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Thermoelectric transport in two-dimensional disordered systems
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We present evidence for the observation of localization and interaction corrections to the thermoelec-
tric coefficient g relating current How to applied temperature gradient, using the two-dimensional elec-
tron gas of a silicon-on-sapphire metal-oxide-semiconductor field-effect transistor as a test system. The
present state of the theory of such corrections is discussed in detail, including effects such as phonon
drag and phonon renormalization. The experimental apparatus which we use to measure g as a function
of magnetic field is then described. In a perpendicular magnetic field we observe an increase in the mag-
nitude of q which is explained in terms of suppression of quantum interference effects by the field: we

find good agreement between experiment and theory. For a parallel magnetic field we are able to show
that there is a nonzero interaction correction to g, and we put bounds on the size of this effect.

I. INTRODUCTION

Extensive investigations of the electrical conductivity
o of disordered solids have revealed a number of interest-
ing effects, related to the suppression of localization on
the one hand, and to the enhancement of electron-
electron interactions on the other. Both may be studied
more or less independently by exploiting the greater sen-
sitivity of the localization mechanism to weak magnetic
fields. ' The agreement between theory and experiment in
weakly disordered samples is, with few exceptions, gen-
erally satisfactory. This is not the situation regarding all
other transport coefficients, however, especially those
which involve response to an applied temperature gra-
dient.

Of the thermal transport coefficients most commonly
studied in disordered solids, the thermopower S is prob-
ably the easiest to measure. Almost all this work has
concentrated on observing changes in S with tempera-
ture; very little attention seems to have been devoted to
studying changes of S in a weak magnetic field, which is
surprising given the wealth of information obtained from
magnetoresistance measurements. Comparison between
experiment and theory is complicated, however, by the
fact that S cannot be calculated directly; rather it is a
composite quantity of the electrical conductivity and a
thermoelectric coefficient g which relates the current
fiowing in response to an applied temperature gradient (S
is measured under conditions of zero current fiow). The
challenge therefore is to try to extract from measure-
ments of S and cr the parameter q about which less is
known in disordered systems.

In a recent paper, evidence was presented for localiza-
tion corrections to g which are quite distinct from those
to cr. The system studied there was the two-dimensional
electron gas (2D EG) in the inversion layer of a silicon-
on-sapphire (SOS) metal-oxide-semiconductor field-effect
transistor (MOSFET). In the present paper these results
are expanded upon by examining the different behaviors
observed in magnetic fields applied both parallel and per-

pendicular to the inversion layer, elucidating the inter-
play between localization effects and interaction effects.
Attention is given to discussing some of the more unusual
features of thermoelectric transport in disordered solids,
such as phonon renormalization and phonon drag. In
electrical conductivity measurements the phonons are ba-
sically irrelevant, which is one way in which the present
experiments are of fundamental interest.

The paper is organized as follows. In Sec. II the theory
(as it is currently understood) of thermoelectric transport
in disordered systems is reviewed. In Sec, III, details of
the experimental methods used are discussed. Detailed
results and analysis for the silicon-on-sapphire MOSFET
system are presented in Sec. IV. Finally, in Sec. V, con-
clusions are drawn and a number of the outstanding is-
sues remaining to be resolved are highlighted.

II. THERMOELECTRIC TRANSPORT:
THEORETICAL CONSIDERATIONS

A. Classical magnetotransport

The basic geometry of the two-dimensional electron
system is depicted in Fig. 1. In response to an electromo-
tive force E and a temperature gradient V T we write to
linear order

(2.1)

(2.2)

where J and J~ are the electric current and heat current,
respectively, and E=F—(I/q)Vp, where F is the applied
electric field and p is the chemical potential. The charge
on the carriers is denoted by q throughout and is negatiUe

for electrons The I." are t.ensors and are defined more
formally in the next section. They are the natural quanti-
ties to calculate. Only L" has a standard interpretation,
being the electrical conductivity tensor cr, and often the
others are written using a different notation. For exam-

ple, in Ref. 2, Eq. (2.1) was written as
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J=o.E—qVT . (2.3}

In the present discussion we will adhere to this latter
form, so as to maintain continuity with the earlier paper.

In the Drude model of the electrical conductivity, the
various components of the conductivity tensor under
steady-state conditions are given by (assuming an isotro-
pic mass m ')

CTp

XX 1+co w2 (2 4)
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(2.5)
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(2.6)

where co, =q8, /m ' (the cyclotron frequency is
~ co, ~ ), n is

the electron concentration, v is the relaxation time, B, is
the z component of the magnetic field, and o o is the diag-
onal conductivity in the absence of a Geld. All the com-
ponents of cr have a contribution from classical
magneto-orbital effects. Quantum corrections calculated
for o

„„

in weak fields' (m, w « 1) may be thought of as
arising from corrections to the transport time ~. To lead-
ing order, it is not unreasonable to assume that this inter-
pretation survives to somewhat larger fields and that Eqs.
(2.4)—(2.6) can continue to be used with the quantum
corrections confined to altering ~ in both the numerators
and denominators. A similar set of equations may be
written down for the components of the thermoelectric
tensor q with o 0 replaced with go (to be defined in the
next section). The consequences of this become clear
when one considers the quantities that are actually mea-
sured as opposed to those that are calculated.

