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Slab vibrations, reformulated slab vibrations, and guided vibrations have been proposed by various au-
thors as the confined polar-optic-phonon modes in heterostructures. It is shown, with reference to these
three cases, that both the intrasubband and intersubband electron-phonon scattering rates are indepen-
dent of the basis set used to describe the phonon modes, as long as this set is orthogonal and complete.
Earlier conflicting results are attributed to the use of basis sets that do not satisfy these criteria, and to
scattering potentials that do not obey the correct boundary conditions. Nearly all the scattering is by
modes that are well described by continuum models. A dispersive continuum theory of the lattice dy-
namics is developed. Without recourse to microscopic theory, we derive the connection rules that relate
fields on either side of an interface, and identify the circumstances in which each above-mentioned set of
vibrations corresponds to the normal modes. The controversy over whether the normal modes satisfy
electromagnetic or mechanical boundary conditions is resolved. The design of lattice properties to mini-
mize electron-phonon scattering rates is discussed.

I. INTRODUCTION

The scattering of electrons by polar-optic phonons
governs a number of important properties of semiconduc-
tor heterostructures, including room-temperature carrier
mobilities, ' hot-electron relaxation rates, intersubband
transition rates, ' and room-temperature exciton life-
times. Although microscopic calculations of the nor-
mal modes of heterostructures are now a well-established
technique, calculations of electron-phonon scattering
generally adopt a continuum treatment of the lattice dy-
namics, in order to reduce the complexity of the problem.
Since the discovery that the confined longitudinal-optic
(LO) modes of a slab do not have the form predicted in
the usual treatment of the dielectric continuum model
(DCM), ' a number of different continuum models of the
modes have been used to calculate electron-phonon-
scattering rates, " ' and not all of these have given the
same results. Different vibrational basis sets, called slab
vibrations, reformulated slab vibrations, and guided vi-
brations, have been considered" ' as possible normal
modes. The main purpose of this paper is to reconcile
the con6icting results by making a detailed study of the
different models and pointing out where errors have been
made.

In addition, the continuum mechanics of optic modes
in polar heterostructures is discussed. It is shown that
several problems can be resolved, including the issue of
the boundary conditions (BC's) that are obeyed by the op-
tic modes, ' ' ' without recourse to microscopic
theories.

The rest of this paper is organized as follows. The
different vibrational basis sets are investigated in Sec. II,
in particular the question of whether they are orthogonal
and complete. Section III calculates the electron-phonon
interactions for each basis set, and in Sec. IV these results

are applied to the calculation of scattering rates. Section
V compares the results with those of previous work. In
Secs. II-V, the different vibrational basis sets are treated
on an equal footing and the question of which, if any,
corresponds to the normal modes is not addressed. This
question is addressed in Sec. VI, which gives a detailed
account of the continuum mechanics of optic modes in
polar heterostructures. Finally, the conclusions of this
work and the consequences for phonon band-structure
engineering are discussed in Sec. VII.

II. OPTIC-PHONON VIBRATIONS

The first step in investigating whether a set of vibra-
tions can be used as a basis set for the normal modes is to
ask whether the set is orthogonal and complete. Now, in
the continuum theory of the mechanics of the optic
modes, the dynamical fields are 4(r}, the electrostatic po-
tential, and w(r)=p' u(r), where u(r) is the displace-
ment from equilibrium of the positive ions less that of the
negative ions, and p is the reduced mass per unit volume
of the lattice. Electromagnetic retardation and the cou-
pling to the ionic center-of-mass vibrations, which at
small wave vector represent the acoustic modes, are ig-
nored. The kinetic-energy density is —,'~w~, and the
orthogonality relation for the normal modes or for a vi-
brational basis set is thus

f d r w„*(r) w (r) =0, pAv .

We consider a heterostructure composed of a series of
layers of different binary semiconductors (the generaliza-
tion to ternaries' ' is straightforward but is omitted for
the sake of simplicity). We are concerned with the vibra-
tions that are confined to the layer 0&z &d, i.e., with
w(r}=0 beyond this layer. The layer has a mirror plane
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at z =d /2, and we choose vibrational basis functions that
are symmetric or antisymmetric with respect to reflection
in this mirror. For the polar-optic vibrations, w(r) can
be written for 0&z &d as the gradient of a mechanical
scalar potential,

w= —Vy, (2)

x„' x.=0 (3)

but w(r) may be discontinuous and not obey Eq. (2) at
z =0 and d. When in addition there is translational in-
variance in the x-y plane so that X(r)=X(z)exp(iq. p),
where p=(x,y), then vibrations with different q are or-
thogonal. For vibrations with the same q the orthogonal-
ity relation (1) becomes

and the dot product is that defined by Eq. (4). When this
completeness condition is satisfied, any vibration can be
represented as a linear combination of the basis functions
X„(z)exp(iq.p).

Before describing the different sets of polar-optic vibra-
tions that have been proposed as normal modes, it is use-
ful to define "interface vibrations" and "bulklike vibra-
tions" and say how these are related to the normal modes
in a dispersionless continuum model. ' The interface vi-
brations obey V y =0 and thus comprise the set
X=X2 (z)=coshq(z —d/2), X=X-, (z)=sinhq(z —d/2)

2q $q

(i.e., labeled n =2 and 1, respectively). The bulklike vi-
brations are orthogonal to the interface vibrations, the
conditions thereby imposed on the bulklike potential be-
ing

where this dot product for mechanical potentials x„(z) is
defined by

x.(o}=x.(d}=o . (8)

d p dgv
x„" x.= 2d

d q'x„'( }x.( }+ d"
d0 dz dz

(4)

where :—g(z) —g c„X„q(z)

and

x.'q 0
C~

=
+nq +nq

The label v identifies different members of a vibrational
basis set, which may or may not correspond to the nor-
mal modes. v comprises the in-plane wave vector q and
an integer n. n distinguishes the vibrations for which q is
the same (when the vibrations correspond to the normal
modes this means that n labels the different phonon
branches}. The completeness condition for the normal
modes or for any vibrational basis set X„(z)exp(iq p) is
that, for each q and for an arbitrary function P(z),

lim 6* 5 =0,

Any X(z) that obeys these conditions represents a bulk-
like vibration. The normal modes of a heterostructure
are straightforward if the dispersion of the LO phonons
in the bulk semiconductors is neglected. ' The bulklike
vibrations of a layer are degenerate normal modes at the
LO phonon frequency coL, the other normal modes are
interface modes, ' which are formed from linear com-
binations of interface vibrations in the different layers.

The sets of vibrations whose properties will be dis-
cussed, the slab vibrations, reformulated slab vibrations,
and guided vibrations, are listed in Table I. The slab vi-
brations have g„=0 at the interfaces, and are identical
to the bulklike modes that arise in the conventional treat-
ment of the DCM. ' The reformulated slab vibrations
are a refinement of a set of vibrations proposed by
Huang and Zhu" and are defined to obey y„q p q

0 at
the interfaces, since under certain circumstances (Sec.
VI B) this leads to agreement with the modes found in mi-
croscopic calculations. The reformulated slab vibrations
are

X„q(z'}=cos(p, „qnz'/d)+D„qcoshqz',

n =0,2, 4, . . . , (9a)

TABLE I. Sets of functions that describe the polar-optic vibrations of a semiconductor slab extending from z =0 to d. Column 2

gives the mechanical potential y„q(z) for the vibrations, with n =0, 1,2, . . . . Symmetric vibrations have even n, and antisymmetric
vibrations have odd n. The X„q(z) are solutions of Eq. (10) with the boundary conditions (BC s) at z =0 and d given in column 3.
Each set of vibrations is complete for functions P(z) that obey the BC's at z =0 and d given in column 4. The BC /=0 can be re-
moved by including the interface vibrations (IV's) in the set (column 5). Column 6 gives the expression for —PV„~(z) for 0~z ~ d,
where V„q(r) = V„q(z)exp(iq p) is the electrostatic potential that occurs in the Hamiltonian (11)for the electron-phonon interaction.

Name of
vibrations

Slab set

Reformulated
slab set

Guided set

Interface
vibrations

X..(z)

~ (n +1)mz
sin

Eq. (9)

nmz
cos

t coshq(z —d/2)
. sinhq(z —d/2)

rt q obeys
BC's

q=y'„'q=0

X.q =X'.
q
=o

X'q=X''q =o

BC's for
complete set

/=0
/=0

No
restrictions

For a complete set
without BC's

Include IV's

Include IV's

No additional
vibrations required

—PV„q(z)

X..(z)

X. (z)

Eq. (14)

exp( —qd /2)sinh(qd /2)ppq(z)
exp( —qd /2) cosh( qd /2)g„~(z)
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p„~(z') =sin(p„qnz'/d)+ D„sinhqz',

n =1,3, 5, . . . , (9b)
where z'=z —d/2, and D„q and p„q are chosen, with

n+1(p„q ++2, so that ~„and its derivative bo
vanish at z'= kd/2. The derivation of the reformulated
slab vibrations from the DCM is discussed in Refs. 11
and 7. (The difference between the reformulated slab vi-

brations of Eq. (9) and those of Ref. 11 is discussed in

Sec. V.) The slab and reformulated slab sets both satisfy

Eq. (8), and so give alternative descriptions of the bulk-

like vibrations. The guided vibrations are defined to obey
=0 at the interfaces so that they agree with the q =0

nq 9modes observed in Raman backscattering. They do not
obey (8), and so they are linear combinations of the bulk-

like and interface vibrations.
The simplest way to generate complete orthogonal sets

of functions is as the eigenfunctions of a suitable
differential equation. For the present work, a suitable
equation (see Appendix A) is the fourth-order eigenvalue
equation

d 2 d
+k„q 2

—
q y„(z)=0 . (10)

dz2 "' dz2

k„ is the eigenvalue and k„p is the argument of the
sinusoidal terms of y„q. The "standard boundary condi-
tions" (SBC's), i.e., the BC's for which the differential
operators in this equation are Hermitian, are discussed in
Appendix A, where they are given by Eq. (A4). Each set
of basis functions in Table I obeys Eq. (10) and SBC's at
z =0 and d. The particular boundary conditions that y„q
obeys in order to satisfy SBC's are given for each set in
the third column of Table I. The orthogonality and com-
pleteness of each set can be demonstrated for these
boundary conditions by using the same methods as for
second-order Sturm-Liouville equations (Appendix A).
The boundary conditions on the functions P(z) for which
each set is complete can be relaxed from those given in
the third column of Table I to those of the fourth column
(Appendix B}. When the boundary condition lt

=0
remains, it can be removed by including the interface vi-
brations in the set (column five of Table I). This is be-
cause [with the two interface vibrations labeled n =1 and
2 as above, and c„defined by Eq. (7)] the function

lt
—c-y- —c-y- is orthogonal to the interface vibrations

1 1q 2 2q
and thus vanishes at z =0 and d.

In summary, each of the following three sets of vibra-
tions has been shown to be orthogonal and complete: the
slab and interface vibrations together; the reformulated
slab and interface vibrations together; and the guided vi-
brations. We can further conclude that the interface and
bulklike vibrations together form a complete set. The
differential equation (10) was selected purely because of
its suitability for proving these results. However, it will
be shown in Sec. VI that Eq. (10) can in fact be derived
from the equations of motion for optic modes, and that
the sets of vibrations discussed here correspond in some
circumstances to normal modes. Sets that are orthogonal
and complete are related by unitary transformations. For
the complete sets of vibrations discussed here, the unitary
transformations are presented in Appendix C.

2N
H, (r) = —e g V„(r)

V

Q.

where Q„and co, are the normal coordinate and angular

frequency, respectively, for the mode v, and —e is the
electron charge. The quantity V,(r} is equal to the elec-
trostatic potential 4„(r) when the lattice displacement is

given by

(2'„/fi)' Q =1

Thus V„(r) obeys Poisson's equation

(12)

V [e(z; oo)VV„]
e(oo }

Bz g=d
5(z —d +ri)

aY,+ 5(z —
ri ), (13)

Bz z=o

with boundary conditions V„V ',=0 at z =+ oo. e(z; oo )

is the high-frequency dielectric constant as a function of
z, and e(oo } is its value for 0&z &d. ri is a positive
infinitesimal. p is given by

' 1/2
%coL 2' pp a

e QdI,

where col is the LO phonon frequency, r is the polaron
radius, a is the Frohlich coupling parameter, I, is the
norm y„y„given by Eq. (4} [the presence of which

expresses the normalization condition (12)], and Q is the
area of the structure in the x-y plane. y is defined only
for 0 & z & d, where it is continuous, and the second and
third terms on the right-hand side of Eq. (13) represent
surface polarization charges that exist if the z component
of w, is discontinuous.

