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Optical vibrations on microscopic rings in a magnetic field
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We show that on microscopic rings, such as cyclic polymer molecules, or on quantum dots the fre-

quency of some vibrations depends on the magnetic field and on the electron filling factor. The effect is

related to the existence of orbital currents on the ring, which induce a frequency change of the vibration-
al mode. Each increase in single-electron current induces a change in the vibrational frequency. The
magnetic field may also create an equilibrium distortion of atoms. The extent of atomic distortions
changes with the magnetic field. The latter effect is characterized by a huge electric polarizability and

hyperpolarizability of cyclic molecules, discovered recently. The relation of persistent current on rings
and on quantum dots to the frequency-change effect is discussed; possible experiments are proposed.

I. INTRODUCTION

Recently, considerable progress has been made in
preparation techniques of complex polymeric molecules.
Various macromolecules of ring-chain shape have been
synthesized. One example is the C60 fullerene molecule.
When intercalated with alkali-metal atoms to form the
fullerides A„C6O, the material with x =3 becomes super-
conducting below temperatures 18 and 28 K for A =K
(Ref. l) and for A =Rb, respectively. The unusual
features of this high-temperature superconductivity may
be connected with the creation of so-called flux phase
states. The idea of flux phase states is based on the ex-
istence of orbital electron currents (see Ref. 9 and refer-
ences therein). On the nearly spherical C60 molecule
there may exist molecular orbital currents.

Another relevant problem is the origin of the large
diamagnetic anisotropy and huge polarizability
discovered in some aromatic molecules and analogous
compounds. ' For example, these effects sometimes ap-
pear in single crystals of polycyclic hydrocarbons. The
magnetic susceptibility measured normal to the plane of
these molecules is several times greater than that mea-
sured parallel to the plane. Such an anisotropy has been
explained by the existence of orbital currents. ' Recently
there has been increasing interest in the use of conjugated
organic materials for nonlinear-optics applications. '

These compounds also have a large polarizability, which
has been attributed to the mobility of their n. electrons.

In a related area, carbon clusters have recently re-
ceived much attention from both the theoretical and ex-
perimental communities. " Clusters ranging from C2 to
C&oo have been studied. The theory, which agrees with an
experiment, claims that with a large number of carbon
atoms the monocyclic structures are more stable than the
corresponding linear forms. Such monocyclic structures
are also important on the basis of aromaticity considera-
tions.

With the advent of nuclear magnetic resonance (NMR)
spectroscopy, there was renewed interest in orbital-
current theories. ' The protons in polycyclic hydrocar-
bons and related compounds show large chemical shifts

of the NMR lines at 1ower fields. This effect is due to
large contributions to the local magnetic field at proton
sites arising from electron ring currents. Nevertheless, at
the present time there are no satisfactory experimental
methods for the detection of such orbital currents. In the
presence of orbital currents, the resulting local magnetic
field can still be very small. If the ring contains a trapped
vortex, it also contains one quantum of flux, which
creates its own magnetic field. As a result, there may be
a total cancellation of the local field, as in the Meissner
effect for superconductors. Such an analogy with the
Meissner effect is, however, valid only for a macroscopic
specimen.

With the aim to develop a method as an alternative to
local-magnetic-field measurements (or NMR), we have
studied vibrational spectra within a simplified model. We
found that the frequency of some vibrations of atoms on
microscopic rings depends strongly on the presence or
absence of orbital currents along the ring. The magni-
tude of orbital currents depends on the magnetic field.
Thus, by changing the magnetic field, we may change the
vibrational frequency. This influence of the magnetic
field on the vibrational spectrum is a general
phenomenon. The effect will appear for all systems hav-
ing large anisotropy in the diamagnetic susceptibility,
which is associated with orbital currents. For example,
this effect is expected to exist in aromatic molecules.
However, the presence of this effect does not necessarily
imply the presence of a magnetic field. It is nonetheless
important that the existence of such orbital currents, or
any electrical current whatsoever, be recognized.