Instead of applying an electromotive force and measur-
ing the resulting current, it is more convenient experi-
rnentally to apply an electric current and measure the re-
sulting electromotive force. We write

E=pJ+SVT,
J~=aJ—scV T,

(2.7a)

(2.7b)
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0
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(2.8)

i.e., within the Drude model there is no magnetoresis-
tance (a well-known feature). Less well known is the fact
that a similar result holds for Sx,

where the transport coefficients are known as the resis-
tivity p, the thermopower S, the Peltier coefficient ~, and
the thermal conductivity ~, respectively. In this paper we
will be concerned with measurements of the p com-
ponent of the resistivity tensor and the S component of
the thermopower tensor. During such measurements, the
current in the y direction is strictly zero (although the
transverse electric field E is nonzero in a magnetic field}
and it is assumed that the temperature gradient in the y
direction is also zero (see Sec. III A). Relating p„„to cal-
culated quantities we find that

S ~yy'9xx &xy'Qyx '9O

Oxxoyy CTxyCTyx Crp
(2.9)

which is also independent (at this level of calculation) of
magnetic field. The interpretation here is that since S
is measured under conditions of zero net current flow (or
as near this as can be attained), the magnetic field cannot
have an effect (classically) as it contributes through a
term v X B whose average value (over all carriers) is zero.
One can therefore equate the experimentally measured
quantities with theoretical quantities such as o. ( =1/p„„)
and ri (=S„„/p„„)which are calculated under the as-
sumption that there are no classical magnetotransport
effects. This is a stronger statement than the one usually
made that classical effects can be ignored when co,~((1.
The above conclusions are not affected by having an an-
isotropic effective mass such as is found in the silicon-on-
sapphire system, for example, as may easily be demon-
strated.

B. Quantum interference aud iuteractiou effects {for8 =0)

Gc
q

(2.10)

where f (e —p, ) is the Fermi-Dirac distribution function,
p is the chemical potential, and all the information about
the disorder is contained in the function G(e). Equation
(2.10) can be made the basis for a number of important
predictions because the function G(e) is common to all
the L'J. The connection between o and G(e) is clear:
G (e) may be interpreted as an energy-dependent conduc-
tivity. At low temperatures, where G(c.) is slowly vary-
ing on the scale of kz T, we can expand to show that the
diffusion thermopower Sd is given by

'ir ka ~ d lnG(E)Sd= T
(7 3q ,

'dE,
which is the well-known Mott formula. Also, the

In the absence of a magnetic field and for an isotropic
system we can write L "=L'~I where I is the identity
matrix and L'J is a scalar quantity. The transport
coefficients L'~ may be calculated formally in a number of
ways; the most conventional method is via the Kubo for-
mula. Calculations of both quantum interference (locali-
zation) and interaction corrections to the electrical con-
ductivity of disordered systems (based on a diagrammatic
expansion of the Kubo formula) have been very success-
ful and are well documented elsewhere. '

Calculations of the thermal transport coefficients (such
as ri) on the other hand are highly nontrivial. Exact re-
sults (where they are available) are therefore very useful.
One, which is relevant to the present discussion, was de-
rived by Chester and Thellung. Their theorem assumes
that the electrons are noninteracting and that the scatter-
ing is elastic, but is otherwise completely general and, in
particular, makes no assumption about the strength of
the disorder. Under these conditions the transport
coefficients are related to one another as follows:

i+j —2
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thermal conductivity ~ is given to an excellent approxi-
mation by

2 2
m k~

x =L /T= TG (p) .
3q

(2.12)

A consequence of the last result is that the Wiedemann-
Franz law,

K
lim
T~p cT T

mk

3q

7T

(2.13)

is valid for arbitrary strength of disorder, ' a striking
conclusion for which there is now a growing body of ex-
perimental evidence.

One needs to be very careful in treating all the different
energy-dependent contributions when carrying out calcu-
lations to obtain the correct answer. For example, to
lowest order in the disorder it is common to write [cf.
Eq. (2.6)]

n(s)q r(e) a)2+
2

p E E
7tl

(2.14)

where d is the system dimensionality and p is the ex-
ponent of the relaxation rate, i.e., I le(s) s~ -We.
therefore derive

m ka (d/2+p)
gp~ T 0'p,

3q p
(2.15)

cr(e) =a 0(E)+5cr"'(e, T) (2.16)

and replace G(E) in Eq. (2.10) with o (e), the correct re-
sult is obtained,

mk
5''"(p, T)= T 5o"'(E,T)

3q dE,
(2.17)

since Eq. (2.10) holds for arbitrary disorder and is there-
fore valid in the weak-localization regime (defined by
kzl &&1, where k+ is the Fermi wave vector and l is the
mean free path). The implied inelastic scattering re-

with Sd =rip/oo The ma.gnitude of the diffusion thermo-
power is clearly dependent on the exponent p which is
nonuniversal. Indeed, it is even possible for Sd to change
sign (from its "conventional" negative to positive) in a
system where the relaxation rate increases sufficiently
(p & —d l2) as the energy increases. '0

Equation (2.13) implies that there are no weak-
localization corrections to the Wiedemann-Franz law,
i.e., the corrections to ~ exactly cancel those of 0.." The
first calculation of weak-localization corrections to g sug-
gested a similar behavior whereby the correction to g
also canceled the correction to 0., leaving the diffusion
thermopower unaltered. ' This conclusion is now be-
lieved to be erroneous and subsequent calculations have
revealed that there are corrections to the diffusion ther-
mopower due to localization. ' Such corrections to Sd
have been observed experimentally near a metal-insulator
transition. ' Their form may be derived in a satisfying
and intuitive way from the Chester-Thellung theorem.
Thus, for example, if we write

quired for phase breaking is not expected to violate the
condition under which the Chester-Thellung result is de-
rived (i.e., predominantly elastic scattering). Only when
the inelastic scattering rate is large would we expect the
results to significantly deviate. The correction has a
linear temperature dependence (the same as that of 7)o)
with ~5g'"(T)/r)0(T)~ of order (kFl) ', and experimen-
tally it is not possible to distinguish the two on the basis
of temperature measurements alone. The thermopomer it-
self has a lnT correction, but one which arises from the
conductivity correction only.

The same approach cannot be applied to the case of in-
teraction corrections, where the assumptions under
which Eq. (2.10) was derived are fundamentally violated.
Here one must resort to perturbation theory to calculate
the interaction correction 5g'"' directly. The original cal-
culation, due to Ting, Houghton, and Senna, ' concluded
that in two dimensions 5''"'- T lnT, although their cal-
culation has been questioned. ' ' Hsu, Kapitulnik, and
Reizer' carried out the calculation using the Keldysh di-
agram technique and concluded that there is no logarith-
mic temperature correction to g due to interaction
effects. However, Fabrizio, Castellani, and Strinati'
found that a TlnT term should be present, but with a
different prefactor from that predicted by Ting,
Houghton, and Senna. ' The situation regarding the
theoretical status of interaction corrections to g (and
hence the thermopower) therefore remains somewhat
confused. Nor do we expect the controversy to be
resolved experimentally on the basis of temperature mea-
surements alone. For instance, we can write the diffusion
thermopower as

go( T) +5''"( T,B)+5''"'( T)
Sd(T, B)=

o o+5cr'"( T,B)+5o'"'( T)
(2.18)

Whereas phonons are basically irrelevant as far as the
low-temperature electrical conductivity is concerned,
they play an important role in thermoelectric transport.
Two processes are of interest, namely, phonon drag and
phonon renormalization, and each is discussed below.

