. We have in-
cluded the kinetic term of the vortices by hand. We have
included the interaction terms of @ and P as required
to perform a consistent perturbation; see (7.16). It may
well be that there are other interaction terms which may
result, e.g. , from the finite size of actual vortices. How-
ever, the form of the Hamiltonian is severely restricted
by the condition that vortices are really collective modes
of electrons in the lowest Landau level. Our efFective
Hamiltonian (7.23) satisfies this criterion as we have em-
phasized. In this sense it is plausible and it seems to be
practically correct.

VIII. HIER.ARCHY OF THE FQH STATES

In the preceding section, we derived the Hamiltonian
density (7.23) describing the system of electrons and vor-
tices. We can repeat the same procedure for this Hamil-

tonian 'RF&HE as we did for '8 in order to obtain the
ground state. Thus, we search for the classical ground
state which minimizes the energy. When the Coulomb
interaction is neglected, it is a solution of the self-dual
equations

both bosonized electrons and vortices, and is given by

one p
2p

(8 4)

We can introduce local daughter vortices by considering
a singular gauge transformation such that

e' 4, (8 5)~+ ~f
with all the other fields unchanged; here, f(z)
—+„8(x—z„). The constraint condition (7.18a) is not
modified but (7.18b) is modified as

(8 6)

Substituting this into (7.18a) we get

(8.3)

ag = ——ci, = eAg.

The fact that this classical ground state is rigid against
small fiuctuations can be argued as before.

We comment that the state at v = v~i& contains the
vortices with the density (4 ~z = p/2p; namely, the vortex
density is less than the electron density by the factor
1/2p. As we have mentioned before, the vortex size is
of the order of the magnetic length E~. Therefore, the
vortices never overlap with each other. For instance, the
filling of the vortices is r when the filling of the electrons
is r. Hence, our efFective Hamiltonian of the pointlike
vortices is consistent in this phase given by (8.3).

In the condensed phase of the Q and P quanta, there
are again vortex solitons (daughter vortices) which are
characterized by the phase of the field P;

(Di —iDz)g = 0, (Di —iDz )P = 0. (8.1)
1

sg~ Brag — Ee Bye2A 2AQ,'y

In general, there are nonuniform solutions containing
zero-energy modes associated with the translational in-
variance. In addition to these nonuniform solutions,
there exist two constant solutions, when and only when
the filling factor takes two special values such that v =
v& & = (n/n) or v = v~ l with

(y)
A &Ay 1 'k+-

2m

(8.2)

Here, k —= a/n, and p is the parameter which appears in
the generalized reciprocal relation (6.5). Both energies
of these two states are given by E = &u,N, as should be
the case.

In the presence of the Coulomb interaction, all the
nonuniform solutions acquire positive-definite Coulomb
energy. The constant solutions become the true ground
states with the minimum Coulomb energy when they ex-
ist. The solution at v = v& & corresponds to the con-
densed phase of only bosonized electrons, while the solu-
tion at v = v&i& corresponds to the condensed phase of

7r2 ) bz(x —z, ),
AQy

(8 7)

Q(&)
—1

2pk+ 1' (8.8)

The mass M& & and the electric charge e& ~ of the local
daughter vortex is given by M& & = m~Q& l~ and e& & =
eQ~2l. We have put index (2) to the quantities associated
with the daughter vortices.

Similarly as before, the field theory of the daughter
vortices may be constructed by introducing a new field
operator P&zl annihilating local daughter vortices. The
Hamilton density 'R~z&"~'~'" is constructed analogously

together with a new Cs gauge field ck describing their
anyonic character, and their statistics parameter a& ~ is
given by the generalized reciprocal relation in terms of o,y
and a new integer p&2&. This process proceeds as much

from which it follows that a local daughter vortex is made
of Q~2& of the bosonized electrons, where
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as we wish.
In general, the Hamiltonian density

~(o) ~ + ) ~(i)vortex
FICHE (8.9)

The vortex solitons are described by field operators )t)(')

together with the statistics parameter n('), which is de-
termined by the generalized reciprocal relation in terms
of o.(' ) and an integer p(') as

~(i)vortex
~

(D(') &D( ) )y(i) ~2
gM(~) 1 2

where

CD~ = tBp+c~ + (. i)cp )
() () ~ (-1)

(8.10)

(8.11)

andn() =n c -=a n() —= n c =cp — p)
The CS fields c(') are determined by the constraint

equations

y(i-i) ty(i-i) + y(i) ty(i) — ~ . c).c('.
&('-1) 2 (i—1) g i g r

(8.12a)

for 1&i &n, and

y(~) ty(~) ~, .g, c(")
2~() ' (8.12b)

describes the fractional quantum Hall state at the nth
level. Here,

+ 2~p('). (8.18)

(8.14)

Here, q(') is the odd denominator of the filling factor
v(') = p(')/q('). These properties follow since the vortex
solitons in the problem consist of Q(') bosonized elec-
trons. These vortex solitons are identified as Laughlin's
quasiparticles (or quasiholes) at the corresponding level
of the hierarchy. 2