This effect is particularly important for theories of
spontaneous orbital moments in small particles. '

Periodic m.agnetoconductance oscillations can occur in
systems of singly connected geometry, such as a point
contact ' or a disk-shaped region in a two-dimensional
electron gas ("quantum dot"). ' As is well known, the
Aharonov-Bohm effect in such systems is due to trans-
port via the edge states. In the quantum Hall-effect re-
gime, such states are the current-carrying states at the
Fermi level. Sivan and Imry have shown that edge
states of a quantum dot make the geometry electively
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doubly connected, in which case the quantum dot traps
flux quanta equally well as a ring and the orbital current
flows through the edge states. For two identical small
particles (e.g., quantum dots) with and without orbital
magnetic moments (currents), this phonon spectra are
then different.

II. MODEL

n=1 n=1

where E is the elastic constant and u„ is the displacement
of the nth atom along the ring measured from the equilib-
rium point. For the Hamiltonian of electrons on an N-

site ring in a magnetic field, we choose, for simplicity, the
Hamiltonian of free spinless fermions, which, in the pres-
ence of magnetic field, has the form

H, = —g t,,a;aj .
(~,j)

(2)

Where a; and a. are the fermion creation and annihila-
tion operators, respectively, the sum is over nearest-
neighbor bonds (ij ),

t, =t exp(i A,J )", (3)

where t is the hopping constant. The phase A; is equal
to

A; =2m A.ds .
E

(4)

In the symmetrical gauge A=( —y, x,0)B/2 we obtain
for nearest-neighbor bonds, in units of elementary flux $0
(we use units in which $0=A'= 1),

where f is the flux of the magnetic field through the ring:
f=BmR . Here, for simplicity, we have neglected the
spin, since it does not change qualitatively the final result.
The Harniltonian for the electron-phonon coupling has
the usual deformation-potential form

N

H;„,=D g exp(iA„„+,}a„a„+,(u„—U„+,)+c.c. ,
n=1

Next we discuss how the motion of electrons influences
the vibrational spectrum. In order to study such an
effect, we consider an S-atom chain forming a ring simi-
lar to a cyclic molecule. We put such a cyclic molecule in
a transverse magnetic field and consider the spectrum of
vibrations. This model is introduced simply as illustra-
tion of a more general principle and as a means of ex-
tracting typical, though not necessarily correct, numbers
characterizing the system. Atoms of mass Mo with only
one orbital are coupled by elastic forces governed by the
Hamiltonian

N N

H~=4MO g u„'+K g (u„—u„+,)',

along the ring, in the presence of the magnetic field. This
problem can be solved in two steps. First, we proceed to
find the electronic spectrum, at a specific displacement, of
a collection of atoms in the adiabatic approximation. We
consider the so-called Peierls distortion, i.e., a displace-
ment of the nth atom by the amount 5/2D and of the
(n+1)th atom correspondingly by the amount b /2—D,
where

u„—u„+, if n is odd
h=D' —u„+u„+1 if n is even .

In the limit N~ 00, such displacements correspond to an
acoustical branch of spectrum at a specified value of
momentum. In other words, we consider the top of the
dispersion curve in the acoustic spectrum. In the case of
a two-atom chain of infinite length, the vibrations corre-
spond to the optical branch of the vibrational spectrum.
Generally speaking, for a ring of finite size, such termi-
nology is not correct, since here the dispersion curve
disappears. In the adiabatic approximation, the electron-
ic spectrum for the Peierls distortion has the form

1/2

E =k 2t2+2b, ~+2(t —b, )cos (m+f)4m.

(8)

where m =0, + 1, +2, . . . . As one can see from Eq. (8},
in the continuum limit N~00 the parameter 2h plays
the role of the gap associated with the splitting of the
electronic band into two. The width of each band is
t —6, where 6(t. Such a splitting is usually called the
Peierls transition.

