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Microscopic treatment of the angular dependence of surface induced optical anisotropy
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The angular dependency of surface induced optical anisotropy (SIOA) has been calculated by means of
the discrete dipole approach. Within the basic assumptions of this approach, exact results (full incor-

poration of local-field effects and retardation) have been obtained for the semi-infinite problem using the

double-cell method. This method allows for an independent treatment of bulk and surface. For off-

normal incidence, the microscopic behavior of the system has been investigated. Near the Brewster an-

gle, the absolute value of the microscopic p-type response is larger than the s-type response. In general,

the SIOA decreases for increasing angles of incidence. Only near Brewster's angle the relative p-type an-

isotropic reflectance difference increases dramatically, but under experimentally very unstable condi-

tions. Further, the macroscopic anisotropic response, dR, /Ro, dR~/Ro, 5%, and 56, has been calculat-

ed as a function of photon energy for three angles of incidence, 60', 70', and 80', and for the (110) sur-

faces of three popular semiconductors, Si, GaP, and GaAs, respectively.

I. INTRODUCTION

Although the anisotropic optical response of surfaces
of cubic materials has been reported by Furtak and
Lynch' for Ag(110), the observation of optical anisotropy
at the Si(111)-2X1 surface by Chiaradia et al. , where
the unreconstructed situation should behave isotropical-
ly, has generated large interest. These optical experi-
ments have played a key role in establishing the Pandey
chain model as the reconstruction of the Si(111)-2X 1

surface. They showed the potential of surface optics, op-
tics sensitive to the outermost monolayers of the surface,
for use as an analytical tool. Surface anisotropy, as
displayed by the Si(111)-2X 1 surface, and other aniso-
tropic surfaces of cubic crystals, is a special branch of
surface optics and will collectively be referred to by us as
surface induced optical anisotropy (SIOA). The classical
Fresnel approach will not predict SIOA. Early theoreti-
cal work in the field of surface optics has been performed
by Bagchi and co-workers and Mochan and co-
workers. ' The general basis for the theoretical descrip-
tion of this kind of optical response problem from the
continuum point of view has been laid by Del Sole and
Fiorino. In a number of subsequent papers, this theoret-
ical description has been used to calculate the anisotropic
reflectance difference spectra of Si(111)-2X1.' ' Until
recently, the determination of surface reconstruction was
the prime interest in surface optics. The focus has now
changed to an improved understanding of surface optics,
itself. We may consider as a turning point the studies of
SIOA at (110) surfaces by Mochan and Barrera, who in-
corporated the influence of classical local-field effects in
anisotropic reflection from unreconstructed (110) surfaces
and by Aspnes, ' who measured the anisotropic reflection
of Si and Ge (110) surfaces in a dry nitrogen atmosphere
and discussed the theoretical implications of those obser-
vations. Parallel to the experimental work on the aniso-

tropic surfaces of elementary semiconductors, the aniso-
tropic reflectance difference spectra for (110) surfaces of
III-V compounds have been measured by Selci et al. '

and by Berkovits et al. ' ' Important work has been
done on the (110) surface of GaP, the only III-V com-
pound having an isolated (110) surface state inside the en-

ergy gap, and the (001) GaAs surface. ' This limited
amount of experimental information was later used exten-
sively by theoreticians who wanted a fundamental under-
standing of the behavior of electromagnetic waves at the
very moment they enter a solid surface and affect, in par-
ticular, the few outermost atomic layers. These few ex-
amples show that anisotropic reflectance spectroscopy
still contains fundamental problems regarding the under-
standing of the solid-matter interaction. This makes it
even more surprising that all of this work, both theoreti-
cal and experimental, has been obtained for perpendicu-
lar incidence only. It is the aim of this paper to focus
upon the angular dependence of SIOA from a theoretical
point of view. Previously, we have shown that discrete
dipole theory reveals some major aspects of the SIOA
problem, notably the role of the wiggling zone, ' ' the
influence of large surface reconstructions, and some
preliminary investigations about the angular dependency
of SIOA (Ref. 23) (Ref. 23 will hereafter be referred to as
I). We will give here a full derivation of the double-cell
(DC) method, which allows for direct calculation of the
SIOA of semi-infinite systems. We will verify the validity
of this method by comparing the results of this method
and of the preceding two-slab (TS) method. Using the
DC method, the microscopic angular-dependent behavior
will be studied. Finally, for the three semiconductors Si,
GaP, and GaAs, the SIOA caused by their (110) surface
will be calculated as a function of energy for some angles,
being in the range of common ellipsometers. The data
obtained in this way can be used to interpret anisotropic
spectroscopic ellipsometric experiments.
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II. DISCRETE DIPOLE THEORY
OF ANGULAR DEPENDENT REFLECTION