Unlike the electron-electron vertex, there is no
enhancement [to order (kFl) '] of the long-wavelength
electron-phonon vertex due to the disorder. ' ' As a re-
sult, it is believed that there are no significant phonon
corrections to the electrical conductivity at low tempera-
tures, although there are expected to be some contribu-
tions at higher temperatures arising from electron-
phonon-impurity processes. ' ' The details remain un-

where, in two dimensions, both 50'" and 6o'"' are pro-
portional to lnT. Attributing a TlnT dependence to
5''"'(T) from measurements of the temperature depen-
dence of Sd(T) [or Sd(T)/T] is clearly impractical. This
is why magnetic-field measurements are expected to be
such a powerful tool in beginning to unravel all the
different effects (see Sec. II D). In Eq. (2.18), those contri-
butions which are sensitive to weak magnetic fields

(gp&B ((ks T) are indicated, where g is the g factor and

LM& is the Bohr magneton.

C. The role of phonons (B =0)
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clear, however. The situation regarding the thermo-

power, even at the most fundamental level, is more con-
troversial still. The basic issue concerns whether or not

go (defined in the preceding section) should be replaced
by r)o(1+A.), where A, is a renormalization factor due to
the phonons.

Many different answers have been obtained for A, de-

pending upon the assumptions made. ' The most recent
calculation of which we are aware carries out the analysis
using the Keldysh diagram technique, which calculates g
directly and so avoids the problems inherent in choosing
the correct heat current operator. The conclusion is
that (in 3D) A, =O if the impurity scattering is treated
within the Born approximation, but is nonzero when the
scattering is treated beyond the Born approximation.
There is some experimental evidence that a nonzero value
of A, can be observed in bulk disordered systems. ' No
calculations seem to be available for two-dimensional sys-
tems, however, or for what happens when the impurity
interaction is treated beyond order (kFI } '. We cannot
say unequivocally, therefore, whether or not there should
be a phonon renormalization enhancement to 5g'
[which is calculated to higher order in (kF1} ], although
it seems reasonable that if go is renormalized, then so is

loc

This suggestion is strengthened by the following argu-
ment. In the limit of weak phonon scattering, or when
the phonon scattering is treated within an adiabatic (elas-
tic) approximation, the Chester-Thellung result [Eq.
(2.10)] should be recovered. Jonson and Mahan have
shown that Eq. (2.10) actually holds to somewhat higher
order, the only modification being the addition of a
correction term which they estimate to be small. There
are two consequences of this. Firstly, any phonon renor-
malization of g is due to phonon contributions to the
electrical conductivity, which may appear small in the
context of conductivity measurements, but whose energy
derivatives are clearly crucial. Secondly, it strengthens
the notion that the localization corrections to g are re-
normalized in a similar way to that of go irrespective of
system dimensionality.

In the presence of an applied temperature gradient
there is a net flux of phonons in the direction of —VT.
The nonequilibrium nature of the phonons influences the
electron transport and produces a contribution to g re-
ferred to as the phonon-drag component gz. Often the
phonon-drag contribution (characterized by a T temper-
ature dependence ' ) is significantly larger in magnitude
than the diffusion contribution discussed in Sec. II B, al-
though in very disordered samples where the phonon
mean free path is severely limited it can often be ignored.
It is usually assumed that the two contributions are addi-
tive, i.e., g=g&+g . A detailed discussion of phonon
drag in two-dimensional systems may be found in Refs.
26 and 27.

It is not expected that the nonequilibrium nature of the
phonon distribution will affect any of the preceding dis-
cussion about qz. We do need to know, on the other
hand, if there is a localization correction to rI . Quantum
interference results in a modification of the electron

diffusion constant' which might be expected to modify
the electron-phonon interaction and hence g . We have
seen, however, that the electron-phonon vertex is much
less sensitive to the diffusive nature of electron motion
than, say, the electron-electron vertex. It seems plausible
then that the corrections to g~ owing to a change in the
electron diffusion constant should be negligible, and
hence that there is essentially no localization correction
(5rls~'-0), although we have not proved this to be the
case. A direct calculation would therefore be of some in-
terest.

D. Quantum interference in the presence of a magnetic field

The localization correction for a two-dimensional sys-
tem in the absence of the spin-orbit scattering is given by

gpGg
5 "'(TB )= 0 —+

2m R 2 4~q~BiL~

1—+
4)q[B,I'

(2.19)

(2.20)

This result follows from the fact that the Chester-
Thellung result can be shown to hold in a magnetic field,

where g„is a valley degeneracy factor, L& is the phase
coherence length, 4 is the digamma function, and Bj is
the component of the magnetic field perpendicular to the
two-dimensional electron gas. The parameter a relates to
intervalley scattering and is further discussed in Sec.
IV B. In what follows, we will be interested primarily in
the change of o and g with magnetic field (applied both
perpendicular and parallel to the 2D EG) for a fixed tem-
perature. It is therefore convenient to introduce a new
notation and define the quantities ho(B} and b,r)(B) by
ho (B)=o (B)—o (0) and b, ri(B)=ri(B)—il(0), respec-
tively.

The destruction of quantum interference by a magnetic
field implied by Eq. (2.19) leads to a positive magnetocon-
ductance. Since the effect is orbital in origin, no change
in conductivity is expected for a field applied parallel to
the 2D EG, as long as the field remains weak. Likewise,
the dominant interaction contributions (such as the Zee-
man spin-splitting term} are also approximately indepen-
dent of magnetic field for weak fields. ' At larger fields
the Zeeman term leads to a negative magnetoconduc-
tance, and one which is isotropic in terms of field orienta-
tion. The different behaviors allow the two contributions
to be distinguished from one another, and typical exam-
ples for the Si-on-sapphire system will be presented in
Sec. IV.