III. THE FREQUENCY CHANGE
IN A MAGNETIC FIELD

The dependence of the total energy of the system on
the magnetic flux is qualitatively different for even and
odd number of fermions on the ring. This qualitative
difference has already been found for 6=0.' For an odd
number of fermions, the total energy increases as the flux

f through the ring increases from zero up to f= ,'. Qn-
the other hand, for an even number of fermions the total
energy decreases, as the flux through the ring increases
up to f= ,'. The latter pr—operty plays a crucial role in

the existence of the flux phase state on a cylinder consist-
ing of many rings with an even number of fermions. '

The total energy of 2M+1 electrons (provided that
2M+1~X/2) is equal to

2 2~E=—2 g t cos (f+n)
N

'I 1/2

+b, sin (f+n)

M 2'-— g t cos (f n)—
where D is the deformation potential.

Let us consider the longitudinal oscillation of atoms,

1/2

+6 sin (f n)—
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g2 g4
E=Eo— K, (f )+ K2(f ),2t3

where Eo is the energy at b =0 (see Ref. 18),
r

(10)

and there is an analogous expression for the case of even
number of fermions. At small deviations
b~/It cos [2m(f+n)/N]) ((1,we can use the approxi-
mation

i.e., the ring consists of 60 atoms, like C6o. Taking into
account interatomic distances on the ring for the elastic
constant K, we obtain K -24 eV. Then (13}is simplified
to the form Q-coo(1 —0.002f )' . One sees that even
for one electron there exists the effect of the frequency
change with the magnetic flux.

The effect increases strongly with the filling of the ring
by electrons. The frequency shift can be represented by
the following general formula:

sin (f+n)2 2'
A=coo[1 —pKi(f )]'~' . (14)

and

K, (f)= g
n=0

cos (f+n)2m'

sin (f—n )
~ 2 2K

M

cos (f—n )
2m

K2(f)= g
n=0

r

cos (f+n )
3 2'

sin (f+n)~ 4 277

M

Here with the filling appears a situation in which, at zero
flux, the frequency 0 decreases and may be equal to zero.
At this point, nonzero equilibrium positions of atoms
5= b,oA0 will appear. The efFect of the frequency
change for the case of nonzero equilibrium positions of
atoms will be preserved. Now let us continue to study
the first case, when ho=0. If we take the number of elec-
trons on the ring as 2M+1=29 at weaker electron-
phonon interaction p=0.01, the frequency-shift depen-
dence on the magnetic field is presented in Fig. 1(a). One
sees a smooth decrease of this frequency with the magnet-
ic flux f. For the other values off (

~f ~

~ 1/2), this func-
tion is periodic.

On the other hand, for an even number of fermions the

sin (f n)—o 4 2'
M

(12)
n=1

cos (f—n )
3 2K

Since K, (f )%0, the second term in the right-hand side of
Eq. (10}will give a contribution to the elastic energy of
the ring molecule.

Such a contribution can change the frequency of the vi-
brations. There are two different cases here: when the
equilibrium positions are (1) b, =0 and (2) 6%0. Let us
consider the first case.

In the case when there exists only one free electron on
the ring, the frequency changes from coo at zero magnetic
field to the value

1/22' 2 21TA=co 1 —
p cos tan

N N
(13)

where p =D /(tKN) As one can s.ee from Eq. (13), the
frequency decreases with f. The decrease of the frequen-
cy will occur for any odd number of fermions on the ring.
The maximal effect of such a decrease is obtained in the
case of half filling. Unfortunately, at half filling the ex-
pansion (10) is not valid, since in this case the denoinina-
tor in (10)—(12) equals zero. Therefore in this case we
should consider the complete nonlinear dependence
E(b ), as will be done in the next section.

Let the filling factor of electrons be lower than half as
in the case, for example, if there is only one electron. For
a simple estimate of this shift, we set D = 12 eV and t = 1

eV. For the number of sites on a ring we take N=60,

FIG. 1. The change of the vibrational frequency for a ring in
a magnetic field with the following parameters: D =4 eV, t = 1

eV, the number of sites on the ring, N =60, the constant K -24
eV, l.e., the assumed value p =—'. The magnitude f is an exter-
nal magnetic flux through a ring in units of the elementary flux
quantum. For other values of f ()f~ ~ —') this function should

be continued periodically. {a) For an odd number of fermions
N, =29. (b) For an even number of fermions N, =28.