We will treat discrete dipole theory only for systems
obeying parallel translational symmetry. In previous
publications, we have treated the key elements that build
the basics of such a theory, these elements being the prin-
ciples of induction, superposition and parallel translation-
al symmetry, and the Hertz potential formalism. We
will start by treating the geometry of an arbitrary parallel
translational system. Next we will explain the general
strategy to obtain refiection-transmission by means of the
discrete dipole approach. This requires, first, the solution
of the interaction equations from which the individual di-
pole strengths will be obtained and, next, use of those di-
pole strengths in the expression for the propagator to ob-
tain the remote response. We will start with some useful
conventions. Any vector U can be decomposed into com-
ponents parallel and normal to the lattice planes accord-
ing to

U=(u~~, tl~ )=(tt„,tty, 11~ ) .

For the same vector one defines the ref(ected counterpart
gas

d =
—,'(1,&2, 1)a .

The x axis is in the direction of s&, the crystallographic
(110)direction. The angle between the plane of incidence
and x defines the anisotropic azimuth angle 0, counter-
clockwise being positive. The incoming light beam will
be defined as

E(r, t) =Eoe exp(i [kr cot—]),
where Eo represents the (complex) amplitude and e the
direction of polarization (carets will indicate unit vec-
tors). In all that follows, the time dependence has been
eliminated. For angular dependency, the directions s and
p (the generic symbol t will refer to both) have to be
defined precisely. In our calculations we have used the
following definitions:

g=(u (2)

Finally, we need some conventions with respect to dot
products and direct products of two vectors u and v,
where sometimes an upper index T is advantageous:

U V=U'V=UV,

[uv ];~=11;U (i,j =x,y, z) .

Mostly, the dot product will be used by us without upper
index or dot. One place where the upper T convention is
useful is in the following contraction rule:

Refi

U(v w)=(uv )w, (4)

which turns out to be very useful in the full version of
discrete dipole theory.

A. Description of the configuration

The configuration of a reQection setup is shown in Fig.
1. The crystalline bulk or slab is located in the upper half
space and the electromagnetic beam impinges from the
lower half space. The derivation of the theory to be
treated in this paper will be general, but all specific cases
studied in detail will concern simple fcc-type dipole lat-
tices in the (110) orientation. Hence, these lattice planes
of dipoles have to be spanned by the lateral basis vectors
s) and s2..

s, =(a, 0,0),
s2=(aa, Pa, O) .

Anisotropic Reflection setup A

(110) Surface

1
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a is the normalization length, a'=&2a (a' is the lattice
constant of the conventional bulk unit cell), a=O, and
p=&2. By convention, s, will be the shorter basis vec-
tor. The lattice planes are mutually separated by multi-
ples of the interlayer spacing d:

FIG. 1. Configuration of an anisotropic reflection setup. 0„,
anisotropic azimuth angle; s, p, polarization directions; k, k., in-

coming and reflected wave-vector direction, respectively; 0;, 0„,
angle of incidence and reflection, respectively.
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s=kXz/~kXz~,

p=kXs .

at

r„v =r„+(ds+ Vds )z . (12)

For reflected p-polarized light, our choice for t will be Q,
for mathematical consistency (Fig. 1). Experimentalists
prefer the assignment t= —

Q, according to the Muller-
Nebraska convention.

B. Interaction equations (general)

1. Calculation of dipole strengths

Reference 24 gives the procedure used for the calcula-
tion of the polarizability tensor a; and a summary of it,
including results, will be given at the beginning of Sec.
III. The polarizability normalization factor is defined as
Qp =47TE'pa . Parallel translational symmetry gives rise to
lattice sums and transfer tensors, whose classification can
be found in Refs. 19 and 25. Here we will add the deriva-
tion of the interplanar far lattice sums (Appendix A) and
transfer tensors. As a result of parallel translational sym-
metry, a single dipole p will control the entire elec-
tromagnetic response of a single lattice plane of dipoles j,
and in the rest of this paper we will only consider those
characteristic dipoles p . The transfer tensors fj(r) give
the electric field E caused at site r by a plane of dipoles j:

EJ(r) =ac 'f (r)p (9)

fJ=f (r;) . (lob)

As defined in (9}, the transfer tensors become dimension-
less. The interaction equations of dipole theory for sys-
tems with parallel translational symmetry are

p;=a, E(r;)+ac 'g f; p.
J

k =(ki q ), (13a)

(13b)

(13c}

Here gi is the surface reciprocal-lattice vector (Appen-
dix A}. These definitions, which follow directly from
(A15) and (A16), are necessary for the following expres-
sions for the transfer tensors. We introduce the trans-
verse projectors d as

Index V starts from 0. For the characteristic dipoles of
the bulk unit cell, z& =0 should hold for the first and
z„~0 for all others. These conditions implicitly define

dz, which should be preferably larger than the largest z
coordinate of the surface layer. Not all crystalline sub-
strates can be described by (12), but the number of excep-
tions is negligible in practice. The surface layer itself will
be subdivided into a free surface layer and a bulklike sur-
face layer (matching layer). The first plane of the surface
layer has z& =0 and for arbitrary surface plane i, z; &0
has to hold. The free surface layer consists of dipole
planes, whose characteristic dipoles can further be chosen
arbitrarily. The bulklike layer consists of bulk planes ac-
cording to (12), but with V &0. The Ns characteristic di-

poles of the surface layer build the surface unit cell. For
a semi-infinite system obeying this geometry the interac-
tion equations (10) have to be solved. We investigate sep-
arately an arbitrary dipole located in the surface layer
and one located in the bulk region. Starting with the
bulk, we need first some definitions. From Appendix A,
the quantity tt will be repeated (ko replaced by k):

The site r,. represents the location of the ith characteristic
dipole. The anisotropic azimuth 0 controls those equa-
tions implicitly through the transfer tensors f;J. Usually
the diagonal tensors f,; become referred to as c. The in-
teraction matrix IK obeys the usual definition:

k 1 —k k
drq=d(kr )=

~s Xs
~ Kpq

For positive (z —zj) the transfer tensor becomes

(14)

//M// /p; [

= /E(r, ) /, (1 la)

I8,
q
=a; 5; —ap f," . (1 lb)

The factorization of the interaction equations, for the
cases studied in this paper and already used in I, will be
considered in detail in Sec. II D.

f (r)= gexp[ik (r —r, )]d
pe

and for negative (z —z )

(15}

2. Semi inftnite system-s: double cell method-

Equations (10) and (11)cannot be solved as they are for
semi-infinite systems. This requires a modification via the
DC method. The DC method subdivides the semi-infinite
system into a bulk region and a surface layer. The bulk
region will be constructed by adding repeatedly, in the z
direction over a distance dz, a stack of Nz dipole planes
on top of the surface layer. The Nz characteristic dipoles
of this stack make up the bulk unit cell. An arbitrary
characteristic dipole v of the Vth bulk unit cell is located

f (r)= +exp[i/ .(r —r. )]d
ue

(16a)

(16b)

has to be used. Definitions (13}—(16) avoid the pileup of
variables, which makes this part of discrete dipole theory
so inaccessible. For an arbitrary dipole p„z belonging to
the bulk region the interaction equations (10) become
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s++ w ikrn vp„v=a, Eoee " +ao g f,v.p,.
j=1

a V —1

0 X X fvvwWpww+ fvvwvpwv
w=1 w=0

+ X f.v.wp. w
W= V+1

These interaction equations for a crystalline bulk can be
solved by means of a normal-mode decomposition, as
done originally by Litzman (also, Grindlay and
Mochan and Barrera have made comparable use of nor-

mal modes). First, we postulate the following ansatz for
the bulk dipole strengths:

M
tq Vd

PvV X Vmumve
m=1

(18)

The dipole strength of site v V is p, v. q represents the
normal-mode wave numbers, u „refers to the normal-
mode eigenvectors, which affect all dipoles of the bulk
unit cell through the index v, and v is the normal-mode
strength, being the free variables of the normal-mode
decomposition. Working from (17) by means of (18), (15),
and (16) and performing the summations over the bulk
unit-cell index V yields

m=1 w=1 pq

M Na
—a,-'Xv. XX pe

1 —exp(i [q —a
~ ]ds ) m =1 w =1

iq Vd&
e

Ns
ifk („—. )+ ~j

'

~
' „(~+ ~)

j =1m

where the secular matrix A(k ) becomes defined through its tensorial elements

(19)