As far as g is concerned, Eq. (2.17) is expected to hold
for weak fields. Including a possible phonon renormal-
ization term we therefore have

Hks roc5rI"'(B,p, T}= T(1+A, ) 5cr'"(B,E, T}
dE,
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notwithstanding the problems of edge effects ' which
are negligible in the weak fields of interest. Under the as-
sumption that interaction effects (based on particle-hole
processes) are essentially independent of (weak) magnetic
field (and here we make the additional assumption that
the same holds for 5g'"' as 5o'"', although no calculations
have been carried out), Eq. (2.20) also holds for the quan-
tity b, ri(B), with b,o(B) replacing fio."'. The diffusion
thermopower is therefore field dependent through those
terms indicated in Eq. (2.18) (for weak fields). We assume
that 5ris"-0 (even when a small field is present, as this
only affects the diffusion constant) and this is the basis
under which the results presented in the subsequent sec-
tions will be interpreted.

III. THERMOELECTRIC TRANSPORT:
EXPERIMENTAL INVESTIGATIONS

As mentioned in Sec. I, the experimental difficulty as-
sociated with the measurement of thermoelectric effects
in disordered 2D systems has meant that the primary
focus of interest has been the electrical conductivity 0..
However, a number of authors have developed rather
refined experimental techniques which have enabled ac-
curate measurements of the thermopower to be made in
such systems and these have yielded many interesting re-
sults. This section describes the problems encountered in
measuring thermoelectric effects, the sort of experiments
involved, and some of the techniques used to increase the
accuracy and precision of the results.

A. What the experiments actually measure

Particular thermoelectric effects and their associated
coefficients can be defined locally when certain special
conditions apply to the currents, electric fields, and tem-
perature gradients in a system.

' lf these conditions are
experimentally realizable, then comparison with the cor-
responding measurable thermoelectric coefficient may be
made. Note that we have made a distinction between the
locally defined quantities and the measurable quantities.
This is because the former are defined in terms of the
components of the gradients of electrochemical potential
and of temperature (and are therefore sometimes called
differential thermoelectric coefficients), while the latter
are defined in terms of the difference in the electrochemi-
cal potential or temperature between two points. The re-
lation between the local and measurable coefficients can
be obtained fairly easily provided that the following two
conditions hold or at least hold to a good approximation.

(i) The applied temperature gradients and electric fields
must be small enough that second-order effects are negli-
gible. Here we confine ourselves to this linear approxi-
mation, but it must be emphasized that at very low tem-
peratures, the temperature gradients may become quite
large compared to the average temperature and that
sometimes the measured quantities may not correspond
to linear thermoelectric coefficients at a11.

(ii) The samples being measured must be homogeneous
between the rneasurernent points. One should be aware
that the electrochemical potential drop can sometimes

occur over only a small part of an electrically inhomo-
geneous 2D system in a semiconductor, even if the tem-
perature drop is fairly uniform. Alternatively, there
could be a voltage difference between two points at the
same temperature if the temperature profile between
them is not symmetric due to some inhomogeneity; this
has been observed.

Additionally, in a magnetic field one must be very clear
as to whether the conditions are adiabatic (JYq=O) or iso-
thermal (BT/By=0). This is because the off-diagonal
components of the tensors L 'J are nonzero when B,AO.
Consider the setup in Fig. 1 with J=O and with a rnag-
netic field in the z direction. Equation (2.7a) shows that
the longitudinal electromotive force E now contains a
contribution from BT/By since S can no longer be tak-
en as equal to zero:

E =S,BT/Bx+S, BT/By .

Thus, although we still have 6T= b,x BT /Bx and
b, Vi =b xE„(assuming b, T is small and the sample homo-
geneous), the measured longitudinal thermopower
S,:bV, /AT=—E„/(BT/Bx) is strictly no longer equal
to S „unless the conditions are "isothermal, " i.e.,
BT/By =0. In most experiments on 2D systems in semi-
conductors the sample is not thermally isolated from its
surroundings and heat can flow in the transverse direc-
tion through the metal wires used to contact the sample,
thus making the isothermal condition more relevant to
experiment. We assume this to be the case for our experi-
ments. However, if adiabatic conditions were realized,
then the measured transport coefficients would differ
from those found under isothermal conditions. This
could perhaps be the case if part of the 2D EG was heat-
ed directly, since it has been shown that quite large
electron temperature gradients can exist in a 2D EG,
even though the lattice temperature is constant
throughout the sample.

Although nearly all previous work on thermoelectric
transport in 2D systems has focused on the thermopower
S, we are interested in obtaining the quantity q, relating
current to applied temperature gradient. As discussed in
Sec. IIA, ri=L' /T=o S. The quantity we extract is
g=S „/p,which differs from g„„onlyby a semiclassi-
cal factor which is insignificant for our experiments. In

2DEG

FIG. 1. Schematic diagram of our sample, showing direc-
tions of B and V T.
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any case, as we have discussed, theoretical calculations
tend to ignore semiclassical factors involving co,~ and so
generate this quantity g rather than g„„.

B. Experimental techniques and samples

Xl
~ ~

2000}tm

X2

300ltm

1300}tm

(a)

Header

Cu bar to clamp sample
to end of Cu Block

5 &YIAKIIIIii I

(b)

thermometer nylon bolt

vacuum can brass top plate
r wiring

%ttIIItttt)

'ittttittjt)

heater resistor

(c)

heat-sink copper
block tube for pumping

out vacuum can

FIG. 2. (a) Geometry of MOSFET's used in this work. (b)
Arrangement for clamping sample to end of insert. (c) Diagram
of the insert used to measure the thermopower.

As compared with conventional electrical resistance
and conductance measurements, the determination of
thermoelectric transport coefficients requires consider-
ably more refined experimental techniques. The longitu-
dinal thermopower S, is the quantity most often ob-
tained, and this requires the measurement of the tempera-
ture difference hT and voltage difference 6Vbetween two
points in the presence of a small temperature gradient, as
mentioned in the preceding section.