Thus the potential V, can be found by solving Eq. (13).
We write V (r)=V (z)exp(iq. p), and V—:V„. In a
bulk semiconductor the solution is V„=—y„/p. In the
heterostructure, the potential V„=—y„/p within the
slab, V„=O beyond, is a solution for qAO only if
g„(0)=g„(d)=0, and hence only for the slab and refor-
mulated slab vibrations. For the guided and interface vi-
brations, V„(z) extends beyond the slab. [Thus V„(z) de-

pends on e(z; oo ) beyond the slab. Consequences of this
dependence are discussed in Sec. VII C and Appendix E.
However, this dependence is not essential to other parts
of this work, and henceforth we assume that
e(z; oo ) =e( oo )]. For the interface vibrations, the solu-
tions of Eq. (13}for 0 & z & d are given in column six of

III. ELEC.IRON-PHONON IN IKRACTIONS

The electron-phonon interactions for the different sets
of vibrations can be deduced from their mechanical po-
tentials y„q(z). The polar-optic vibrations, which are the
subject of this paper, are the ones that have a macroscop-
ic electrostatic potential and therefore scatter electrons
strongly, with electron-phonon interaction Hamiltonian

' 1/2
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—PV„q(z) =cos(n mz/d)+exp( —qd /2)sinhq (z d /—2)

(n odd) . (14b)

For both the guided and interface vibrations, V„q(z) is
given beyond the slab by

V„(z)= V„(0)exp(qz) (z (0),
V„q(z) = V„q(d)exp[q (d —z}] (z & d) .

(lsa)

(15b)

IV. SCATTERING RATES

The electron-phonon interactions calculated in Sec. III
will now be applied to the evaluation of electron-
phonon-scattering rates. The scattering rate of an elec-
tron from state ~i ) to state

~f ) by independent phonons
in thermal equilibrium is, using Eq. (11) and Fermi s
"golden rule, "

Table I. For the guided vibrations V„ is given for
O~z &d by

P—V„(z)=cos(nnz/d) e—xp( —qd/2)coshq(z d—/2)

(n even), (14a)

5-
(a) Slab Vibrations

in-plane momentum transfer q. The total scattering by a
number of branches with the same frequency is expressed
by the sum over n of the corresponding f„(q). In the rest
of Sec. IV and in Sec. V we consider the vibrations of
each set to be degenerate normal modes with co„q=mL.
Thus the factor co„ /~L, which is included in Eqs. (18)
and (19) for consistency with earlier definitions, ' is uni-
ty.

This method can be applied to any problem involving
the polar scattering of carriers by optic phonons of a het-
erostructure. As an example, we consider the scattering,
by the optic vibrations of a quantum well (QW), of elec-
trons that are perfectly confined to the QW (i.e., confined
by infinite potential barriers). Figure 1 shows the form
factors for intrasubband scattering of electrons in the
lowest subband. These form factors were calculated from
Eq. (19) using the potentials given in column six of Table
I. Figures 1(a)—1(c) refer to the slab, reformulated slab,
and guided basis sets, respectively. The most important
feature of Figs. 1(a) and 1(b) is that the curves labeled ~

IV=e g [&f [
V [i)J g(co„), (16)

where

g (rp) = [N(ro)5(E/ E; —A'ro)—

+ [ I +N(ro) ]5(EI E; + trt)p)i—, (17)

and N(pi)=[exp(fuu/kT) —1] ' is the phonon popula-
tion factor. The scattering of an electron between states

~c ) =fp(z;c)gt(p;c) (c =i,f)
by phonons of branch n can be expressed as a form fac-
tor f„(q), as follows:

2

e g ~(f ~ V„~i)~ =n 'ar (firpL )
COL

X f d q n, (q)n t (q)f„(q),
2g

(18)

0
(b) Reformulated Slab

Vibrations5-

0
o 0

(c) Guided Vibrations
E.5

TOT

2

f„(q)= f dz n (z)PV„(z)
nq Cgnq

where

(19)

0 2 4 6 8 10

n, (q)= f d pexp( iq p}n&(p—), .

&t(p)=Qt (p; f)Qt(p;&),

and

np(z)=fp(z;f)Pp(z;i) .

The form factor f„(q) expresses concisely the scattering
of electrons from subband g (z;ip) to subband t)rp(z f) by
phonons from the branch labeled n as a function of the

FIG. 1. Intrasubband scattering form factors for polar-optic
vibrations of a quantum well plotted against qd, the product of
in-plane wave vector and well width. (a), (b), and (c) refer to the
different sets of vibrations given in Table I. The numerical la-
bels give the number of symmetric vibrations that are summed
to give each form factor. Thus the form factor labeled m is the
sum of the individual form factors [Eq. (19)] from n =0 to
2m —2. (d) shows f (q), the total scattering form factor for
bulklike vibrations; f {q), the scattering form factor for inter-
face vibrations; and f (q) =f (q)+f (q).
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in these two figures are identical. This is because the sum
of the scattering form factors for all bulklike vibrations is
the same, independent of the choice of basis set, as long
as that set is orthogonal and complete. In other words,
the total rate of scattering by all the bulklike vibrations is
independent of the basis set used to describe these vibra-
tions. This form factor summed over all bulklike vibra-
tions is plotted separately in Fig. 1(d), in which the
curves for slab and reformulated slab vibrations are su-
perimposed and labeled f . Figure 1(d) also shows the
scattering form factor f (q}due to interface vibrations of
the QW, and f (q) =f (q)+fI(q). The sum of the
scattering form factors for all the guided vibrations [the
curve labeled ~ in Fig. 1(c)] is equal to f (q), the sum
of the interface and bulklike scattering calculated with
the other basis sets. This is because the guided vibrations
form a complete set, at the LO phonon frequency, that
comprises both the bulklike and interface vibrations.
Figure 2 shows the form factors for scattering of elec-
trons between the first and second subbands of the QW.
It can be seen that the same conclusions concerning the
summed form factors apply as for the case of intrasub-
band scattering.

(a) Slab Vibrations

0
(b) Reformulated Slab

o 0
(c} Guided Vibrations

E

(d)

0 2 4 6 8 10
QCI

FIG. 2. Intersubband scattering form factors for polar-optic
vibrations of a quantum me11. The numerical labels give the
number of antisymmetric vibrations that are summed to give
each form factor. Thus the form factor labeled m is the sum of
the individual form factors [Eq. (19}] from n =1 to 2m —1.
Other notation as Fig. 1.

V. DISCUSSION

7g =Oy2, 4, o ~ ~

g„q(z') =sin(}M,„nz'Id)+ C„z'Id,

n=1, 3, 5, . . . ,

(20a)

(20b)

with n + 1 &p„&n +2. These vibrations are chosen, like
those of Eq. (9), so that g„and g„' vanish at z'=Ed/2.
Thus they represent pure bulklike vibrations. However,
the vibrations of Eq. (20) deviate from orthogonality and
completeness as q is increased from zero, and this causes
the scattering rates calculated using Eq. (20) to differ
from those found for the slab or reformulated slab vibra-
tions, which, according to the present work, give valid re-
sults.

Three separate errors have been made in the use of the
guided vibrations. First, these vibrations form a com-
plete set, and the scattering rate summed over guided vi-
brations naturally includes the scattering due to both
bulklike vibrations and interface vibrations, since any
bulklike vibration or interface vibration is equivalent to a
linear combination of guided vibrations. It is incorrect to
add to the scattering rate a separate calculation of the
interface-mode scattering. Secondly, the n =0 vibration
is usually overlooked. Thirdly, the scattering potential
V„(z) is generally taken as equal to —p 'y„(z). V„(r)
obeys Poisson's equation (13). The solution V„(z)= —p 'g, (z) has V,'(0)= V'(d)=0, but V„(0) a d
V„(d) do not vanish; thus the solution beyond the QW is

V„(z)= V„(0)coshqz, z (0,
V„(z)= V„(d)coshq(z —d), z )d,

and does not obey the necessary boundary conditions that
V,(+ac ) V' (+DO ) =0 except in the case q =0. The solu-
tion for V (z) that obeys these boundary conditions is the
one given in Eqs. (14) and (15).

A continuum theory of optic modes in heterostructures
has been proposed by Babiker and co-workers. ' ' This
theory includes quadratic dispersion in the bulk semicon-
ductors and uses matching conditions at each interface to
treat the coupling of vibrations in adjacent layers. ' In
the limit where the dispersion tends to zero with constant

The result that the scattering rate 8'is independent of
the basis set is unsurprising, since W [Eq. (16)] is invari-
ant under unitary transformations that mix phonon
modes of the same frequency. The basis sets given in
column five of Table I are orthogonal and complete, and
consequently are related by unitary transformations (Ap-
pendix C}.

However, much previous work' ' is in conflict with
this view. Mistakes arise either because the vibrational
modes are not chosen to be an orthogonal complete set,
or because the potential V„(r) is calculated with in-
correct boundary conditions. Rudin and Reinecke' have
compared scattering rates calculated using different sets
of vibrations, including the set suggested by Huang and
Zhu, "

y„(z') =cos[(n +2)rrz'Id] ( —1)"—
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ratio in the well and barrier, the normal modes in this
theory are the guided vibrations of Table I, including the
vibration with n =0, and these modes have frequency col
and potential V„=—X,/p. The normal modes of this
dispersive theory have been used to calculate scattering
rates in QW's (Ref. 15) and in superlattices. ' The modes
thus found are orthogonal, and, if every mode is counted,
complete. However, the theory for a GaAs/Al„Ga, „As
QW (Refs. 14 and 15) omits the GaAs-like vibrations that
are not confined to the QW, i.e., those that propagate in
both the Al Ga& „As and the GaAs, apparently because
Eqs. (3.7) and (3.9) of Ref. 14 do not include waves in the
barriers propagating both towards and away from the
QW. Thus the theory does not include all the modes that
contribute to scattering. In addition, the electrostatic po-
tential V, in the theory of Refs. 14—16 does not obey
Poisson s equation, having discontinuities at the inter-
faces between different materials. In the theory of Refs.
14—16, V„ is given in each material by V„=—X„/p (us-

ing the notation of the present paper). This function
obeys Poisson's equation in each individual material, but
not at the interfaces. The error is part of an
oversimplified treatment of the lattice mechanics (Sec.
VI). For these reasons, the conclusions of Refs. 14—16
should be treated with caution, particularly where they
predict a very strong dependence of scattering rates on
the properties of a single member of the complete set of
phonon modes (for example, the strong resonances shown
in Fig. 4 of Ref. 15).

VI. CONTINUUM MECHANICS

(22)

for 0 & z & d. The Euler-Lagrange equation obtained
from the variation of 4 includes terms arising at the sur-
face of the slab, and is

V [ape(z; ac )V4 —y f(z)w ]=0 (23)

for all z, where f (z)=8(z)—8(d —z), and 8 is the
Heaviside step function. This is Poisson s equation, and
is identical to Eq. (13) if w(r) is normalized and equal to
—VX.

The solutions of the Euler-Lagrange equations that
have the form w = —Vg obey

(coL —co }V~X+pV V~X=0, (24)

[(coT co )X—+@V X—Bp]—
for 0&z &d, where p= A +B+C, and Bo is a constant.
For z beyond the slab, 4 must obey Eq. (23), which can
be used to extrapolate the solution to z =+~.