Finally, we discuss on the ground state of the Hamil-

tonian HF&HE ——f d z'HF&HE. The ground states are
~ (&) 2 (&)

nonuniform with a zero-energy mode for general values
of the filling factor. However, the ground state exists
uniquely and is represented by a constant solution when
and only when the filling factor v takes a particular value,
i.e. , v = v(") with

The mass M(') and the electric charge e(') are given by
M(') = m~Q(')

~

and e(') = eQ('), respectively, with

7r2 7r2 7r2v(") = —1+ 1 + ~ ~ ~

an( ) . A( )Q( ) Q,("—)Q,(")

2&(1) +
2&(2) +

(8.15)

We interpret the ground state as a condensed phase of
all Q and P(') quanta. This hierarchy is precisely that
of Haldane and Halperin. 2 Thus, our formalism gives ef-
fectively a field-theoretical realization of their hierarchy
construction.

We also examine the linear response to the external
electric field Z, . As we show in Appendix B, we find
that the Hall conductance is given by 0» ——v(") (e /27r) .
Therefore, we may identify the above ground state with
the FQH state at v = v(").

IX. DISCUSSIONS

In this paper we have presented a field-theoretical for-
mulation of the FICHE and its hierarchy structure. The
FQH states are condensed phases of bosonized electrons
and vortices which appear at appropriate filling factors.

We have analyzed condensations of vortices based on an
effective field theory of local vortex solitons,

Strictly speaking, our basic Hamiltonian (3.1) with the
extra: (QtQ): term is correct up to the first order of
n/7r, since it has been derived up to this order. Never-
theless, our results are physically quite reasonable for any
values of n/7r, and in particular they will be applicable
to the case of electrons where n/a is an odd integer.

We have shown that the electron system has the phase
of quantum Hall liquid with the Coulomb energy (4.14)
at v = m/n (The liquid b.ecomes a superfluid at n = 0
or eB = 0.) In our mean-field approximation the ground
state is given by the constant solution. Then, by taking
account of small fluctuations around it, we have derived
the Laughlin wave function as the ground-state wave
function in the presence of the Coulomb interaction.

On the other hand, in the vicinity of v = vr/n, the
ground state contains vortex solitons. They are ex-
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pected to form a signer crystal in order to minimize
the Coulomb energy as far as the soliton density is small.
The detailed analysis of such a possibility is given in a
separate paper, where the wave function of the Wigner
crystal is found to coincide with that of the Laughlin
quasiholes.

A typical feature of our efFective theory of topological
solitons, which explains the hierarchy of FQH states, is
that it involves only operators associated with antivor-
tices. This is so because there are no vortex solitons as
classical solutions to the self-dual equation. This gives
actually a constraint on the parameter p in the recipro-
cal relation (7.9), i.e., p ) 0. Then, it is seen from (8.2)
that the possible FQH states are at the filling factors s,
r, etc. We are unable to find the states with the filling
factors sz, r, etc. , in this scheme. However, when we take
into account the particle-hole symmetry, these states are
possible. Namely, let us regard the Q field as a hole oper-
ator with its charge e opposite to the electron charge —e;
its Hamiltonian is given by (3.6) with the replacement of
—e by e. The resultant system allows vortex solitons, and
it is easy to see that condensations of these vortices oc-
cur at the hole filling factor vt, = s, r, etc. These states
are the condensed states of bosonized electrons with the
filling factor v = 1 —vg = 3, z, etc.

As we have just mentioned, there are no vortex solitons
as solutions to the self-dual equation. Although there
are vortex solutions in our Hamiltonian system, they are
collective excitations of electrons not only in the low-
est Landau level but also in higher Landau levels. This
might imply that a state containing both vortices and
antivortices is absent in the lowest Landau level. How-
ever, we expect that this is not the case. In this paper we
have conjectured that a vortex would appear as a bound
state of antivortices and an electron by the Coulomb in-
teraction. For example, a vortex with its charge —e/3
may be composed of two antivortices with its charge e/3
and an additionally doped electron with its charge —e.
In this context we should mention recent works due to
Jain et aL, sP where a vortex wave function has been con-
structed, for example, by putting N —1 electrons in the
lowest Landau level and one electron in the second Lan-
dau level, and then by multiplying its wave function by
the Jastrow factor g,.»(z, —z~)z. This suggests that the
wave function of our vortex soliton might correspond to
Jain's wave function because the vortex soliton inevitably
involves electrons in higher Landau levels. It is worth-
while to examine such a possibility to make clearer the
issue of vortices in our formalism, which we would like to
pursue in a future work;

Once a vortex with n = 1 is obtained, it is easy to
generalize our efFective field theory to include both an-
tivortices (n = —1) and vortices (n = 1), by introducing
two types of operators P~. The kinetic part of the resul-
tant Lagrangian looks like Eq. (30) of Ref. 10.