The samples used in this work were fabricated from
(100) Si on (1012}sapphire wafers, with a Si thickness of
0.3 pm on average and a sapphire thickness of about 450
pm. The MOSFET's were fabricated using a standard
metallic gate process, with an oxide thickness of 200 nm.
The devices were 2000 pm long by 300 JMm wide (lying
along the [010] direction), with the side probes separated
by 1300 pm [see Fig. 2(a}]. The mobilities were low (of
the order of 500 cm V 's ' at 4.2 K), because of the
large amount of disorder present. At the end of the
MOSFET's were resistors which were used as on-chip
heaters in some experiments.

The sample holder consisted of two copper blocks [see
Figs. 2(b} and 2(c)]. One of these acted as a heat sink to
the He bath and the other was attached to the first block
with nylon bolts and low thermal conductivity spacers,
leaving a gap of about 1 cm. Each block contained a cali-
brated resistance thermometer and a heater resistor, the
latter in the form of a length of constantan wire wound
around the block. The sample was clamped between the
blocks, one end of the chip clamped onto the end of each
block. Indium foil was found to reduce the thermal
resistance between sample and block. By applying
currents to one or other of the heater resistors and chang-
ing the He vapor pressure, the sample temperature and
temperature gradient could be altered in a controlled
way. The sample holder was enclosed in an evacuated
can, so that the temperature gradient along the chip
would not be "shorted-out" by the He. Connections to
the sample were made with either constantan wires (to
reduce heat leaks} or, for measuring the thermopower,
copper wires. The resistance thermometers were used to
check that both copper blocks were in thermal equilibri-
um with the He bath in the absence of a temperature
gradient (the He temperature was obtained by monitor-
ing its vapor pressure).

Many of the techniques used for measuring hT and 6V
in 2D systems are similar to those used in 3D systems,
but there are some added complications. Some measure-
ments of the low-temperature thermopower of a 2D sys-
tem were carried out by Zavaritskii and co-workers.
They used AuFe-Chromel thermocouples glued on to the
sample to measure the temperature difference, with a su-
perconducting quantum interference device (SQUID) as a
null detector. A bridge arrangement, also using a
SQUID, was used to measure the voltage difference. A
similar setup was used by Obloh, von Klitzing, and
Ploog, but with a high-precision nanovoltmeter rather
than a SQUID for measuring the voltages. Thermocou-
ples are, however, rather fragile and cannot be used at
high magnetic fields. In a series of elegant experiments,
Fletcher et al. used a pair of matched carbon resistance
thermometers soldered to thin, flat pieces of copper wire
which were then glued to the underside of their GaAs
samples with epoxy. These could be checked at zero
magnetic field with thermocouples, and calibrated for use
at high magnetic fields as well.

However, thermal resistances can be a problem in ther-
mopower measurements. As pointed out by Fletcher
et al. , there can be significant thermal resistances be-
tween the sample and the copper block which it is heat-
sunk to (they proposed that this could explain the anoma-
lous results of Davidson et al. ). Even with our use of
indium foil to reduce these thermal resistances, there was
typically a 300 mK temperature difference between the
blocks for a 50 mK difference between the side contacts
of the MOSFET, about twice that expected for a linear
temperature drop between the blocks. There are also li-
able to be thermal resistances between the sample and the
thermocouples (or carbon resistance thermometers), lead-
ing to possible errors in the measurements of hT. To get
round these difficulties, Gallagher et al. ' proposed and
demonstrated the method which we have used here.
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Referring once again to Fig. 1, the conductance across
the device (i.e., o~„multiplied by a geometrical factor)
was measured at the two points x, and xz, with no tem-
perature gradient [using a conventional low-frequency
(about 80 Hz) lock-in technique]. The temperature was
then decreased by around 50—100 mK, and the conduc-
tances at x

&
and xz measured again. Finally, the temper-

ature gradient was applied and the conductances rnea-
sured again. Provided the temperature gradient is small
enough, the conductances measured this time will fall be-
tween those measured previously, and the local tempera-
ture of the electron gas can be obtained by assuming a
linear relationship between conductance and temperature
over the small temperature range in question. This gives
the temperature difference along the electron gas directly:
there are no problems with thermal resistances between

sample and thermometers. In practice, the differential
mode on the lock-in amplifier was used to measure the
difference between the conductances at x& and xz direct-
ly, thereby increasing the accuracy of the method. No-
tice that the form of the temperature dependence of the
conductance is immaterial to this method. All that is re-
quired is that the temperature dependence is strong
enough to give accurately measurable changes in the con-
ductance, yet weak enough that it can be well represented
by a linear approximation over the small temperature in-
tervals used. In the disordered SOS MOSFET's which
we used, the temperature dependence was logarithmic
(due to weak localization') over the measured tempera-
ture range 1.2—4.7 K, but for the small temperature in-
terval used in finding hT, it could equally well be fitted
by the linear approximation. Taking all the above factors
into account, the uncertainty in a typical value of hT
(30—50 mK) turned out to be about 1%.

The voltage difference 6V was measured in two ways.
For a constant temperature gradient, a Keithley 181
nanovoltmeter (with input impedance greater than 1 GA)
was used: this could measure voltages down to 1 nV when
steps were taken to improve the shielding and earthing
arrangements. This gave the absolute values of thermo-
power with about a 1% uncertainty (notice that the un-
certainties in S arising from geometrical considerations
are small with these measurement techniques, because
6V and hT are measured between the same side probes
on the MOSFET). To allow measurements to be taken in
a changing magnetic field, the temperature gradient was
modulated at low frequencies ( ( 5 Hz) by modulating the
current supplied to the heater, and the thermoelectric
voltage was detected using a lock-in technique. For this
method, the on-chip heater was mainly used, rather than
those wound on to the copper blocks. If AT is un-
changed in the field, the therrnopower can be calculated
by finding the zero-field value of S& and the thermoelec-
tric voltage 5 V as a function of the field.