The solutions for X and 4 have the form X(r)
=X(z)exp(iq p), 4(r)=y(z}exp(iq p). Thus Bp=0 for
qAO, and for 0 & z & d Eqs. (24) and (25) become

z =0 and d, it is noted that the terms in X that involve w
are defined for the slab 0&z &d only. The Lagrangian is
the integral of these terms over the slab, plus the integral
of the V+.V4' term over all space. Thus the Euler-
Lagrange equation obtained from the variation of w is

Bw
+coTw+y V4+ A V w+ (B +C)V(V w) =0

2

A. Continuum mechanics of a polar slab
subject to boundary conditions

The Lagrangian density for a polar material in the con-
tinuum model, with the approximations discussed in Sec.
II, is

d2
p +(coL —co )/JLc

—
q

dz

d
dz2

—e' X=0

q
=—(~T ~ jq )X+j—2 2 2 d'X

y dz2

(26)

(27)

'coTw w+ 'e—pE—(z; ~)V4 —V4 —yw V4

c)wk c)NI
+

2 X Zijkl
ijkl j i

(21)

where y = [EpE( ao )( coLcoz }]' and coT is the
transverse-optic (TO) phonon frequency. The first four
terms on the right-hand side of (21), from left to right,
arise from the kinetic energy, the potential energy of the
lattice due to short-range forces, the potential energy of
the macroscopic electric field when there is no ionic
motion, and the potential energy due to interaction of the
lattice with the macroscopic electric field, respectively.
These terms are calculated in the absence of dispersion.
The final term on the right-hand side of (21) represents
lowest-order (quadratic) dispersion arising from the
short-range forces between ions. If this dispersion is iso-
tropic, then

Zijkl A ~ij ~kl+ B~ik~j I +C6il~jk

When deriving from Eq. (21) the Euler-Lagrange equa-
tions for the motion of the slab subject to BC's on w at

respectively. Equation (26) is equivalent to Eq. (10), with
(coI —co )/p —

q in the role of the eigenvalue k„. This
equality is simply the dispersion relation

co =coL —p(q +k„), (28)

and k„q is equivalent to k, the z component of the wave
vector K—= (q, k). The general solution of Eq. (26) for
X(z), without regard to boundary conditions, is a linear
combination of the functions exp(ikz), exp( ikz), —
exp(qz), and exp( —qz). The first two functions corre-
spond to the LO waves of the bulk solid, and k is deter-
mined from Eq. (28) for given q and co. The last two
functions correspond to the interface vibrations defined
in Sec. II. For given q, the functional form of these latter
solutions is independent of co.

To obtain the normal modes of the slab and compare
them with the solutions of Eq. (10), we consider the BC's
that they must obey. The boundary conditions on w and
4 that are required if the Euler-Lagrange equations are
to follow from Hamilton's principle are the standard
boundary conditions (SBC's} (Appendix A) for which the
operators in Eqs. (22) and (23) are Hermitian. The solu-
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tions of the Euler-Lagrange equations that satisfy these
BC's are the normal modes of the system. X is indepen-
dent of x, y, and t, and we satisfy the SBC's in these
domains by applying periodic BC's and then taking the
infinite limit, so that the solutions are proportional to
exp(iq. p —icot) with any q, co. The remaining SBC s are

N@'=0 (29)

at z =k 00, and either

(30)

or

(31)

X'=0 (33)

respectively. The normal modes that satisfy (29}and (32)
are the slab vibrations. The normal modes that satisfy
(29) and (33) do not correspond to any of the sets of vi-
brations given in Table I except in special cases that will
be discussed below.

Analysis of the type given in Appendix B shows that,
when the normal modes are not restricted to those of the
form w= —Vy, they form a complete set for all vibra-
tions w(r). To verify this result, it is necessary to consid-
er the TO phonons (Appendix D 2) as well as the polar-
optic (LO) phonons. The interface vibrations can be
classified as either TO or LO (see Appendix D 2). When
BC's (29) and (30) are satisfied, the solutions with
mr= —Vy comprise the bulklike LO vibrations only, but
the TO solutions comprise both the bulklike TO vibra-
tions and the interface vibrations. When BC's (29) and
(31) are satisfied, the solutions with w= —Vg comprise
both the bulklike LO vibrations and the interface vibra-
tions, and the TO solutions comprise bulklike TO vibra-
tions only. The bulklike LO vibrations, bulklike TO vi-
brations, and interface vibrations together form a com-
plete set for all vibrations w(r).

The solutions of Eq. (10) discussed in Sec. II are not
the same as the solutions of the Euler-Lagrange equa-
tions, even though it is shown above that the Euler-
Lagrange equations reduce to Eq. (10) when 4 is elim-
inated. The solutions are different because the SBC's for
Eq. (10) are not the same as those for the Euler-Lagrange
equations. The SBC's for Eq. (10) (Sec. II and Appendix
A) are sufficient to satisfy the w-related SBC's for Eqs.
(22) and (23). The solutions of Eq. (10), subject to the
SBC's for this equation, are thus normal modes if and
only if the unique electric potential derived from Eq. (27)
and extrapolated beyond the slab using Eq. (23) obeys
y(+00 )q&'(+~ )=0 [when this is true, the solutions of
Eqs. (27) and (13}coincide]. This condition is satisfied by
the slab vibrations but not in general by the reformulated

at z =0 and d. The conditions (29) on 4 are identical to
the physical boundary conditions imposed in Secs. III
and V. The conditions (30) and (31) on w reduce if
w= —Vy to

(32)

and

slab vibrations or the guided vibrations.
In other words, the SBC's for Eq. (10) together with

the BC (29) overdetermine the normal modes in some cir-
cumstances. When this is true, the solutions of Eq. (10)
are not normal modes. The conditions (33) at z =0 and d
and (29) at z =kao are sufficient to satisfy the SBC's for
Eqs. (22) and (23) and hence to produce normal modes:
additional BC's are not required. There is only one set of
normal modes that satisfies these conditions. In general,
these modes obey neither y(0) =y(d) =0 nor
g"'(0)=g"'(d) =0 and so are neither the reformulated
slab vibrations nor the guided vibrations.

The boundary conditions that g'„=g„"'=0at z =0 and
d, and q~„'=0 at z =6 00, are incompatible except in the
case q =0, and consequently the guided vibrations with
qAO are not the normal modes of the slab in any cir-
cumstances. The guided vibrations with y, = —P
are solutions of the Euler-Lagrange equations, but, as
noted in Sec. V, this y„does not obey the correct BC's at
z =+ ao except in the case q =0.

The modes that obey Eqs. (33) and (29) do correspond
to solutions of Eq. (10) in special cases. As q~0 the
modes with co=coL tend towards the guided vibrations
with nAO, and as p~0 (infinitesimal dispersion} the
q%0 modes tend towards the reformulated slab vibra-
tions.

B. Continuum mechanics of a polar heterostructure

The continuum theory given in Sec. VIA is a useful
model of the motion of an ionic layer subject to BC's at
its interfaces, as long as the approximations of quadratic
and isotropic dispersion are acceptable. Quadratic
dispersion is valid for a semiconductor slab if the wave
vector (q, k} is not too large, or alternatively if the
dispersion is taken to be infinitesimal. The relation of the
slab, reformulated slab, and guided vibrations to the nor-
mal modes of the layer subject to BC's is found, without
recourse to microscopic theories. However, this method
does not tell us which BC's follow from the mechanics of
the heterostructure as a whole, and so it does not give a
theoretical justification for the reformulation of the slab
vibrations. For this purpose it is necessary to consider
the mechanics of the entire structure, and deduce the
connection rules that relate the fields on either side of an
interface.

Several authors have investigated the connection rules
by comparison of macroscopic and microscopic theories.
Huang and Zhu" examined the solutions of a microscop-
ic model of the lattice mechanics and found that, in the
zero-dispersion limit with q neither too large nor zero,
the normal modes are closely approximated by the inter-
face modes and the reformulated slab vibrations. A simi-
lar approach was adopted in Ref. 21. Tsuchiya, Akera,
and Ando have developed a slightly different method,
which uses a dynamical equation equivalent to Eq. (22)
(but including anisotropy} and imposes either the BC
w=0 at the faces of the slab or connection rules derived
from microscopic theory. In the first case, the resu1ts
were compared with those of microscopic calculations,
with good agreement. In a continuum theory of the
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zero-wave-vector modes of a superlattice, Gerecke and
Bechstedt obtain both' the equation of motion and the
connection rules by comparison with a simple microscop-
ic theory.

The connection rules that relate the fields on either side
of an interface can also be derived from a continuum
theory. For the continuum mechanics of the heterostruc-
ture as a whole, w is defined everywhere (in contrast to
the treatment of Sec. VIA, in which w is defined for
0&z&d only, with BC's imposed at z=0 and d). The
simplest case is when the forces are the same throughout
the structure, and only the atomic masses vary from one
layer to the next. The forces are then the same as for a
bulk material, with no interface-related terms. This ap-
proximation is sometimes used in microscopic theories of
superlattice vibrations with good results. The disper-
sive term in the Lagrangian density is then

gpzijkl ~
(p Wk)~ (p Ml)

ij kl j
where pZ;, kI is independent of z, so that pA, pB, and pC
are constants. The Euler-Lagrange equations reduce to
(22) and (23) within each layer. At an interface the equa-
tions are equivalent to connection rules, which relate the
fields on either side of the interface. If A %0,
A +8+C+0 (i.e., both the LO and TO bulk modes
have nonzero dispersion), then the connection rules are
that p

' w, (p
' w)', 4, and D, =E' Eo'(z, ao)4' —yw,

are continuous, where D is the electric displacement.
Use of these connection rules ensures that the set of

normal modes is orthogonal and complete, because the
rules follow from the Euler-Lagrange equations. Sections
IV and V show that the orthogonality and completeness
properties of the normal modes are essential if electron-
phonon scattering rates are to be calculated accurately;
but "modes" do not necessarily have these properties un-
less the connection rules are derived from valid Euler-
Lagrange equations.

The connection rules have been obtained by applying
Lagrangian mechanics ' and the usual method of solv-
ing differential equations with discontinuous terms (Ref.
27, Chap. 11.10). The rules for p

' w and (p
' w)' are

equivalent to the familiar condition that the net force on
the interface is zero.

There has been some debate over whether the connec-
tion rules that govern optic modes in a heterostructure
are mechanical BC's or electromagnetic BC*s. *' ' ' In
a nondispersive theory' X has no terms involving spatial
derivatives of w, and so there are no mechanical BC's in
this case. The only BC's are the electromagnetic BC's
that 4 and D, are continuous. The present discussion of
the dispersive continuum theory has shown that, with no
contradiction, mechanical BC's apply to w and its deriva-
tives, while electromagnetic BG's apply to 4 and D.
These conditions do not conflict if all the solutions of the
dispersive continuum theory are retained. However, in
Refs. 14—16 the mechanical BC's and electromagnetic
BC's are contradictory, and the latter are violated. The
treatment of Refs. 14—16 initially includes retardation,
and the solutions are labeled either "longitudinal" [solu-
tions of Eq. (2.14) of Ref. 14] or "transverse" [solutions of

Eq. (2.13) of Ref. 14]. The "transverse" solutions are dis-
carded; but these solutions include the polaritons that
tend to the interface vibrations of the present work when
retardation is neglected (Appendix D 3}. The remaining
"longitudinal" waves correspond to the LO waves of the
bulk solid, and have the form

w =woK exp(iK r i c—ot ),
' 1/2

COL CO TV4= W,
pop( oo )

where the theory of Refs. 14—16 requires that co(k) is
given by a dispersion relation of the form m =~& —pk,
and that V wAO so that k %0. The approach used in
Refs. 14—16 is to construct normal modes solely from
these "longitudinal" solutions (which, incidentally, are
independent of retardation). But these "longitudinal"
waves do not provide suScient degrees of freedom to
satisfy mechanical and electromagnetic BC's simultane-
ously. A normal mode of a heterostructure can be writ-
ten within a single layer as a linear combination of all the
bulk waves with the correct frequency and q: in the
present (nonretarded) theory, LO, TO, and interface vi-

brations; in the retarded theory of Refs. 14-16, "longitu-
dinal" and "transverse" vibrations. The neglect of the
"transverse" (polariton) vibrations in Refs. 14—16 would
lead to contradictions in the treatment of a heterostruc-
ture (i.e., more equations than unknowns in the matching
problem at an interface), except that the boundary condi-
tions are chosen, arbitrarily, to be those for hydrodynam-
ic fluid flow rather than those for a solid-state semicon-
ductor heterostructure. Electromagnetic BC's are com-
pletely ignored. These are the main errors made in Refs.
14-16.

The Lagrangian density X of the present work differs
from that given in Ref. 14. The fundamental equations of
Ref. 14 within a single material are the equations of
motion, i.e., the dispersive Born-Huang equations togeth-
er with Gauss's law, rather than an expression for X.
These equations are in fact equivalent to the Euler-
Lagrange equations of the present work, Eqs. (22) and
(23). However, as discussed above, Refs. 14—16 discard
some of the solutions of these equations when construct-
ing LO modes. X is chosen in Ref. 14 to be consistent
only with the "longitudinal" solutions of that work, and
is a simplified expression that is not valid for all the vi-
brations of the slab.