OPTICAL VIBRATIONS ON MICROSCOPIC RINGS IN A. . . 7677

vibrational frequency increases with increasing magnetic
flux through the ring. Let us estimate this shift with the
flux f. For the number of fermions 2M=28, we use the
same values for parameters as we have used in the case of
an odd number of electrons. In this case the frequency
shift is described through an expression analogous to Eq.
(14). The results of numerical calculation are presented
in Fig. 1(b). One can see a drastic difference in compar-
ison with the case of an odd number of fermions. The
dependence of the frequency on the external flux has
cuspidal minima at a y integer number of flux quanta
through the ring. Each of the cuspidal minima corre-
sponds to the trapping of a vortex by the ring. The total
flux through the ring, after such trapping, changes by one
unit.

One may see that even without a magnetic field the fre-
quency is shifted with the filling of electrons. The reason
for the effect is that, even without a magnetic field, elec-
trons create orbital currents, i.e., they have orbital mo-
ments. Thus the effect may be observed by the change of
electron filling, even at zero magnetic field.

The present calculation shows that the effect for simple
aromatic molecules is very small for typical laboratory
magnetic fields. In this case, the flux, which is of the or-
der of a sizable fraction of a flux quantum, can only be
obtained at enormous fields. The best place to look for
the effect will probably be quantum dots (disks), ' in
which orbital currents are created through edge states.
The size of a quantum dot may easily be changed so that,
at laboratory magnetic fields, a sizable part of one flux

quantum will penetrate into the dot. In this case, the fre-
quency change may be observable in edge phonon states,
which are analogous to surface vibrations. Even without
a magnetic field, the frequency of some phonons will be
softened with electron filling.

Any electron which creates current on the ring con-
tributes to the change of the frequency, i.e., to the change
of the elastic constant. It is very useful to consider here a
single electron with current J;%0. From the expression
for E&(f) [see formula (11)] it is obvious that only
nonzero currents can cause a change of the frequency. If
an electron has no orbital motion, there is no contribu-
tion to the change of frequency from this electron. This
phenomenon is similar to the classical Doppler effect.
One can see from Eqs. (13) and (14) that the frequency is
changed by an extra multiplicative factor as in the case of
the usual Doppler shift. The orbital current is created by
moving electrons, which interact with oscillating atoms.
Due to the nonzero velocity of the electron, the frequen-
cy changes according to the Doppler effect. Thus each
moving electron contributes a Doppler shift of the fre-
quency. As a result, we obtain the dependence of the
average frequency on the magnetic field and/or on the
electron filling. Of course, if the velocity of light is equal
to infinity, the effect disappears.

IV. POLARIZABILITY

As one may see from Eq. (14), for some values of the
parameters of the ring (for example, with an increase of
the electron filling), the frequency 0 may be equal to

—0.2

0.275-.

0.25"
II

8 0.225"

0.2

FLUX

—0.4 —0.2 0 ' 2 0.4

FLUX

FIG. 2. The equilibrium distortion x of atoms from equidis-
tant positions in a magnetic field on a C60 ring with the constant

p =0.1 and f the value of an external magnetic flux through a
ring in units of the elementary Aux quantum. The gap
50=&pxt. (a) For an odd number of fermions N, =29. (b) For
an even number of fermions N, =28.

zero. This point is critical for the appearance of nonzero
displacements of atoms on the ring ho%0. The value of
these displacements depends on the magnetic field and
can be easily estimated from the expansion (10),

[p&i f —ll
(15)

p'&2(f )

The dependence of the distortion x =ho/(&p t ) on the
magnetic flux is qualitatively different for the cases of an
even and an odd number of fermions on the ring.