In our measurement system, we do not expect hT to
change when the magnetic field is applied, because it is
determined primarily by the thermal conductivity of the
sample's sapphire substrate. We also checked the heater
resistors for any magnetoresistance which could change
the heat input to the system: the positive magnetoresis-
tance measured was found to be too small to have any

significant effect. There have, however, been some re-
ports that the temperature and hT can change in a mag-
netic field by as much 2% (an effect which has been at-
tributed to magnetothermal resistances in various parts
of the cryostat), while other workers have found AT to
change by less than 0.1% T '. We therefore checked to
see if AT was affected by the field by measuring it;t fields
up to 1 T, and found that it was constant within the 1%
measurement error. Furthermore, by measuring the
magnetothermopower in both parallel and perpendicular
magnetic fields, we were able to show that b T was con-
stant to within 0.1% for our system for fields up to 1 T
(see Sec. IV and Ref. 2). Consequently, for fields up to at
least 1 T, we were able to clearly identify changes in g as
small as 0.1%.

IV. RESULTS AND DISCUSSION

In this section we review the zero-field (8 =0) behav-
ior of the electrical conductivity and thermopower, be-
fore going on to discuss the results in both perpendicular
and parallel magnetic fields.

A. Zero-Seld behavior

It is well known that the stress present in the (001}sil-
icon on (1012) sapphire system causes significant
differences in the form of the inversion layer potential
from that in an ordinary (001) Si MOS device, resulting
in the lowest subbands being formed from valleys in the
[010] and [100] directions, with effective mass ' around
0.42pl p ~ The subbands formed from valleys in the growth
direction [001] (with effective mass around 0.19m&} are
actually higher in energy in a SOS MOSFET, whereas
they form the lowest subband in an unstressed Si
MOSFET. There is also a high density of dislocations,
microtwins, and stacking faults in SOS due to the lattice
mismatch at the Si/sapphire interface, leading to the
electrons in the inversion layer experiencing a highly
disordered potential as compared to a Si MOSFET. The
disorder and the built-in stress lead to interesting behav-
ior in both the therrnopower and the electrical conduc-
tivity.

The electrical conductivity cr as a function of electron
concentration n shows an inQection close to 3.5X10'
cm, which shows up as a hump in the mobility, but
otherwise is what one would expect for a MOSFET (the
threshold voltage is well defined at 77 K and equal to 0.5
V). This inffection in o. is characteristic of SOS
MOSFET's (Ref. 44) and is due to occupation of the
higher subband referred to above, with its smaller
effective mass. The value of n at which it occurs is con-
sistent with the values of stress present in the sample.
There is also an anisotropy in conductivity in the [010]
and [100]directions due to the stress, i.e., cr„„Acr,even
at zero magnetic field (e.g. , at 4.2 K and an electron con-
centration of 4X10' cm, o.„=3.2X10 Q ' while
o =2.5X10 0 '}. As mentioned at the end of Sec.
IIA, this anisotropy does not affect any of the con-
clusions reached there. Note that unless otherwise stat-
ed, the current (electrical or thermal) in what follows is in
the [010]direction.
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As a function of temperature, the conductivity exhibit-

ed a logarithmic correction over the range studied, attri-
buted primarily to weak localization. This allowed the
method described in Sec. III 8 to be used for measuring
temperature differences along the sample. The validity of
this method was checked by measuring the thermal con-
ductivity a of the sapphire substrate (the ratio of the heat
flux to the measuring temperature difference). We ob-
tained a value of a [Wm 'K ]=(0.8120.01)T /K,
and using the relevant phonon velocities this yielded a
phonon mean free path of 920+10 pm, about 10%
greater than the Casimir limit, implying that about
10% of the phonons were specularly reflected from the
(polished) bottom surface of the substrate. This good
agreement between the theoretical (Casimir) value of Ir

and the experimental value (especially the accurate T
dependence) gave us added confidence in our method of
measuring the temperature difference.

The thermopower at electron concentrations of
7.0X10" cm and 5.9X10' cm is shown as a func-
tion of temperature in Fig. 3. The approximate T
dependence is due to the dominance of phonon-drag
effects (see Sec. IIC). This strong temperature depen-
dence meant that it was not possible to see any underly-

ing quantum corrections to the diffusion thermopower in
the temperature dependence. Notice, however, that for
the lower electron concentration in Fig. 3, a much better
fit is obtained by including a term linear in T, i.e., the
diffusion thermopower Sd. From Eq. (2.15), it is possible
to extract a value for the exponent p in the energy depen-
dence of the scattering rate, and we obtain the value
p=0. 6. Using this value of p to estimate Sd for the
higher electron concentration gives a value of order 1

pV K '. This shows that the theory for Sd is reasonable
and that the phonon-drag thermopower really is much
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FIG. 4. Inverse of the thermopower S as a function of elec-
tron concentration at a temperature of 3.0 K. The solid line is a
guide to the eye.

larger than the diffusion thermopower. As a function of
electron concentration, the inverse thermopower exhibit-
ed a hump (see Fig. 4), which was attributed to occupa-
tion of the higher energy valleys, as was the inQection in
the conductivity which occurred at a similar electron
concentration. Also from Fig. 4, it can be seen that at
low n, the inverse thermopower S '~n, in accordance
with theories of phonon-drag thermopower. The ther-
mopower starts to deviate from this 1/n dependence well

before the occupation of the second subband, however,
and the reason for this is not yet fully understood. It is

probably related to the fact that the phonon absorption
rate reaches a maximum and then slowly decreases as kF
increases. ' Further details of the zero-field behavior
can be found in Refs. 35 and 48. In the remainder of this
paper we concern ourselves with the magnetoresistance
and magnetothermopower.

B. Behavior in a perpendicular magnetic field

I) 100—

10

T (K)

4 5 6

FIG. 3. Measured thermopower in SOS MOSFET for elec-
tron concentrations of 7.0X 10" cm (circles) and 5.9X 10'
cm (diamonds). The solid lines are hts to S = aT PT' for- —
the lower electron concentration and S = —yT for the higher
electron concentration, with a= 10 pVK 2, P=7.0 pVK
and y=5. 5 pV K . The T dependence is a signature of pho-
non drag, while the linear term represents the diffusion thermo-
power.