Continuum theories of the mechanics of a heterostruc-
ture are problematic because waves with small k often
couple to waves for which Rek lies beyond the bulk
Brillouin-zone boundary. Since the latter are unphysical,
this cannot be a satisfactory description of the mechanics.
The GaAs-like normal modes of a GaAs/A1As hetero-
structure, for example, will include such vibrations of the
A1As if the quadratic dispersion is set to its experimental
value. One might attempt to solve this problem by
modeling the bulk dispersion with an expression that is
more accurate than a quadratic. To do this, dispersive
terms that are higher order in 8/Br;, and hence in the
wave vector (q, k}, must be included in the Lagrangian
density. Anisotropic terms can also be included. The
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problem with higher-order terms is that nth-order disper-
sion will give 3n +2 connection rules, and when match-
ing at an interface the extra conditions can only be
satisfied by including the bulk solutions for which Rek
lies beyond the Brillouin-zone boundary of the bulk semi-
conductor [for specific q, co, nth-order dispersion gives
3n+2 optic-phonon vibrations in the (complex-k) pho-
non band structure]. These are valid solutions of a con-
tinuum problem, but do not correspond to vibrations of a
lattice with finite unit cell. The problem of waves with
Rek beyond the bulk Brillouin-zone boundary is thus
common to both quadratic and higher-order dispersive
continuum theories. It is a fundamental problem of con-
tinuum models if the solutions are required to satisfy the
principles of continuum mechanics (which at least ensure
the orthogonality and completeness of modes) rather than
merely to resemble the solutions of microscopic theories.
It appears that, except in special cases (e.g., infinitesimal
dispersion}, the mechanics of a heterostructure, including
the connection rules, is essentially microscopic. Howev-
er, the theory of quadratic dispersion will be examined
further, since the case of infinitesimal dispersion does
give a useful insight into the properties of normal modes
in real heterostructures.

C. Connection rules in the limit
of infinitesimal dispersion

The bulklike vibrations are degenerate normal modes
in the nondispersive theory. The way in which this de-

generacy is lifted by dispersion can be found from the
connection rules in the limit of infinitesimal dispersion.
We consider these rules at a junction between materials 1

and 2. The bulk LO(l ) and TO(I ) frequencies in ma-
terial i (i =1,2) are coL, and co&;, respectively. In materi-
al i, each normal mode (for given in-plane wave vector q,
frequency co} is a linear combination of eight different vi-

brations: two LO and four TO vibrations corresponding
to phonons from the complex band structure of the bulk
material i; and the two interface vibrations. It is con-
venient to class the TO vibrations as either transverse
electric 9 (TE) or transverse magneticz9 (TM); the four
TO vibrations comprise two TE and two TM waves.
When we take the zero-dispersion limit of the mechanics,
we must distinguish between "slowly varying" and "rap-
idly varying" components of the normal mode. The rap-
idly varying components are the vibrations that belong to
the bulk optic-phonon branches S whose frequencies, in
the absence of dispersion, are separated from co by a finite
amount. These rapidly varying components are either os-
cillatory or evanescent, depending on the sign of the
dispersion, with a value of k (the z component of the
wave vector) that tends to infinity in the zero-dispersion
limit. The slowly varying components are the two inter-
face vibrations plus any of the six optic vibrations that
have finite wave vector in the zero-dispersion limit. We
shall now discuss how, in the limit of infinitesimal disper-
sion, the rapidly varying components can be eliminated
from the calculation, giving simplified connection rules
that relate the slowly varying fields on either side of the
interface.

The sign of the dispersion of the branches X is chosen

so that at q, ~ the rapidly varying components are all
evanescent, i.e., all have imaginary k. This restriction is
necessary within a continuum theory so that the modes
do not have the unphysical components (oscillatory with
k beyond the Brillouin zone) mentioned in Sec. VIB.
Each branch belonging to S contributes two evanescent
vibrations, one growing and the other decaying away
from the interface over a length scale whose zero-
dispersion limit is zero. In the limit of infinitesimal
dispersion, the components of the normal modes due to
the growing vibrations are not significant at the interface
and are discarded. In the same limit, the decaying vibra-
tions correspond to discontinuities in some of the fields
and their derivatives, so that some of the finite-dispersion
connection rules do not apply to the slowly varying fields
in the limit of infinitesimal dispersion.

The connection rules for the slowly varying fields in
the limit of infinitesimal dispersion depend on which of
the vibrations in each layer are rapidly varying. For
co=coL2 (i.e., so that the zero-dispersion limit of k„~ [Eq.
(28}]is finite}, the numbers of such vibrations that are de-
caying away from the interface are two in layer 2 (the TE
and TM vibrations} and three in layer 1 (the TE, TM, and
LO vibrations). The same numbers of exponentially
growing waves are discarded. The discontinuous quanti-
ties can be found from Table II. For co=~i;, the rapidly
decaying vibrations produce arbitrary discontinuities in

(p
' w)', p

' w„, and p
'

w~, so that the connection
rules that relate the slowly varying components of the
fields on either side of the interface reduce to the con-
tinuity of C, D„and p-1/2w

The connection rules can similarly be derived at other

Rapidly decaying wave

Single TE wave
Single TM wave
Single LO wave

Additional TE wave
Additional TM wave
Additional LO wave

Discontinuous quantities

I
uy

I
ux

I
uz

uy
I

ux~uz
I

uq, Q»

TABLE II. Discontinuities in the conserved quantities
u=p ' w and u' due to rapidly decaying evanescent vibra-
tions. The quantities that are discontinuous can be found from
this table by counting, at the frequency of interest, the rapidly
decaying evanescent waves of each polarization. The table en-

tries are derived from the zero-dispersion limit of the different
evanescent waves. A single rapidly decaying evanescent wave of
a particular polarization (on either side of the interface) pro-
duces a discontinuity in one component of u'. A second rapidly
decaying wave of the same polarization (on the other side of the
interface) allows in addition discontinuities in the same com-
ponent of u and (except for TE waves) in a different component
of u', the sizes of these additional discontinuities being related.
Now, if ~», coL, &, co», and coL2 are all unequal, then at any fre-
quency there is at least one rapidly decaying wave of each polar-
ization, and so u„', u~, and u,

' are all discontinuous. Since the
size of these discontinuities is arbitrary, the discontinuities in u'

due to additional rapidly decaying waves are immaterial. Rap-
idly varying evanescent waves do not give rise to discontinuities
in+or D, .
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phonon frequencies. The rules for co = AT,
. are that 4, D„

p
' m„, and p

'
m are continuous. If ~ is not close to

any bulk optic-phonon frequencies, then only N and D,
are continuous.

These connection rules in the limit of infinitesimal
dispersion do not contradict those of the nondispersive
theory. ' Away from co=coT, and coL, , the connection
rules are the same in the two theories, and so in this fre-
quency range the normal modes of the dispersive theory
are the usual interface modes. The effect of the addition-
al connection rules that arise close to a bulk optic-
phonon frequency is simply to lift the degeneracy of the
bulklike optic modes, and at small q to govern the mixing
between interface and bulklike modes.

These connection rules for slowly varying fields will be
applied to LO modes in Sec. VI D, to TO modes in Ap-
pendix D 2, and to LO modes in a retarded theory in Ap-
pendix D 3.

D. Application to LO modes of a quantum well

The LO modes of a hypothetical GaAs/A1As QW can
be found by applying the connection rules derived in Sec.
VI C. For the antisymmetric modes with frequency close
to the GaAs LO frequency, the slowly varying field com-
ponents can be written within each layer as w= —Vy,
g(r) =y(z)exp(iqx), where

F exp( —qz'), z') 1/2X, 6—sinkz'+H sinhqz', —d/2 &z' &P/2 .
k

(34)

Applying the connection rules for 4, D„and u, leads to
a secular equation for k. The distinction made in Sec.
VI C between slowly varying and rapidly varying fields is
valid only in the limit of infinitesimal dispersion, which
for modes with co=coL2 means

tan = — tanh
kd o qd
2 k 2

(37)

which is the condition for symmetric reformulated slab
vibrations. Hence for qd && 1 the frequency depends only
weakly on q, and does not have the complex behavior
found for the antisymmetric modes and shown in Fig. 3.
In the limit as qd —+0 (and approximately true for all
qd «1), condition (37) becomes

sin =0 (k%0),kd
2

and the symmetric reformulated slab vibrations tend to
the symmetric guided vibrations with n%0.

In analyzing the results for antisymmetric modes, it is
useful to know the dispersion relation of antisymrnetric
GaAs-like interface modes calculated when the bulk
dispersion is zero. This dispersion relation is

qd= —tanh
e, (co) 2

which becomes, on substitution of et and e2 and making
the approximation (35)

co —co = ——tanh2 1 qd
L2

(38)

Using Eq. (28), this gives

tanh —Xp(k2+q2) =0 .qd
2

(39)

This interface-mode condition is shown as a dotted line in
Fig. 3.

These results lead to the following conclusions:
(i) At small q, the dispersion relation for antisymmetric

(36) are plotted in Figs. 3 and 4. The dispersion shown in

Fig. 3 is of most interest and will be discussed in some de-
tail later.

Similar analysis for the symmetric modes shows that
their dispersion relation is

»(k'+q') . (35)

Making this approximation, the secular equation be-
comes

—sin =—cos tanh Np( k +q )—1 . kd 1 kd qd
k 2 q 2 2

(36)

where

2 2

2 2 2 2 7

)(~1.2 ~T2)(tuL1 ~1.2)

0 .001 .002

and the subscripts 1 and 2 refer to the barrier (A1As) and
the well (GaAs), respectively. We take e&(oo)=8. 16,
vL, =404 cm ', vl&=361 cm ', ' e2(oo)=10.89,
vL2=292 cm ', vT2=268 cm ', where v=~/2n. c. k is
related to the phonon frequency co by Eq. (28). Calcula-
tions were performed for a 100-A QW with the properties
of GaAs/A1As except that the dispersion p is set to a
value of 10 ' (2' ) rather than the experimental value
for K~([001] of 2.0X10 ' (2m.c) . The solutions of Eq.

FIG. 3. Solid lines are dispersion curves of antisymmetric
GaAs-like LO modes in a 100-A GaAs/AlAs QW with weak-

ened dispersion (see text). For ease of interpretation, (kd/m. )

rather than the frequency is plotted on the y axis. This quantity
is accurately proportional to the difference in frequency from

vL &. Using Eq. (28) and the values given in the text, (kd/vr)~=0
corresponds to the frequency vL2=292 cm ', (kd/m) =100 is a
frequency 0.0169 cm ' smaller. The dotted line is the antisym-

metric GaAs-like interface mode calculated in the absence of
bulk dispersion from Eq. (39).
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FIG. 4. Solid lines are dispersion curves of antisymmetric

GaAs-like LO modes in a 100-A GaAs/AlAs QW with weak-

ened dispersion (see text). (kd/+)2 is plotted on the y axis, as in

Fig. 3. Note that the units of the horizontal scale are different

from those of Fig. 3. qd is large, and the frequency relative to
vL z has contributions from both k and q [Eq. (28)j. In the 100-A

QW the Bri1louin-zone boundary is at qd=111. The dotted
lines correspond to even-integer values of kd jm, and are the
large-qd limits of the dispersion curves (see text).

modes is dominated by the second term in the large
parentheses in Eq. (36). As q ~0, the relation tends to

Gf
cos =0,

2
(40}

and the modes tend towards the antisymmetric guided vi-
brations.

(ii) At "large" q [defined in (v) below], the dispersion

relation for antisymmetric modes is dominated by the

first term in the large parentheses in Eq. (36), and tends

to

1 kd 1 qd—tan =—tanh
k 2 q 2

(41)

This is the condition for antisymmetric reformulated slab
vibrations. These vibrations become the normal modes
because as q increases, the continuity of 4, D, and u, re-
quires the fields outside the QW to be weak [I"~0 in Eq.
(34}], and so the strong fields are confined to the GaAs
well. Hence the continuity conditions reduce to

X=X'=0 (42)

at z'=+8/2, which are the BC's for the reformulated
slab vibrations (Sec. II).