Our field-theoretical formalism of anyons can also be
applied to a double-layer electron system as in Ref. 31,
where an even-denominator FICHE has been observed
recently. s~ We believe that our formalism reveals another
way of understanding the FICHE and related phenomena.
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APPENDIX A

Let us consider a canonical ensemble of anyons at a
finite temperature. The partition function is given by

ZN = tr(e )~
1

~&) &Q) ~ ~ ~ ) ~N
cTcSyg

—jo dtL Ie o ~z (i), z (2), . . . , z (iv)), (A1)

with the Lagrangian L being defined by (2.1). Here, S~
is the permutation group, and the summation runs over
all possible permutations, implying that the world lines
are braided in all possible ways. The initial state and
the final state consist of the same set of anyons; the kth
anyon starts from the position zA,, and ends at z (t,). This
requirement is crucial in what follows. This is the rea-
son why we formulate the theory at a finite temperature.
Now,

rn . ~ dz 2 .na~i, = —& a( ") +~—
& re...

p 2 p dt rr
(A2)

where b,8„, is the change of the azimuthal angle between
the rth and sth anyons:

68„,= 8(z („) —z (,)) —8(z„—z,).
For instance, if the rth and sth anyons simply exchange
their positions, i.e., o'(r) = s and cr(s) = r, then we get
68„, = rrmod2x. In general, it is easy to see for any
kind of permutations we find that P„&,LN„, = 0 or
7rmod2m.

Therefore, if n = Omod2rr, the n dependence entirely
disappears from the partition function. Namely, two the-
ories with n and n+2rrp with an integer p define the same
physics.

When we derive the statistics term G by perform-
ing a singular gauge transformation (7.1), such a term
as 8(z„—z„) appears formally. This term is not well
defined, and we need a regularization. Let us recalliP
that when a singular gauge transformation creates closed
loops of fluxes, representing creation of vortex-antivortex
pairs and annihilation of the same pairs in a relativis-
tic setting, the statistics term G defines nothing but the
Gauss linking number. Here, the same problem is en-
countered; it is known as the problem of self-linking. A
well-established method for its regularization is pro-
vided by a framing, i.e., a "line-splitting" regularization.
Instead of a single string labeled r, we replace it with a
set of two strings labeled r and r' with an infinitesimal
separation t . In our present problem, it is always possi-
ble to make such a framing that a new string is defined
by z„", = z„" + e" with a constant vector e for any anyon
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r, and define that e(z„—z„) = lim, s tI)(z„. —z„). Then,
(tr/2') +„e(z„—z„) is just a constant independent of
trajectories. Such a term is irrelevant, and we may set
e(z„—z„) = 0 without loss of generality.

In this way, the periodicity in the statistics parameter
n is rather obvious in particle mechanics. However, this
is not the case in the second-quantized formalism, i.e. ,
in Eq. (2.17). It will only be realized nonperturbatively.
In the semiclassical approximation we are using for a de-
scription of the FICHE, we have to choose a particular
period which suits the problem. For instance, the FQH
state is described simply by a classical ground state (3.12)
when we choose a period such that v = n/vr is satisfied.
If we choose another period, the same physics must fol-
low but in a very complicated manner. At the moment,
however, we cannot prove this periodicity explicitly in
the second-quantized formalism.

The following relations hold, corresponding to the Euler-
Lagrange equations of (B2):

(0 D 0) + —+ = e I (CI,s)
7l (y) 1 (p)

2m ct 2A

(B4)

(2) (3) (2)+ (z) +, —
2 ( ) ~k( ao)

and so on, where c&0
——BI,co Bpc& and(i) (i) (i)

(B5)

From these equations it follows that

APPENDIX B

In this appendix, examining the linear response to the
external electric field E~, we derive the Hall current on
the FQH state at v = v(") in a functional integral for-
malism. The induced current is given by

(di) = z ' Dp exp(i d zrppHp)

n
1 ~ x 7t (i)

(~&) = 2»). (0)
~r (,)(go)

i=p

where

(~w) = r oP'ao'"P ' d *dpqHp)
(i) -] (i) 3 ()

Making changes of variables,

(B7)

(B1) (i) (i)
co ~ co + (0)

~ ~ ~ (.) eAD, (B8)

where Dp, is an appropriate integration measure of
fields Q, P('), etc. ; the external gauge potential As has
been introduced by the minimal coupling only with the
bosonized electron field Q. Our gauge choice is such that
E, = —B,As and BiAs —BzAi ——B The l:F. &HE is defined(n)

g(n) g + Q - g(i)vortex

where 8(') ''" is constructed from the Hamiltonian
(8.10) and the constraint conditions (8.12a) and (8.12b)
as

(B9)

where the average ( . )' is taken together with the trans-
formed Lagrangian by way of (B8). It is easy to see that
the constant terms and all the terms linear in As vanish
in (c&'s)'. Consequently, we find that

g(i}vortex 4,{i)ttD(i) y(i)
O

(B3)

~(D(') $D('))y(')
~2M(i) 1 2

()
= —~(") aEa,2~ 2

where v("& has been defined in (8.15).

(B10)
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