Application of a perpendicular magnetic field resulted
in a negative magnetoresistance, from which the magne-
toconductivities shown in Fig. 5 were obtained. Good fits
were obtained to Eq. (2.19), as shown by the solid lines,
and the extracted values of g„aand L& are shown in
Table I, together with values of the elastic mean free path
l and disorder parameter kFl. The magnetoconductivity
in the [100] direction showed similar behavior, but with
smaller values of g„a.However, the ratio 5o/o was ap-
proximately the same for the [100] direction as for the
[010] direction, in agreement with the calculations of
Bhatt, WolQe, and Ramakrishnan. At the lowest tem-
peratures studied (about 1.2 K), the magnetoconductivity
started to saturate at about 1 T and eventually to de-
crease for fields above 2 T. This was interpreted as due to
the onset of the spin-splitting (Zeeman) interaction
correction (considered further in the next section). How-
ever, for the fields used in Fig. 5 (up to 0.7 T), the Zee-
man interaction term is comparatively small.
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TABLE I. Parameters used in fitting data in Figs. 5 and 7 to Eqs. (2.19) and (2.20), respectively: n is
the electron concentration, L& is the phase relaxation length, I is an elastic scattering length, and g„ais
a phenomenological factor linked to intervalley scattering (see Sec. IVB). The derivatives are with
respect to electron energy c.

n

(10" cm-')
Lp

(nm)

I
(nm)

dL4, /d E

(nm meV ')
dl/de

(nm meV ')
d(g, a)/dc,

meV

2.10
3.18

61.5
69.0

10.1
14.3

0.55
0.74

3.8
3.4

2.0
8.6

0.11
0.04

The change in the thermopower as a function of per-
pendicular field is shown in Fig. 6. Since the thermo-
power is a composite quantity, involving the conductivi-
ty, most of the magnetothermopower is due to the
suppression of the weak-localization correction to cr (see
Sec. II D and Ref. 35). However, we were able to extract
bri=ri(B~, T)—ri(O, T) from the rnagnetothermopower
and magnetoresistance data, and this is shown in Fig. 7
for two values of n. %e are confident in the accuracy of
our measurements from the dependence of hg on the
direction of B: for a parallel field up to -0.8 T, b,g is
zero within the experimental uncertainty for the range of
fields considered here (see Sec. IV C), in agreement with
theoretical predictions. The residual variation b, g(8~~)
gives us an estimate of the relative change of hT with B
up to 0.8 T, which turns out to be about O. l%%uo T '. Fur-
thermore, the solid lines are fits to Eq. (2.20) using the pa-
rameters in Table I (assuming the phonon renormaliza-
tion factor A, =O). The derivatives with respect to energy
of L&, l, and g„a[obtained from fits to Eq. (2.19)] were
estimated by observing their variation with n', however,
an anomalously large value for dl/de had to be used to
get the fit shown in Fig. 7 for the higher electron concen-
tration data (see below). The parameter g, a is really a
phenomenological factor which is predicted to vary be-

tween g„and unity as the intervalley scattering rate 1/r,
increases and becomes greater than the phase relaxation
rate. ' However, g„adoes not seem to follow this type of
behavior; at all the electron concentrations studied it was
less than unity. At the highest electron concentrations
this can be explained by having a positive magnetoresis-
tance contribution from orbital interaction processes
with 1/r„)I/r& At th. e lowest electron concentration
the perturbation analysis used to obtain Eq. (2.19) be-
comes a poor approximation (since kF! approaches I), so
that deviations of g„afrom theoretical values may be ex-

pected.
Since the variation of b o „„withenergy becomes weak-

er as n increases, hg decreases as n increases so that the
relative uncertainty in by becomes larger. At the higher
electron concentrations, therefore, it becomes diScult to
say much that is quantitative about b, ri. Qualitatively,
however, it does become smaller with n, with values con-
sistent with Eq. (2.20). It should be remarked here that
occupation of the upper subband seems to be associated
with by reaching a maximum as a function of Bj and
then decreasing. This behavior was exhibited for all
values of n above 3X10' cm but the reasons for it
remain unclear.

As far as phonon renormalization is concerned, the
only definitive statement that we can make is that, assum-
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FIG. 5. The change in the conductivity as a function of per-
pendicular magnetic field B for electron concentrations of
2. 10X10' cm (open circles) and 3.18X10' cm (filled cir-
cles). The temperature is 1.85 K. The solid lines are theoretical
fits to Eq. (2.19), with the parameters shown in Table I. The
zero-field values of conductivity o.o are 1.59 X 10 and
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FICx. 6. The change in the thermopower as a function of per-
pendicular magnetic field B for electron concentrations of
2. 10X10' cm (open circles) and 3.18X10' cm (filled cir-
cles). The temperature is 1.85 K. The zero-field values of ther-

mopower So are —45.0 and —39.5 pV K ', respectively.
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FIG. 8. The change in the conductivity as a function of
parallel magnetic field B~~ for electron concentrations of
4.26X 10'2 cm (open circles) and 5.27X 10' cm (filled cir-
cles). The temperature is 1.4 K. The zero-field values of con-
ductivity cr(0) are 3.22X10 "and 3.82X10 0 ', respectively.

ing it enters Eq. (2.20) as indicated, the factor A, must be
comparatively small (A, 50.1}.