(iii} The dispersion exhibited in Fig. 4 follows directly
from Eq. (41) and is a property of the reformulated slab
vibrations. As long as the bulk dispersion is small [Eq.
(35)], its strength determines the mode frequencies in the
regime of Fig. 4 only through the factor p in Eq. (28), and
does not a6'ect the qd dependence of kd for a given pho-
non branch.

When q))k, kd/m. tends to an even integer. These
limiting values are marked with dotted lines in Fig. 4. In
the q&&k regime the interface vibrations are rapidly
varying with respect to z, and so the only slowly varying

term left from Eq. (34) is y=(G/k)sinkz', and the BC's
(42) on this slowly varying term simplify to y=O at
z'=+d/2. Thus at large q the reformulated slab vibra-
tions tend towards the slab vibrations. Figure 4 shows
that, except for the highest-frequency modes in wide
QW's, the regime in which the slab vibrations are the
normal modes has not been reached even for q at the
Brillouin-zone boundary. Thus the slab vibrations are
not a good description of the confined modes of a hetero-
structure.

(iv) At still larger q, the second term in the large
parentheses in Eq. (36) dominates the first, but the value
of q is inconsistent with the assumption (35), and so the
connection rules for the slowly varying Selds have broken
down and Eq. (36) is invalid. This regime is thus beyond
the scope of the in6nitesimal-dispersion limit, which can
be restored by reducing the value of p.

(v) Both in the small-q regime of Eq. (40) and in the

qd (& I part of the "large-q" regime of Eq. (41), the fre-

quency depends only weakly on q. The crossover be-
tween these two regimes occurs when the two terms in

the large parentheses in Eq. (36} are of approximately
equal magnitude, and corresponds to the steeply sloping
part of the dispersion curves of Fig. 3. The crossover
condition is identical to Eq. (39), and thus corresponds to
the interface-mode dispersion curve calculated in the ab-
sence of bulk dispersion. The crossover between the
small-q and "large-q" regimes occurs for given k at
qd &&1 because the bulk dispersion p is in6nitesimal. In
the crossover regime, the modes have a large projection
onto interface vibrations.

Equation (35) suggests that the experimental dispersion
of GaAs is too large for this small-dispersion theory to be
applied, except for the highest-frequency modes in wide

( —100-A) QW's. A reduced value of p is used in Figs. 3
and 4 to ensure high accuracy for all the modes plotted.
The conclusions for this case of weak dispersion give the
following insights into the behavior of the modes of prac-
tical heterostructures (i.e., those with thin layers and the
correct value of dispersion).

(vi) The dispersive behavior of the antisymmetric
modes in the crossover regime can be considered as due
to the interaction of the bulklike modes with the GaAs-
like antisymrnetric interface mode. This behavior is par-
ticularly clear at high values of k, for the foBowing
reason. Section IV shows that the electron-phonon
scattering by guided vibrations or reformulated slab vi-
brations is very weak at large k (i.e., large n in Table I);
thus the scattering by the large-k modes of Eq. (36) is
strong only in the crossover regime in which the modes
have a large projection onto interface vibrations. The in-
terface mode no longer exists as a distinct branch in the
presence of bulk dispersion because of the interface-
bulklike interaction (Fig. 3). However, the existence of
the interface "mode" can be inferred from this behavior
of the electron-phonon scattering.

This large-k behavior indicates the nature of the inter-
face "modes" when, unlike in the discussion of interface
modes in Sec. VI C, the sign of the dispersion is such that
bulklike LO and interface modes occupy the same fre-
quency band. The interface "mode" exists in the sense
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mentioned in the preceding paragraph, although the true
normal modes are not simple interface modes and obey
mechanical BC's in addition to the continuity of 4 and
D, .

The bulklike dispersion can never be considered a
small perturbation because it lifts the degeneracy of the
bulklike modes and strongly mixes the bulklike and inter-
face modes. Raman scattering can probe both these
effects. However, if the frequency resolution of an ex-
periment is not adequate to resolve the individual phonon
branches of Fig. 3, then a frequency-resolved and wave-
vector-resolved measurement of the electron-phonon in-
teraction will give very similar results with and without
bulk dispersion; in particular, the coupling will be strong
close to the LO and interface-mode frequencies only.

(vii) The symmetric modes with co=coL2 do not exhibit
interface-bulklike mixing, because there are no symmetric
interface modes at this frequency. The normal modes are
approximately equal to the reformulated slab vibrations
(they become exactly equal as p~O). In the same way as
for the "large-q" antisymmetric modes, this result follows
from the weakness of the fields outside the QW. Equa-
tion (37) shows that at q

—k the symmetric modes have
dispersion similar in nature and in origin to that found
for the antisymmetric modes in this wave-vector range
and shown in Fig. 4.

(viii) The q =0, co=coLz modes are the guided vibra-
tions with n@0, in agreement with the findings of Raman
backscattering. The difFerence between the modes at

q =0 and at qAO has been examined in microscopic
theories but has not previously been explained by equa-
tions of motion and connection rules derived entirely
from continuum mechanics.

The set of vibrations with w= —V'g at q =0 is com-
pleted by the n =0 guided vibration, which is equivalent
at q =0 to the symmetric interface vibration. In a non-
dispersive theory this vibration corresponds to the inter-
face mode at m=~T2. In a dispersive theory it contrib-
utes to the TM modes near co=coTz, just as the antisym-
metric interface vibration contributes to the LO modes
near co=NL2.

The modes change in character from guided vibrations
to reformulated slab vibrations as q increases from zero.
The most rapid change occurs when the interface-mode
dispersion curve is crossed. In the limit of infinitesimal
dispersion, the modes at qWO can be taken to be the re-
formulated slab vibrations and the interface modes.

(ix) The way in which the strongly dispersive interface
modes interact with the weakly dispersive antisymmetric
bulklike modes is typical of optic modes in heterostruc-
tures. This interpretation of dispersion curves was first
given for the zero-wave-vector angular dispersion of optic
modes in a superlattice, which has been studied theoreti-
ca11y by many methods. ' ' The zero-wave-vector su-

perlattice dispersion is the interface-bulklike-interaction
effec that is probably most amenable to study by Raman
scattering, since large scattering wave vectors are not re-
quired. However, a Rarnan study of the interface-
bulklike interaction in this or any other system has the
complication that some experiments must be performed
in an off-axis geometry.

VII. CONCLUSIONS

A. Lattice mechanics

Section VI gives a continuum treatment of the lattice
mechanics of polar heterostructures. It discusses the
continuum mechanics of a polar slab subject to SBC's.
However, the most useful results of Sec. VI are those for
the continuum mechanics of a complete heterostructure
in the case of infinitesimal dispersion. These results will
now be summarized.

It has been shown that, contrary to previous sugges-
tions, ' ' ' there is no contradiction between the
mechanical BC's that apply to w and its derivatives, and
the electromagnetic BC's that apply to 4 and D. Both
types of BC must be applied in order to deduce the nor-
mal modes of a heterostructure.

It is found that the LO modes are governed by the con-
nection rules that 4, D„and u, are continuous at each
interface. Except for the case of antisymmetric modes
with small q (less than or comparable to the q value of the
zero-bulk-dispersion interface mode with the same fre-
quency), these connection rules reduce to the conditions
g„=g' =0 at z =0 and d. Thus, in the limit of
infinitesimal dispersion, the polar-optic modes at q&0
can be taken to be the reformulated slab vibrations and
the interface modes. This justifies the idea" of reformu-
lating the slab vibrations, contrary to the criticism of
Refs. 35 and 36.

In the q ~0 limit, the LO modes (if symmetric, the re-
formulated slab vibrations; if antisymmetric, the excep-
tional case mentioned in the previous paragraph) tend to-
wards the guided vibrations with n %0, ensuring that
these are the q =0 modes that are detected in Raman-
backscattering experiments. '

These results are obtained in an entirely continuum
theory, without recourse to microscopic calculations.
The theory also neglects electromagnetic retardation; i.e.,
it gives an electrostatic treatment. The results show that
a consistent treatment of the lattice mechanics and the
electron-phonon scattering can be given within this
framework. It is shown in Appendix D3 that elec-
tromagnetic retardation has significant efFects on LO
modes only at very small q, close to the light line. The
effect of retardation on polar-optic scattering rates is
insignificant, and its treatment is an unnecessary compli-
cation.

Very recently, Ridley has proposed a continuum
model of the optic modes that uses elastic rather than hy-
drodynamic' ' BC's. Although this new model ad-
dresses some of the problems of Refs. 14—16, its starting
point is the bulk dispersion relations for optic modes
rather than equations of motion with both mechanical
and electromagnetic terms, and so it leaves open the
question of whether LO modes should obey electromag-
netic BC's.

B. Electron-phonon scattering

The most important requirement of a set of polar-optic
vibrations used as normal modes in a continuum theory
of electron-phonon scattering is that it should be orthog-
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onal and complete. In addition, the electrostatic poten-
tial associated with each vibration should obey Poisson's
equation with the correct boundary conditions. Claims
of reduced scattering rates or other novel properties
should be treated with caution unless they employ a pho-
non basis set that fulfills these requirements. For a
thermal-equilibrium independent-phonon property, such
as a low-field carrier mobility or an intersubband transi-
tion rate, any such basis set for the degenerate bulklike
modes in a nondispersive model of the optic phonons will
give the same result. For properties that are not sensitive
to differences in the phonon energy on the scale of the
LO dispersion, this invariance should remain a good ap-
proximation even when dispersion is included, and so
knowledge of the normal modes is not needed to calculate
scattering rates.

In assessing the accuracy of scattering rates calculated
with a continuum basis set, it is interesting to note that
nearly all the electron-phonon scattering arises from the
one or two phonon branches, of the correct parity, with
smallest n (Figs. 1 and 2). Except in slabs with a very
small number N of molecular monolayers, a continuum
model will give a good approximation to the atomic dis-
placements and the scattering for these "long-
wavelength" (small-n) vibrations. Thus scattering rates
calculated with a continuum basis set will accurately ac-
count for polar electron-phonon interactions except in
heterostructures with very thin layers (e.g., very-short-
period superlattices). The basis set need not correspond
to the normal modes except when high spectral resolu-
tion of the phonons (as in Raman scattering ) reveals how
the different bulklike and interface vibrations are mixed
to form each individual mode.

Any of the three complete sets of vibrations given in
column five of Table I can validly be chosen as a basis set,
for each layer of a heterostructure, and used to calculate
the rates of electron-phonon scattering by the nearly de-
generate LO modes of the layer. Calculations of
electron-phonon scattering using the slab vibrations' '

(together with the interface modes) as the normal modes
give valid results, are simple, and are free of pitfalls, as
long as the scattering is not required with frequency reso-
lution high enough to resolve the individual bulklike LO
modes. It is paradoxical that this should be so when ex-
periments, microscopic calculations, '" and continuum
mechanics (Sec. VI) show that the slab vibrations are not
the normal modes of a semiconductor layer in a hetero-
structure. Calculations with the slab vibrations are valid
because these form a complete orthogonal set for the ap-
proximately degenerate polar-optic vibrations at co =&GAL .

C. Phonon band-structure engineering

These results demonstrate that, although in the design
of a heterostructure of similar semiconductors it may be
possible to alter the farm of individual phonon modes, it
is much more difficult to exploit this alteration to en-
gineer thermal-equilibrium electron-phonon scattering
rates because these rates are approximately invariant
with respect to transformations among nearly degenerate
mades. This means that any decrease in the scattering by
one mode will be compensated by an increase in the

scattering by other modes. This phonon band-structure
engineering is discussed in more detail in Ref. 20, where
the modes that are not degenerate with the bulklike
modes, i.e., the interface modes, are also discussed.
Reference 20 shows that the coupling of the interface vi-
brations of different layers to form the interface modes
(not discussed in the present work) offers little scope for
the manipulation of electron-phonon-scattering rates.
Indeed, when calculating electron-phonon scattering, it is
a good approximation to assume that the interface
modes are pure interface vibrations of each layer, with
frequency equal to the LO phonon frequency for that lay-
er [this is called the LO phonon approximation (LPA} in
Ref. 20]. Scattering rates differ from those calculated in
the LPA because the phonon frequencies are not equal to
the bulk LO frequencies, because a mode comprises vi-
brations in more than one material, and because of retar-
dation, but these differences are expected to be small.
The possible techniques for designing thermal-
equilibrium electron-phonon-scattering rates in semicon-
ductor heterostructures are shown to be (i) the design of
electron (rather than phonon) wave functions and energy
levels, i.e., conventiona1 band-structure engineering, and
(ii} phonon band-structure engineering, which is limited
to the obvious technique of selecting the heterostructure
materials according to their bulk three-dimensional (3D)
lattice properties (specifically, their LO phonon frequen-
cies and the strengths of the corresponding Frohlich in-
teractions). Reduced dimensionality confers no advan-
tage in phonon band-structure engineering of thermal-
equilibrium scattering rates in semiconductor hetero-
structures.