If we take the value p =0.1, the same as in the case of
one electron, a nonzero Peierls distortions x, which will

depend on the value of the magnetic flux, will appear on
the ring. For 29 fermions on the C6o ring, the depen-
dence of the equilibrium distortions x on the flux is
presented in Fig. 2(a). Here the strong dependence on the
magnetic field at half-integer flux quanta is changed by a
weak dependence for small values of the flux. On the
other hand, for an even number of fermions on the ring
the strong dependence of the distortion x upon the mag-
netic field appears at integer values of the flux f. For 28
fermions on the C6O ring, the dependence of the distortion
x on the magnetic flux is presented in Fig. 2(b). At in-

teger values of flux, cuspidal minima have appeared [see
Fig. 2(b)]. One notes that the Peierls transition discussed
may be stimulated by a magnetic field.

The behavior of the vibrational frequency is similar to
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0.4

the behavior of distortions. The dependencies of the fre-
quency on the magnetic flux are presented in Figs. 3(a)
and 3(b) for the cases of an even and an odd number of
fermions, respectively. In contrast with the case of
zeroth equilibrium displacement x =0 (see Sec. III), one
sees that in the latter case the dependence on the magnet-
ic flux is stronger. The change of the frequency may even
reach 50%.

The effect wi11 be huge at the point of the appearance
of nonzero Peierls distortions x or 50. In this case the vi-
brations will lose their harmonic character and become
soft and nonlinear. Here it is important to notice that the
predicted effect is related to polarizability of cyclic mole-
cules. Let us estimate the change of the molecular elec-
tric polarizability in magnetic field. The dipole moment
of a molecule is proportional to the shift 5 of nuclei of
the molecule from their equidistant positions. Thus, the
electric polarizability will depend strongly upon magnetic
field in the same manner as described above for Peierls
distortions.

The value ho%0 may also correspond to the equilibri-
um state of the molecule due to reasons other than
Peierls instability as, for example, in the case of a mole-
cule with two different types of chemical bonds. One can
show within the present model that in this case the value
b,o in the magnetic field changes to ho =ho/R, where R
is a relativistic factor, the same factor as in formula (14).
Clearly, the polarizability will depend strongly on the

1.2
ENERGY

j. . 0

(Ib units)

. 5

p 4-0.

FIG. 4. The surface of potential energy for an even number
of fermions at half filling in E x f(en-er-gy-distortion-fiux) space.
We choose N, =30. The constant p =0.025. Cuspidal max-
imum corresponds to zeroth displacements of atoms. The ex-
tremal point at each fixed value of flux corresponds to equilibri-
um positions of atoms.

magnetic field in the same way: a(H)=a(0)/R. Thus,
the predicted effect can be measured by observing the
change of the polarizability in a magnetic field. The re-
lated phenomena of hyperpolarizability and also the
unusual electro-optics for symmetrical cyclic molecules'
are connected with this anomaly of the vibrational spec-
tra and with the appearance of nonzero Peierls distor-
tions in a magnetic field, found in the present paper.

The case of half filling requires special attention, since
in this case expansion (10) is not valid. Instead of (10) we
should consider dependence (9). The dependencies of the
potential energy on b, and on the magnetic flux f are
presented in Figs. 4 and 5 for the cases of an even and an
odd number of fermions, respectively. For illustration we
choose in the first case 30 fermions and the value

p =0.025. In the second case the number of fermions is

N, =31 and p =0.045. The minima of the energy depen-
dence on the distortion at constant flux (see Figs. 4 and 5)
correspond to different equilibrium atomic displacements
at different values of the flux. One sees that in this case
there are stronger dependencies of the vibrational fre-
quencies and of atomic distortion on the magnetic flux.

At half of the flux quantum the equilibrium distortion
xo is practically equa1 to zero. On the other hand, at

. 5

(arb. units)

—0. 4 —0. 2 0.2 0.4

FLUX

FIG. 3. The dependence of the vibrational frequency upon
the magnetic flux through the ring. (a) For an odd number of
fermions 29. (b) For an even number of fermions 28. We take
here the values of all parameters the same as in Fig. 2.