C. Behavior in a parallel magnetic Seld

For parallel fields below about 1 T and the tempera-
tures considered (down to about 1.5 K), both the thermo-
power and the resistance are constant within experimen-
tal uncertainty. Quantum interference and orbital in-
teraction processes cannot be influenced by the field be-
cause electron trajectories in the 2D EG cannot enclose
any magnetic flux. Zeeman spin-splitting effects only
start to become significant when the spin-splitting energy
gp~B is greater than the thermal energy k~ T. At 1.4 K,

k+T/gpss

--1.2 T for g =2. The magnetoconductivity is
shown in Fig. 8 for electron concentrations of

4.3 X 10' cm and n2 -5.3 X 10I2 cm
—

2, and it can
be seen that there is no change in u for fields below about
0.8 T. At high fields (greater than 2 T), bo'„„(8~~)de-
pends approximately logarithmically on B~~~. This is in ac-
cordance with the predictions of Burdis and Dean:

o„„(B)b,V, (B)
g(8) = —rl(0), (4.3)

which contains only quantities which we can measure rel-
atively easily. It is easy to show that g can also be writ-
ten as

g(8) = r)(8)—q(0),b, T(B)
(4.4)

once the upper subband becomes occupied.
For all the electron concentrations studied, the ther-

mopower shows essentially similar behavior, as expected
if the magnetothermopower is dominated by a changing
0.. Again, the change from the zero-field value occurs at
the same point for a given electron concentration, but
this point varies with n, implying a change in g.

For the low values of magnetic field used when the field
was perpendicular to the 2D EG, we showed above that
hT varied very little with B and so we could extract
hr)=g(B) —g(0). However, at the higher fields used
here, we can only say that b, T(B) is constant to within
the accuracy to which we can directly measure it, in this
case about 1%. Thus we define a quantity g by

q F*
Acr„„(8)= — Q(b),

4~ A
(4.1) so that g(B)=brl(B) if b, T does not change with field;

otherwise

where b =gp&B/kz T and g(8)=g(0) —1 + baal(B) .
AT(0) b T(0)

(4.5)

Q(b)=0.09b, b (& I . (4.2a)

Q(b) =ln[b/1. 3], b &) 1 . (4.2b)

The renormalized screening parameter F* can therefore
be extracted from the data. Similar behavior is exhibit-
ed at lower electron concentrations, although the onset of
the negative magnetoconductivity is at a lower magnetic
field, suggesting that there is a smaller effective g value

This quantity g is shown in Fig. 9 for the same electron
concentrations as Fig. 8. It is tempting to conclude that
the resulting variation in g is due solely to interaction
effects, but the possibility of a change in b, T(8) must be
allowed for. From direct measurements we found that
b T(8}changed by only 1% for fields up to 7 T, with a
1% measurement uncertainty (i.e., 6T was constant
within the experimental accuracy). This then enables us
to put some bounds on b,g(8~~ ) using Eq. (4.5).
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For the higher electron concentration n2, we know
that ri(0}= —66 X 10 ' A K ' and that g= (4.0
+0.1)X10 " A K ' at a field of about 6 T with a
change in b, T of less than about 2%, so that Eq. (4.5)
gives

(4.0+0. 1)X 10 "=—66X10 ' X(+0.02)+(120.02)hei.

(4.6)

This means immediately that ~hri~ &2X10 ' A K ', or
as a relative change, ~hrilri~ &3%. We may obtain a
lower bound by remembering that if all of the variation in

g were entirely due to variations in hT, then g would
show a similar trend with magnetic field, independent of
the electron concentration: in particular it would always
be of the same sign The fa. ct that g can be of either sign
suggests that it is reflecting an underlying change in g
with field, together with the (possible) changes in b, T.
Noting that the orbital effects are zero here (since the
field is parallel to the 2D EG), we suggest that the under-
lying change in g arises from electron-electron interac-
tion effects, and that it is very sensitive to the occupation
of the upper subband, possibly changing sign.

As an example, consider the values of g at 6 T again.
If we were to assume that all of g(n, ) was due to a
change in hT with field [i.e., br}(n, }=0],then Eq. (4.5}
would give [B,T(B)IAT(0) 1]=0.002. Since—we do not
expect b, T to depend upon the electron concentration, we
can put this value for [b,T(B)/AT(0) 1] into Eq. (4.5)—
to obtain b, i)(ni)=5. 3X10 " AK '. Similarly, if we
assumed all of g(n z ) was due to a change in b, T with field,
we would obtain [b,T(B)/b, T(0) 1]= 0 006 and— .—

Art(n&)= —4. 1X10 "AK '. Our experimental results
therefore demonstrate that even if hg was zero at one of
n „n2,it would be nonzero at the other. Furthermore, by
calculating ~b7)(n, )~ and ~hg(n2)~ from the experimental
data for various values of [b,T(B)/b, T(0) 1]—, it can be
demonstrated that at least one of them is greater than
about 2.5 X 10 " A K '. Thus we can say that at about
6 T, in a silicon-on-sapphire inversion layer, the following
inequality will hold for at least one of the electron con-
centrations n, and n2 2..5 & ~b, ri/10 " A K '~ &20.
Thus it is fairly clear that ~b,ri(Bl ) ~%0, even though we
can say little about its sign. Referring back to Fig. 8, we
find that ~b,o„„/o„„~=1.3% at a similar magnetic field,
so that o and g are affected to the same order of magni-
tude by the magnetic field. Similar conclusions can be
reached by considering the lower electron concentrations.

V. CONCLUSIONS

We have discussed aspects of thermoelectric transport
in disordered two-dimensional systems and presented
some experimental measurements of the effects of quan-
tum interference and electron-electron interactions upon
the thermoelectric transport parameter g, using silicon-
on-sapphire MOSFET's. Phonon-drag effects give g a
strong temperature dependence which masks the quan-
tum interference and interaction effects as a function of
T, so we investigated them by applying magnetic fields
both perpendicular (Bi) and parallel (B~, ) to the 2D EG.
Quantum interference led to a small change in ri with Bi,
which was in accordance with theory and qualitatively
different to the change in cr.

In a parallel magnetic field, we found that g also
changed but we could only put upper and lower limits on
the magnitude of this change. However, our experiments
do seem to indicate that hg is nonzero for a magnetic
field parallel to the 2D EG. We suggest this nonzero Ag
arises from electron-electron interaction effects.

Further experiments in which the temperature gradient
is determined more accurately will help in finding out the
form of the changes in g in more detail, while calcula-
tions concerning the effect of a parallel magnetic field

upon q would be useful in deciding whether the nonzero

hei(B~~) is indeed due to electron-electron interactions.
The role of phonon drag and phonon renormalization in
influencing the magnetic-field dependences could also be
clarified further, but we do not expect this to significantly
alter any of our conclusions.
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