Finally, we shall mention electron-phonon scattering
rates in two cases that are beyond the scope of the rest of
this paper. First, non-thermal-equilibrium (e.g. , hot-
phonon) properties, in contrast to equilibrium properties,
can be sensitive to the details of the phonon modes,
since Eqs. (16) and (17) no longer apply. A calculation in
the hot-phonon regime must use the correct normal
modes of the system. The second case of interest con-
cerns the free-standing semiconductor wafer. In this
case, the barriers are free space rather than the similar
semiconductors of a heterostructure. It has been suggest-
ed that the electron-phonon scattering rates in a free-41

standing wafer are reduced compared to those in semi-
conductor QW's. Part of the scattering found in a con-
ventional QW is certainly missing, because the bulklike
and interface vibrations of the barriers are absent in a
free-standing wafer. However, contrary to Ref. 41, the
normal modes of the wafer form a set comprising both
the bulklike vibrations and the interface vibrations of the
wafer. If this were not so, the normal modes would not
form a complete set (i.e., the interface vibrations of the
wafer would have no projection onto any mode}. The
scattering by the interface vibrations of the wafer can be
calculated from Eqs. (13) and (19) (see Appendix E}and is
stronger than the interface-vibration scattering in a QW
because the dielectric constant of the barriers is reduced
from its QW value to unity. This enhancement in scatter-
ing exceeds the reduction due to the absence of barrier vi-
brations, except for symmetric vibrations at very small q,
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so that the overall scattering rate is larger in a free-
standing wafer than in a semiconductor QW.
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APPENDIX A: A FOURTH-ORDER
EIGENVALUE EQUATION

This appendix considers the selection of the differential

equation (10}, and analyzes the properties of the eigen-

functions and eigenvalues of this fourth-order equation.
As the first step, we consider the general eigenvalue equa-

tion, which can be written as

L (v)+AP(v)=0, (Al)
subject to "standard boundary conditions" (SBC's).
SBC's are defined to be the boundary conditions for
which the operators I. and P are Hermitian. Functionals
A(v) and II(v) are defined so that for functions v(z} that
obey SBC's,

A(v) = —f dz v'L (v),

II(v)= f dz v'P(v) .
It is necessary that II(v) ~ 0 for all v(z) that obey SBC's,
with equality only if v(z) —:0.Then the operation

v,
'

v, =f dz v,'P(v, ) (A2)

on functions v;(z) and v~(z) that obey SBC's has the alge-
braic properties of a scalar product.

With these definitions, the properties of the eigenfunc-
tions and eigenvalues of Eq. (Al) can be determined by
using the same methods as for second-order Sturm-
Liouville equations. Hence the eigenvalues are real,
eigenfunctions with different eigenvalues are orthogonal,
eigenfunctions with the same eigenvalue can be orthogo-
nalized by the Gram-Schmidt procedure, and the eigen-
functions form a complete set for functions f that obey
the same BC's as the eigenfunctions, where the scalar
product used in the definitions of orthogonality and com-
pleteness is that of Eq. (A2). Also, the eigenproblem
arises as the Euler-Lagrange equation both for the varia-
tional problem

5[A(v) —Xll(v)] =0
subject to SBG's, and for the variational problem
5A(v) =0 subject to SBC's and the normalization condi-
tion II(v)=1. If the proofs of these properties are ex-
pressed in terms of the quantities I., P, A, II, and the
standard boundary conditions, then the algebra of the
proofs is identical to that for the Sturm-Liouville prob-
lem. The standard proof' of completeness requires, in
addition to the SBC's, that the eigenvalues A, have a lower
bound but no upper bound.

Let us now consider eigenvalue equations that are suit-
able for generating the complete orthogonal sets of func-
tions required in Sec. II. For the scalar product (A2) to
be the one used in the orthogonality relation (4) that fol-
lows from the mechanics, P (v) must be given by

d vP(v)= — +q v . (A3)
dz2

vv' =v"'v =v'v" =0 (A4}

at z =0 and d. Though the selection of factors
v, v', v",v"' that vanish at z =0 may differ from that at
z =d, the SBC's further require that at a given boundary
the factors that vanish in order to satisfy the SBC's must
be the same for all functions v(z). As an alternative to
(A4}, the SBC's may be satisfied with periodic BC's. The
three sets of eigenfunctions given in column two of Table
I arise when the same BC's are applied at both z=0 and
z =d.

APPENDIX B: COMPLETENESS
OF EIGENFUNCTIONS AND RELAXATION

OF BOUNDARY CONDITIONS

We consider the expansion in eigenfunctions g„q(z) of
a function g(z) when P(z) does not obey the same bound-
ary conditions (BC's) as the g„z(z). This extends the
proof of completeness discussed in Appendix A, which
demands the restriction that f(z) must obey these BC's.
As in the main text, q is a parameter of the eigenvalue
equation and n labels the different eigenfunctions and ei-
genvalues.

We want to find the circumstances in which the func-
tion g(z) and its eigenfunction expansion are equal in the
sense of Eq. (5), and it is helpful to consider a generaliza-
tion of this equation. Equation (5) is an example of a re-
lation

lim (R —S )* (R —S )=0,
m arco

where R =R (z) and S =S (z) are sequences of func-

tions. Equation (81) expresses an equivalence relation be-
tween the sequences R and S, which we shall denote"-." The equivalence of a sequence to an ordinary func-
tion g(z) can be expressed by defining the sequence F so
that F =g for all m. When the sequences R and S
are defined for each value of a parameter 0., the definition
of equivalence can be extended to include the notion of a
limit. Thus the statement

lim R ( crz) - lim S (z; 0 }
cr~a CT ~'T

means that

lim lim (R —S )*.(R —S )=0 .

Our problem is to find out whether functions P(z) that do
not obey the same BC's as y„~(z) nevertheless satisfy

g(z) —g c„g„q(z), (82)

where c„=y„*qg/y„*q y„.
The method of relaxing the BC's on P(z), when this is

possible, is to introduce a function P(z, zo)=g(z}
—g (z, zo), which does obey the necessary BC's, and show
that

To satisfy the conditions on the bounds of A. , L(v) must
be at least fourth order. Equation (10}has the form (Al)
with P(v) given by (A3) and L (v) by

d4v, d'v
L(v)= — +q

dz4

Hence the SBC's are
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p(z)- lim f(z,zo)- lim g c„(zo)X„q(z)
z ~0 z0~00

(B3)

lim g'g=O.
zo ~0

(B4)

Thus g(z, zo) must satisfy two conditions: for each zo it
ensures that P satisfies the correct BC's at z =0 and d;
and its norm must vanish in the limit as ZQ +O.

To enforce BC's P'(0)=0, g "(0)=0, and f"'(0)=0
when the dot product is defined by Eq. (4), suitable func-
tionsg(z, zo) are

Z
g(z, zo}=—f'(0)z 1 — exp( —z/zo)h(z/d), (B5}

ZQ

-g c„y„q(z),
n

where c„=y„*qP/y„'q g„z. Since f(z) obeys the same
BC's as the y„(z), the second equivalence in Eq. (B3) is
simply Eq. (5), the proof of which is discussed in Appen-
dix A. The first and third equivalences in Eq. (B3) re-
quire that

APPENDIX C: UNITARY TRANSFORMATIONS
BETWEEN DB FKRENT BASIS SETS

If a set of basis functions u (with the caret denoting
normalization) is orthonormal and complete, then an ar-
bitrary function f can be written as

f -pa„u

where a =u'.f and the equivalence relation is dis-
cussed in Appendix B. Similarly, for a second basis set
0„ that is orthonormal and complete,

f-g b„v„,

where b„=v„' f. The a and b„are vector representa-
tions of the function f and are related by the transforma-
tion U„,where

a =g U~b„.

It follows from the orthonormality and completeness of
the basis functions u and 0„ that

g (z, zo) = —f"(0) exp( —z/zo}h(z/d),

and

(B6) Unm
—&m &n

bn —X Unmam

{Cl)

(C2)

Z
g(z, zo)= —g"'(0) exp (z!zo—)h (z/d}, (B7) and that U„has the unitary property

respectively. The function h (t) has h (0)= 1, h (1)=0,
and its Srst, second, and third derivatives vanish both at
t =0 and t =1. The purpose of the factor h (z/d) in Eqs.
(B5}—{B7}is to make the enforcement of the BC's at z =0
and d mutually independent. A suitable h (t) is the poly-
nomial

h (t)=(1 t)4(1+4t){1+ 10t—2)(1—20t 3) .

The BC's g'(d)=0, P "(d)=0, and f"'(dl=0 can simi-
larly be enforced with functions g(z, zo) given by Eqs.
(85)-(B7), respectively, after making the following substi-
tutions in these equations: z —+d —z, g'(0)~ —g'(d),
f"(0)~f"(d), and f"'(0)~—g'"(d). To enforce one of
the combinations of BC's given in column three of Table
I, the appropriate g (z,zo) is simply the sum of the expres-
sions given for the individual BC's. By applying the
Schwarz inequality, it can be seen that this sum obeys the
condition (B4).

The fact that suitable g(z, zo) exist for the BC's dis-
cussed above means that each equivalence in Eq. (B3) is
valid, and so Eq. (B2) follows even though the deriva-
tives of g(z) do not obey the same BC's as the y„q(z).
However, the BC's tp(0)=0 and 1{(d)=0cannot be en-
forced in this way when the dot product is defined by Eq.
(4), since no g(z, zo} satisfying Eq. (B4) exist for these
cases. This is not surprising, since (in the terminology of
the main text} when y„q(0)=y„q(d)=0, the eigenfunc-
tions y„(z) comprise the bulklike vibrations only, and a
function with g(0)%0 or P(d)%0 has a projection onto
the interface vibrations, which are orthogonal to the
bulklike vibrations (see Sec. II).

g U„~U„=5 (C3a)

(C3b)

If the um and v„are unnormalized basis functions, then
u~=u /(u~ u~)', v„=v„/(v„' v„)', and Eq. (Cl)
becomes

Qm vn

(u 4 u )1/2(v4 )1/2
m m V~ V~

(C4)

U„=O
if m +n is odd,

(C5a)

4 „+1 [qd +p 2]''
m. p2 —(n+1)2 [q2d +(n+1) n ]'

X
sin

2 pmq7T
1/2

1 — slnpmq
Pmq~

(C5b)

if m and n are both odd, and

Now let the v„be the slab vibrations of Table I, and
the u be the reformulated slab vibrations of Table I and
Eq. (9) [but with m in place of the label n used in Table I
and Eq. (9), and with the same value of q as for the slab
vibrations]. It is shown in Sec. II that the u and the v„
each form a complete set for the bulklike vibrations of a
layer. It follows from Eq. (C4) that U„ is given by



7738 K. J. NASH 46

4 n+1 [q d +Pmq'/r 1

~ p z
—(n+1) [q d +(n+1}m. ]'/

X
cos

2 pmq~
1

1/2

Pmq~

(C5c)

if m and n are both even. The interface vibrations are or-
thogonal to all the bulklike vibrations and are not
affected by this transformation.

Now let v„ for n ~ 0 be the slab vibrations, v„ for n = 1

and 2 be the interface vibrations (as defined in Sec. II),
and u be the guided vibrations of Table I (with m in
place of the label n used in Table I, and with the same
value of q as for the slab vibrations and interface vibra-
tions). Section II shows that the u and the v„each
form a complete set for all the vibrations of a layer. U„
is given by

Unm 0

if m +n is odd,

(C6a)

=2 8
U„

[q d2+ m 2~211/2[q2d2+ (n + 1)2~2]1/2

X q d (n+1)mm —
q d +(n+1)mm.+

n 9-1+m n +1—m

if m +n is even and n ~ 0,

(C6b)

U-
1m

4qd coth —'qd
q2d2+m 2~2

(C6c)

if m is odd, and

4qd

+m 7T

' 1/2

(C6d}

if m is even, where B~ = 1 if m %0 and 2 ' if m =0.
The unitary property (C3}has been verified numerical-

ly both for the transformation given by Eq. (C5) and for
that given by Eq. (C6).