FIG. 5. The surface of potential energy for an odd number of
fermions on the ring C60 near half filling in E x f(energy---
distortion-flux) space. %'e choose N, =29. The constant

p =0.045.
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zero flux x0 is equal to 0.25 (see Fig. 4). The vibrational

frequency, which is the curvature at the points of mini-

ma, increases with increasing flux from f= —0.5 until

the value of the flux f=0 has been reached. Then the
frequency again decreases with increasing flux (see Fig.
4). For the odd number of fermions the frequency behav-

ior on the magnetic fiux is shifted by half of a Aux quan-

tum (see Fig. 5). For the filling factor p&„, which is

larger than half filling the picture is the same as for the
case of low filling p&,„,hence displaying a symmetry: The

system with Pl„g, has the same properties as the system
with Plow Plarge

V. DISCUSSION

rejected in the dependence of the total energy on the
magnetic field as cuspidal maxima and, correspondingly,
in the dependence of phonon frequency on the magnetic
field as cuspidal minima (see Figs. l —4). On the other
hand, from this analogy we may arrive at another impor-
tant conclusion: With any current in the system there
should be associated a change in the phonon frequency.

Excluding the magnetic field f from the dependencies
of the current j (f ) and of the vibrational frequency shift

EQ(f ) with the aid of the method of dimensions, one

may get the following rough estimate:

KQ-j hark~ lo,

So far, we have considered the model of spinless fer-
rnions. The main results are unaffected if we will take
into account the spin of electrons. The main difference is
that there now will be four different cases instead of two
for spinless fermions (cases of even and odd numbers of
fermions). This means that in the case of real electrons
the properties of the ring will be changed with period in

filling factor, which is equal to 4.
For example, let us consider the case of vibrations at

zero equilibrium distortions. For the case of one electron
on the ring the vibrational frequency will decrease with

magnetic field. For case of two electrons on the ring the
frequency will also decrease with increasing magnetic
field. The decrease in the latter case will be deeper than
for the case of one electron on the ring. For three elec-
trons on the ring we will have a linear increase of the fre-

quency with increasing magnetic field. The maximum
effect of this linear increase of the frequency will arise in
the case of four electrons. For the case of five electrons
the vibrational frequency will also increase, but with the
smaller slope than in the case of four electrons. For six
electrons we recover the same situation as for the case of
two electrons.

With increasing electron filling, the increase and the
decrease of the vibrational frequency will occur periodi-
cally. As a result, this periodicity can be represented by
the following simple formula: %,=4n+2, where X, is
the number of electrons on a ring and n is the period
number. This is reminiscent of the "Huckel rule. ' It is

interesting that the properties of the carbon clusters C„
also satisfy this rule. " In this case the number n is the
number of carbon atoms in the cluster C„. This effect ex-

ists also for a ring with more complicated elementary
cells (two-atom or multiatom cells). A similar
classification exists also with the Peierls distortions b,AO.

Generally speaking this effect is similar to the Kohn
effect in crystals. For the Kohn anomaly, the frequency
of the acoustic mode is softened when the quasimomen-
tum of the phonon is equal to an extremal diameter of the
Fermi surface. At this point the group velocity goes to
infinity. In our case we do not have a Fermi energy, but
an analogous role is played by the number of particles (in
the grand-canonical ensemble). The change of the mag-
netic field induces transitions between states with
different orbital quantum numbers. Such transitions are

where j is an electron current through the sample, which
is proportional to applied field E (Ohm's law: j =o E), o
is the conductivity, which may be estimated with the
Drude formula, kz is the Fermi momentum, and ~ is the
collisional relaxation time. One sees that for systems

with the Drude type conductivity, where o is proportion-
al to r, the frequency shift depends only on electron den-

sity. The current's dependence obtained reminds one of a
Stark effect. One see that the effect increases with in-

creasing conductivity cr. Our estimations show that in

the case of a linear current for copper metal at 6 K the
effect of the frequency shift is too small but it may in-

crease at the transition in a superconducting state. Thus,
the effect may be observable at superconducting transi-
tions.