APPENDIX D: TRANSVERSE-OPTIC
MODES AND RETARDATION

1. Introduction

The main text of the present work gives a nonretarded
(electrostatic) treatment of the electromagnetic field. A
full treatment of the phonon modes must include both
electromagnetic retardation and bulk phonon disper-
sion, for example by adding terms in the magnetic vector
potential A to Eq. (21), to give

, Bw Bw
qcoz.w'w+

2 EOE(z; oo )E'E' at at

+yw E—
—,
' B.B+—,

' gZ, „,
1 Bwk

where E= —V4 —8 A/Bt and B=VX A. Appendix D 3
investigates the effects of retardation on the properties of
the LO modes discussed in the main text. Retardation is
likely to be significant for the TO modes, particularly for
the transverse electric (TE) polarization, but a full treat-
ment of the TO modes is beyond the scope of this paper.
However, the TO modes of the nonretarded theory will
be discussed in Appendix D 2 to provide results for use in
the main text.

Note that a polariton theory that does not include bulk
phonon dispersion gives a quite different description of
the TO modes, even at large q. However, this description
is not appropriate for III-V semiconductor heterostruc-
tures where the bulk phonon dispersion cannot be
neglected. The inclusion of bulk phonon dispersion in-
troduces additional TE and transverse magnetic (TM)
solutions in the polariton complex band structure, and
these solutions must be included in the matching pro-
cedure that determines the normal modes. Some of the
TM polaritons correspond in the nonretarded limit to the
interface vibrations of the present work (see Appendix
D 3).

2. TO modes in the electrostatic theory

The treatment of TO modes corresponds closely to that
of LO modes. One can identify orthogonal complete sets
of vibrations, normal modes of a slab subject to boundary
conditions, and normal modes of a heterostructure with
connection rules derived from the Euler-Lagrange equa-
tions.

The different phonon polarizations in this isotropic
theory can be found by examination of the equations of
motion. It follows from Eqs. (22) and (23) and the
translational invariance of the slab in the x-y plane that w
is a linear combination of solutions of the form
w=wo(z)exp(iqx), where, without loss of generality, the
direction of the x axis is chosen to be parallel to q. Equa-
tions (22) and (23) also show that the motion involving w

(the TE polarization ) is independent of that involving

w„and w, (the LO and TM polarizations ). Within a
single layer, the LO solutions obey w = —Vg (i.e.,
VXw=0) and are discussed in the main text. Within a
single layer, the TO (TE and TM) solutions obey
w=VXS (i.e., V.w=0} and will be discussed here. The
interface vibrations can be classified both as LO and as
TM, as will be shown below.

For the TE polarization, the Euler-Lagrange equations
simplify to

2a"
+~Tw~+ ~ V (D 1)

w~ =g(z)exp(iqx), (D2}

@=0 .

Equation (Dl) is second order and has SBC's w~w~ =0 at
z =0 and d. Equation (Dl) serves both to generate com-
plete sets of TE vibrations and as the Euler-Lagrange
equation for the TE modes, and so the SBC's are the
same for both purposes. The solutions that obey the
same BC's at both z =0 and z =d are
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where

(=sin, n =0, 1,2, . . . ,
(n +1)n.z

(D3)

n m.zg=cos, n =0, 1,2, . . . , (D4)

Hence each set of TE vibrations (D3) and (D4) is com-
plete.

For the TE modes of a layer in a heterostructure in the
limit of infinitesimal dispersion, there are no slowly vary-
ing components outside the layer, and so the connection
rule derived in Sec. VIC, that p

'
w„ is continuous,

reduces to boundary conditions w =0 at z =0 and d.
Hence the normal modes are given by Eq. (D3).

For the TM polarization it is very useful to introduce a
mechanical vector potential for w. Within a slab, the
solutions of the Euler-Lagrange equations (22) and (23)
that have the form vr =V XS obey

VXVX[(cor —co )S+A V S)=0,

V4= ——V X [(coT—co )S+ A V S] .
1

y

If the gauge V S=0 is chosen, then (D5) becomes

(~' —~')V'S+ A V'V'S= 0 .

(D5)

(D6)

(D7)

Without loss of generality, the gauge for the TM polar-
ization (m =0}can be chosen so that

0
1 g(x,z),
0

(D8)

where g(x, z) =g(z)exp(iqx) Then w. is related to g by

0 exp(iqx ),

and so the general orthogonality relation (1) leads to
definitions of orthogonality and completeness based on
the dot product

1 d 2 eJ dz q g„(z)g (z)+ (D9)

Within a single layer, the interface vibrations defined in
Sec. II obey w= —Vg, V g=O. Thus they obey V.w=0
and so they can also be represented by w=V XS. It fol-

and the BC's are g(0)=Pd)=0, P(0)=P(d)=0, respec-
tively. Each set of vibrations corresponds to the normal
modes for the motion of the slab constrained by these
BC's. Substitution of Eq. (D2) into the general ortho-
gonality relation (1} shows that the orthogonality and
completeness relations for TE vibrations are governed by
the dot product

f d g„'()g,().

lows that the interface vibrations can be classified both as
LO vibrations (w= —Vg) and as TM vibrations
(w =V X S}. The property w= —Vg implies that
VXw=0 and so S obeys VXVXS=O. If the gauge
V S=O is chosen, the equation for S becomes V S=O. It
follows from this result that the interface vibrations satis-

fy the equation (D7) for TM vibrations, as well as the
equation (24) for LO vibrations. It is not surprising that
the interface vibrations are solutions both of the equation
for vibrations of the form or= —Vy and of the equation
for vibrations of the form w=VXS, since the interface
vibrations satisfy both these conditions.

The TM vibrations are readily calculated with the
choice of gauge (D8}. With this gauge, the interface vi-

brations obey V /=0. Hence g for interface vibrations is
a linear combination of exp(qz) and exp( —qz). The con-
ditions for orthogonality to interface vibrations are
g(0) =g(d) =0. Vibrations that satisfy these conditions
are termed bulklike TM vibrations (cf. bulklike LO vibra-
tions). Substituting the choice of gauge (D8) into Eq.
(D7), one finds

(co —co )V g+ A V V g=o . (D10}

Equations (D9) and (D10}have the same form as (4) and
(24), respectively, but with g in the role of y.

Thus complete sets of TM vibrations can be found
from Table I by replacing y with g. Note that g and w
have opposite parity, so that in Table I symmetric TM vi-
brations have odd n, and antisymmetric TM vibrations
have even n Equati. ons (30}and (31), the SBC's on w for
the Euler-Lagrange equations for a slab, reduce to g'=0
and g'g" =/ =0, respectively. Thus either g =0 or
g=g"=0. Also 4 must obey both Poisson's equation
(23) beyond the slab and the SBC (29). The normal
modes that obey the BC g'=0 in general correspond nei-
ther to the reformulated slab vibrations nor to the guided
vibrations. However, as q~O, the modes with co=co&-
tend towards the guided vibrations with n %0, and as
A ~0 (infinitesimal dispersion) the qAO modes tend to-
wards the reformulated slab vibrations with 4=0. The
modes that obey the BC's g=g"=0 are the slab vibra-
tions and have 4=0. The guided vibrations with 4=0
obey the Euler-Lagrange equations within the slab but do
not obey Eq. (29) except in the case q =0: the guided-
vibration BC's g' =g"' =0 are not compatible with the
SBC y(+00 }y'(+~)=0 except in the case q =0. Thus
the conclusions about the different complete sets of vibra-
tions, and about the normal modes of a slab subject to
BC's, are the same for TM as for LO vibrations.

To find the TM normal modes of a slab in a hetero-
structure in the limit of infinitesimal dispersion, one
should apply the connection rules found in Sec. VI C, i.e.,
the continuity of @,D„and p

' w„. The antisymmetric
TM modes have a simple behavior, their dispersion being
that of even-numbered reformulated slab vibrations, Eq.
(37). The symmetric TM modes are more complicated,
since the bulklike TM vibrations interact with the sym-
metric interface mode, and the dispersion is governed by
Eq. (36) but with the factor —

NJM replaced by XA, where
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3. ES'ects of retardation

The nonretarded and retarded theories agree for het-
erostructures if the following hold: (1) the connection
rules at an interface are the same; (2) at each (q, co) the
bulk solutions of the two theories for complex k are in
one-to-one correspondence. The corresponding solutions
must also have the same field distributions, at least for
the fields that are involved in the connection rules. (3)
The scattering rates for electrons are the same, taking all
fields into account. When these three conditions are
satisfied, the modes of a heterostructure have the same
frequencies and scattering rates in the two theories. The
following paragraphs determine the circumstances in
which these conditions are met.

The connection rules in a retarded theory can be ob-
tained by analysis similar to that of Sec. VI, but using the
Lagrangian density given in Appendix D 1. Thus in the
retarded theory the connection rules are the continuity of
the mechanical fields u and u' and the electromagnetic
fields E» E~, D„H„,Hz, and B„where E is the electric
field, 0 is the electric displacement, B is the magnetic in-
duction, and H is the magnetic intensity, which is equal
to 8/po in nonmagnetic materials. The connection rules
in the retarded and nonretarded theories are most easily
compared by discussing the TM and LO modes separate-
ly from the TE modes. For the TM and LO polarized
modes of interest in the present work, u, u~, E, H„, and
B, vanish everywhere, and the condition on H is
equivalent to that on D, . Thus the conditions on the
electromagnetic fields can be expressed as the continuity
of E„and D, only. In the nonretarded theory (Sec. VI)
the fields u, u', N, and D, are continuous, and E= —V'N,

so the continuity of 4 is equivalent to the continuity of
E . Hence the connection rules in the retarded theory
are the same as those in the nonretarded theory.

The correspondence between the complex band struc-
ture of the bulk in the retarded and nonretarded theories
is evident from Fig. 5. This figure plots the complex
dispersion relations in the retarded theory for LO waves
[Eq. (28)] and for TM waves, the latter given by

K =E z(K, co )co Ic.
where ez.(K,co) is the transverse dielectric function

(D11)

2 2 2 2
~2( ~ )(~L2 ~T2)(~Tl T2)

The symmetric modes at q =0 are the guided vibrations
with n =1,3,5, . . . . As q increases the modes evolve
from the n =3,5,7, . . . guided vibrations into the
n =1,3, 5, 7, . . . reformulated slab vibrations, and from
the n =1 guided vibration into the symmetric interface
mode. At q-k the dispersion of the reformulated slab
vibrations changes in a manner similar to that for LO
modes (Fig. 4). If the bulk dispersion A were negative,
the symmetric interface mode would cross and interact
strongly with the bulklike TM modes at small q. This be-
havior is similar to that of antisymmetric LO modes be-
cause both the symmetric TM and the antisymmetric LO
modes are governed by an equation of the form (36).

"light-like"
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FIG. 5. Complex band structure for optic phonons of GaAs
near the zone center, including retardation. The plot of fre-
quency squared (v ) against wave vector squared (K2) facilitates
comparison with the nonretarded theory, since the dispersion
curves of the latter are straight lines when plotted in this way.
(a) On these scales the dispersion and the differences from the
nonretarded theory are not evident. The arrows indicate the

0
wave vector ~/d for d =40 and 100 A. (b) Frequency scale ex-
panded about the TO frequency vz, with range approximately
vz +0.93 cm '. Here the dispersion of the TO phonons is clear,
but the differences from the nonretarded theory are still not ob-
vious. (c) Expanded wave-vector and frequency scales show
differences between the retarded theory (solid lines) and the
nonretarded theory (dashed lines). The vertical dashed line cor-
responds to the interface vibrations of the nonretarded theory,
the other dashed line to the TM vibrations of the nonretarded
theory. The frequency range is now v~+0.019 cm ' and the
wave-vector range is smaller than in (a) and (b). The LO disper-
sion curve, off scale in (b) and (c), is a (sloping) straight line, and
is the same in the retarded and the nonretarded theories.

2 2
Q?L

E2-(K,co)=E(~) 1+
co~ co AE

and the experimental value of A for K
~~
[001] is
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3.2X10 ' (2mc) . At each (q, co} the retarded and
nonretarded theories each have two LO and four TM
solutions [each value of K gives a pair of solutions kK;
in the gap for

~
v —vT ~

& 2.3 cm in Fig. 5(c), K2 is com-

plex and is not plotted]. Over most of the frequency
range (away from coT, but including frequencies close to
cot ), Eq. (Dl 1) has solutions with small K (Fig. 5}. These
solutions correspond to the interface vibrations of the
nonretarded theory, which have K=0. The retarded
theory has another pair of TM solutions (at larger K}
which correspond closely to the TM solutions of the
nonretarded theory. The agreement between the two
theories is exact for the LO solutions.

We now compare the fields for the small-E TM waves

of the retarded theory and the interface vibrations of the
nonretarded theory. Consider the symmetric TM vibra-

tion with electric field

i ~ cosh''
E=— 0

q sinh~z'

in which z'=0 is the symmetry plane. q
—~ =E and E

is related to co by the dispersion relation (Dl 1). The solu-
tions of most importance for the scattering of electrons
have q »q —

pc . Thus the electric field E is very close
to

(D12)

(D13)
iq coshqz'

E= — 0 exp(iqx i tot )—
q sinhqz'

and it tends towards this expression in the nonretarded
(c~ 00 } limit. But Eq. (D13}is that of the symmetric in-
terface vibration in the nonretarded theory. The exact
electric field (D12) can be written as

E= —V'4—BA
(D14)

aj
where 4 is the electrostatic potential for a nonretarded
interface vibration, and A is a residual vector potential
of order 1/c . In this way, the small-K TM waves tend
to the interface vibrations of the nonretarded treatment
as c~ 00. It is also notable that for fixed q, a change in co

gives rise to a negligible change (of order 1/c ) in ~. This
corresponds to the property, in the nonretarded treat-
ment, that the functional form of the interface vibrations
is independent of frequency (Sec. VI A). In sutnmary, the
nonretarded solutions are a good approximation to the
retarded solutions as long as both (A) the retarded theory
has solutions with small K, i.e., co is not very close to coT
(Fig. 5), and (B) q is not too small, i.e., the condition
q »E is satisfied.

We now examine the fields for the other solutions of
the bulk problem. The LO solutions are identical in the
retarded and nonretarded theories. For the TM solutions
with large X, the nonretarded theory sets E=B=O and
so does not give the same fields as the retarded theory.
This may lead to inaccuracies in the treatment of the TM
modes. However, the rapidly varying (large k) TM vibra-
tions that contribute to the LO modes (Sec. VI C) are ac-
curately treated because the large k value makes the elec-
tromagnetic fields for these vibrations in a retarded
theory very weak compared to the fields of the LO and

small-E TM vibrations.
Electrons are scattered both by the scalar potential 4

and by the vector potential A of Eq. (D14). The scatter-
ing rate is invariant under gauge transformations. As
noted above, when N is chosen to be the scalar potential
for the nonretarded interface vibration, A is negligible if
the conditions (A) and (B) are met.

Thus the conditions (1)—(3) above are satisfied for the
LO modes as long as both (A) co is not very close to co&.

and (B) q is large compared to K Fo.r the LO modes of
interest here, condition (A} is satisfied. Condition (B) in-
dicates that the nonretarded theory breaks down at very
small values of q, close to the light line. For q & q0 where

qp
= [Ez (tea zt)]' cot 2/c =6894 cm ', the modes with to

close to col 2 are no longer confined to the GaAs because
the small-E TM vibrations of the A1As are oscillatory
rather than evanescent. The GaAs-like LO modes are
resonances in the A1As lightlike polariton continuum.
Dispersion curves for the GaAs-like LO modes are strict-
ly defined only for q &qo. It is possible to extend these
curves to q (q0, however, by plotting the condition for a
resonant mode, i.e., for the A1As continuum vibrations to
have a large amplitude in the GaAs. This approach will
be used below.

The modes with co =col 2 can be calculated in a retarded
theory by a method analogous to that applied in Sec.
VID in the absence of retardation. The distinction be-
tween slowly varying and rapidly varying vibrations (Sec.
VI C), and the effects of the latter at co=co& 2 are the same
in the retarded and nonretarded theories. Thus when the
approximation of weak dispersion is valid, the normal
modes can be found by matching the slowly varying vi-
brations, using the connection rules that E„,D„and u,
are continuous. Figure 3 presents the results of a nonre-
tarded calculation with reduced dispersion and the ap-
proximation of Eq. (35) (Sec. VID). The experimental
value of the GaAs dispersion can be used, but the results
are then less accurate because, as discussed in Sec. VI D,
the approximation (35) is not as good. A nonretarded
calculation for a 100-A GaAs/A1As QW using the same
approximation, but with the experimental value of disper-
sion, shows the same features as Fig. 3 but on a scale of
qd from 0 to 0.4. When retardation is included, the re-
sults are again similar [Fig. 6(a)], except for qd &0.01
where the modes have additional dispersive features [Fig.
6(b)]. These features can be interpreted as interactions
with the antisymmetric interface modes calculated in a
retarded theory with p, = A =0 (in the same way that the
dispersion of Fig. 3 is interpreted in Sec. VI D as interac-
tions with interface modes). These additional features
will be very difBcult to observe in Raman scattering be-
cause (a) they are very strongly dispersive, and (b} they
occupy a very small area of q space, and so their integrat-
ed scattering strength is small. The latter reason (b) also
implies that these features are entirely negligible in calcu-
lations of electron-phonon-scattering rates.

In conclusion, a nonretarded theory is perfectly ade-
quate for calculations of scattering rates by polar-optic
phonons. It does not agree with the full retarded theory
at very small q (close to the light line), but these
discrepancies have a negligible effect on electron-phonon
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scattering and may not be observable even in Raman
scattering.

APPENDIX E: INTERFACE VIBRATIONS
OF A FREE-STANDING WAFER

.2

The electron-phonon-scattering potential for the inter-
face vibrations of a polar layer can be found by solution
of Eq. (13). The results for the case where e(z; oo ) is in-

dependent of z are those given in Table I and discussed in
Secs. III and IV. These potentials can be used to calcu-
late the form factors defined by Eq. (19) for the case of
scattering by interface vibrations. Thus the form factor
for intrasubband scattering of perfectly confined elec-
trons in the lowest subband is

f-(q) =4 sinh tanh exp( —qd)2 2 2

1 q

qd (qd) +4m
(El)

(b)

0 .005 .01

FIG. 6. Solid lines are disqersiou curves of autisymmetric
GaAs-like LO modes in a 100-A GaAs/A1As QW, calculated in
a retarded theory. The experimental value of the dispersion was
used, with the approximations of Sec. VI D. (kd/n. ) is plotted
on the y axis, as in Figs. 3 and 4. The dotted line is the antisym-
metric GaAs-like interface mode calculated with retardation
but without bulk dispersion (i.e., p= A =0). (a) For qd )0.01
the dispersion curves are very similar to those calculated
without retardation (see text and Fig. 3). (b) For qd &0.01 there
are dispersive features, which do not occur in the nonretarded
theory. These can be interpreted as interactions with the inter-
face mode (dotted line). The latter occurs at values of qd slight-

ly larger than those for the A1As light line, which is given ap-
proximately on this scale by qd =qod, where qod =0.006 894.
For qd & qod the modes plotted are resonances in the continuum
of A1As lightlike polaritons {see text). The uppermost reso-
nance, at kd/m=1, broadens and weakens with increasing q,
losing its identity at q=0. 38qo. In narrower QW s (iu which
the different LO modes can be resolved by Raman scattering)
the uppermost resonant mode is well defined over a wider range

0
of q, up to q=0.995qo in a 25-A QW. The second resonant

0
mode becomes the uppermost mode at q) qo. In a 25-A QW
this mode crosses the interface-mode dispersion curve and kd/~
achieves a rninimurn value of 1.04. Thus, as for the lower modes

0
in a 100-A QW, the interaction with the steeply rising interface
mode causes only a small interruption in the much flatter
dispersion of the LO modes.

and the form factor for intersubband scattering of per-
fectly confined electrons between the lowest two sub-

bands is

f-(q) =4 cosh coth exp( —qd)
qd

2 2
'2

X q, —,, (E2)
(qd)z+n(qd. ) +9m.

These results are plotted as f in Figs. 1(d) and 2(d), re-

spectively.
The method is similar when e(z; Oo ) is not independent

of z. When e(z; 00 ) is equal to e&( ~ ) in the barriers and

ez(ao) in the layer, the potentials within the layer are

equal to those of Table I multiplied by

qd &t(~) qd . qdT- =exp cosh +sinh
2 e2(~) 2 2

qd &t(~) . qd qd
T-, =exp sinh +cosh

2 e2(~} 2 2

for symmetric and antisyrometric vibrations, respectively.
The form factors f2(q} and f-, (q) are those of Eqs. (El}
and (E2) multiplied by ( TI ) and ( T , ), respectively. -

The interface vibrations of the barriers in a QW struc-
ture are defined by

y=exp —q(z —d/2), z )d,
g=+exp+q(z —d/2}, z (0,

with the positive and negative signs for symmetric and
antisymmetric vibrations, respectively, and with w=O for
0 &z & d. The form factors for scattering of electrons by
these vibrations can be found from Eqs. (19) and (13}[the
latter modified for barrier vibrations by changing the sign

of q and by using barrier values of e(ao ) and P]. It is

found that the form factor for intrasubband scattering by
symmetric vibrations is equal to that of Eq. (El) multi-

plied by
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qd
T2 coth

00 2
.. (a) Symmetric Vibrations

while the form factor for intersubband scattering by an-
tisymmetric vibrations is equal to that of Eq. (E2) multi-
plied by

e)(ao ) qdT, ta-nh
00 2

The scattering by bulklike vibrations of the GaAs layer
is the same, whether the layer is clad by A1As barriers or
is free standing. If the electrons are taken to be perfectly
confined to the GaAs, then they are not scattered by the
bulklike vibrations of the A1As barriers.

An exact comparison of scattering rates in systems
with a range of phonon frequencies should find the nor-
mal modes and use Eqs. (16) and (17). This is difficult be-
cause, in contrast to the semiconductor heterostructure
treated in Sec. VIB, it is not clear what surface terms
should be included in the Lagrangian density, or what
BC's to apply at the surfaces, without recourse to micro-
scopic theory. Fortunately, a good approximation to the
scattering rates can be obtained, as discussed in Sec. VII,
without knowing the normal modes. The scattering rate
of electrons in a heterostructure is accurately given by as-
suming that the interface modes are pure interface vibra-
tions at the LO frequency of the host material. Both in
the QW and in the free-standing wafer, mixing of inter-
face and bulklike modes can be neglected, since the
scattering is approximately invariant with respect to mix-
ing of nearly degenerate modes. As noted above, the
scattering by bulklike vibrations is the same in the two
systems if the electrons are perfectly confined to the
GaAs. Thus differences between the scattering properties
of the semiconductor QW and of the free-standing wafer
can be estimated by comparing the form factors for the
interface vibrations.

Figure 7 illustrates the scattering form factors for the
interface vibrations of both a GaAs/A1As QW [with
values of e, (0D) and ez(ac) given in Sec. VID] and a
free-standing GaAs wafer [with no barrier vibrations and
e&( ac )=1]. The scattering by interface vibrations of the

2.
8aAs/air

QW

~&~s ~ ~ ~ ~ ~ ~ ~~~~a~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

O
O 0W ~~mme~

(b) Antisymmetric Vibrations

0 .1
LL

GaAs/air

~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~

0 1 2

aamm~ Qe~g

3 4

GaAs layer is stronger if the layer is free standing than if
it is clad by A1As barriers. It is clear that this stronger
scattering in the free-standing wafer outweighs the ab-
sence of scattering by interface vibrations of the barrier,
except for symmetric vibrations with very small q (in the
present example, with qd less than 0.02).

FIG. 7. Form factors for electron-phonon scattering by inter-
face vibrations in a free-standing GaAs wafer (labeled
GaAs/air) and in a GaAs/A1As quantum well (labeled QW).
The QW form factors are those for the interface vibrations of
the well (solid curve) and of the barriers (dashed curve). The
scattering of perfectly confined electrons (a) in the lowest sub-

band (by symmetric vibrations), and (b) between the lowest two
subbands (by antisymmetric vibrations), is considered.
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