For normal metals the effect means simply that under
an electric field the Fermi energy will be shifted, inducing
a change in the phonon spectrum. For a system of finite

size, for example, for a polymeric chain, the optical fre-

quency will depend on the current through the chain.
The softening of the vibrational frequency will depend on
the filling factor, i.e., on the total number of electrons on
the chain.

For a symmetrical vibrational mode of the ring the fre-

quency does not depend on the magnetic field. In this
case there is a static nonzero displacement of atoms,
which is proportional to the magnetic field. It can be ex-
plained by the presence of the Lorenz force acting on
moving electrons.

For experimental investigation of the effect found it is
important to understand the in6uence of the temperature.
It is clear that the Peierls nonzero equilibrium distortions
may disappear as the temperature increases. However,
the frequency change under the magnetic field will still
survive, as we have obtained in Sec. III. Therefore the
observation of the present effect may be prevented only
by the thermal dispersion of the phonon lines. On the
other hand, the single ring is strictly not in the thermo-
dynamic limit because of its finite size. The temperature,
which may be introduced, is the temperature of some
thermal reservoir, for example the substrate on which the
ring is located, or this may be the temperature of a gas of
cyclic molecules. The calculation of the partition func-
tion will depend on the system and how the temperature
is introduced. This consideration is beyond the scope of
the present work.
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VI. RELATED EXPERIMENTS

There is a long-standing problem of a persistent
current on a ring, which, in the past, has been studied
theoretically very extensively. On the other hand, there
is only one single experiment proving the existence of
such persistent current. ' In this experiment 10 meso-
scopic copper rings have been located in a plane, in a
transverse magnetic field. Based on the effect found in
the present work, one may predict that a shift of optical-
phonon frequencies for copper rings in magnetic field'
should also oscillate with a change of external magnetic
flux with period T= —,

' in units of the elementary flux
quantum. Clearly half of these rings have an even num-
ber of electrons. The value of the phonon frequency on
these rings will oscillate with period one unit, having
cuspidal minima at integer flux quanta [see Figs.
1(b)—3(b)]. The other half of the rings will have an odd
number of electrons. The phonon frequency will also os-
cillate with period one unit with increasing magnetic
field, having cuspidal minima at half-odd integer flux
quanta [see Figs. 1(a)—3(a)]. Therefore, on average, for
the whole assembly of rings the period of the frequency
change in magnetic field will be equal to —,'. Thus the ex-
istence of the persistent current can be proven by a mea-
surement of the phonon frequencies in a magnetic field.

The effect of the change of the frequency of the vibra-
tions in a magnetic field allows one to follow the value of
the orbital currents on a ring by measuring the frequency
shift in the Raman scattering. We propose the following
experiment. First, place the cyclic molecules or quantum
dots in a transverse magnetic field. It may be some plane
with a lattice of quantum dots. The magnetic field will
induce an orbital current. Next remove the field.
Without the magnetic field the orbital current will be

damped with a characteristic relaxation time, which is
long in comparison with the frequency of vibrations.
This relaxation time may be measured by Raman scatter-
ing. One should measure a line shift of frequency as a
function of time after the removal of the magnetic field.
The observation of a line shift would prove the existence
of the persistent current, which has been proposed in
many theoretical investigations (see Refs. 13, 14, 16—18,
and references therein) but still there is only one single
experiment giving evidence of its existence. '

Thus, we have observed a correlation between the
value of the orbital current and the value of the frequency
of the vibrations. We believe that this correlation can be
a powerful tool for the detection of molecular and orbital
currents, which are important, for example, in future
molecular-electronics design work. Since we have limited
our considerations to planar geometry, we have not con-
sidered in the present paper the spherical C60 fullerene
molecule. Of course, there all the effects demonstrated
are expected to exist also.

Note added. Very recently I became aware that the
shift of the phonon frequency with filling factor x for
some optical phonons in the fullerides A„C6o that we dis-
cussed has been found independently also by Varma and
already observed experimentally in Raman spectra.
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