A, =a, '5,„—ao 'f, +ao ' g
w

e Pq wd
Pq + —Pq

1 —exp(i [q —a.
~ ]ds ) 1 —exp( i [q —+~ ]d~ )

A(k )[u ]=[0], (21)

where the quantities between the square brackets relate
to the composite vectors, as described before. From (21)
only nontrivial solutions can be obtained, if the bulk sec-
ular determinant becomes zero:

(22)

The bulk secular determinant starts the normal-mode
decomposition and double-cell method by generating the

q . This is a tedious exercise, since q has to be found
through a nonlinear, complex root-searching routine.
The size of the bulk secular determinant-matrix for the
case of a simple crystalline bulk can be reduced consider-

The following step in the derivation is the proper inter-
pretation of, in particular, Eq. (19). One has to consider
simultaneously all equations of type (19) obtained for the
Nz values of v. This yields mathematically a composite
vector equation, where the composite vector consists of
Nz usual three vectors. Next, this composite equation
(19) has to hold for any value of V. So, all coefficients be-
longing to corresponding phase factors in (19) should be
equal left and right. This argument is equivalent to
Litzman's direct product decomposition. As a result,
(19) starts to generate equations of a new type. First we

consider the q exponentials of (19), yielding for the bulk
secular matrix

M NB

X X
m=1

—i(kr +k d&)~

1 exp(i [—q —k, ]ds )

Ns—1
/kf. +—ao g e 'doop;=Eoe .

i=1
(23)

Index V has disappeared, since in (19) the exponential
exp(ikr„) can be divided out in the case of the zoo ex-

ponential. Also, index V disappears in (23) and a single-
vector equation is left. We emphasize again ' that (23)
has to be seen as the direct equivalent of the Ewald-Oseen
extinction theorem, since it involves the incoming elec-
tromagnetic wave. The summation over the surface re-

gion has been explicitly neglected by Ewald, but typical
surface optical effects stem from this summation.

The best way to understand the mechanism of the DC
method is to start from a fictitious calculation, where the

ably by using the commensurability theorem proven by
us. After a root q has been found, one solves the
eigenvector problem (21), yielding the normal-mode
strengths u „. Knowing this, me consider the k ex-
ponentials of Eq (19). Such c.onsideration yields, in prin-
ciple, in6nite composite vector equations, but for optics,
investigation of the Koo exponential suffices. Since Koo

happens to equal k„ the right-hand side of (19) will ac-
cidentally be involved, too. Hence,
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—X e
j=l

+t p, =ED(te), (24a)

N —ikrXe u

P =P (k)=
1 —exp(i [q —k, ]ds )

(24b)

free surface layer is considerably different from the bulk
and the matching layer is missing. Using the unabridged
normal-mode decomposition for the bulk region, many
normal modes will be obtained, from which only those
having a positive real part of the normal-mode vector q
(semi-infinite system) will be relevant. The real part of
the q remains confined to the interval [—m/ds, ~/ds],
since A(k~~, q ) is periodic with respect to the real part of
qm. Mostly, a qm will be found near some Kpq Hence,
apart from the two q being close to K00=k„a11other q
will be predominantly imaginary for optical frequencies.
Only those two modes will survive a distance of about 10
interplanar distances, following the free surface layer. By
incorporating these bulk layers into the surface layer as a
matching layer, we will be left in the rest of the bulk with
only two normal modes. The tremendous reduction in
number of normal modes to only two that is thereby ob-
tained explains the outstanding efficiency of the DC
method. This means also that to the equations, which
will control the surface layer (25), two equations have to
be added to obtain the two normal-mode strengths v of
the bulk region. Since Eq. (23), however, adds three com-
plex equations, the system of equations will become
dependent. Exploiting the projection properties of d00
(Appendix B), the dependency can be removed by projec-
tion onto two independent vectors perpendicular to k.
Simply choosing the vectors s and p (generic t) for this
projection, leaves us with the solvable system of equa-
tions

Ic 2

2ep I s,xs2 I I k, I

Ns

Combining (24) and (26) yields the total DC interaction
matrix

Mss MsB

MBS MBB

E;
(27)

Mss is a composite (Ns XNs) matrix of transfer tensors
and Mss is a simple (2X2) complex matrix. The off-

diagonal matrices have dimensions lining up with the two
previous blocks. The inhomogeneous vector belonging to
the normal-mode part 8 is, in practice, the s and the p
component of the incoming light. The s-p factorization
of the DC interaction equations will be proven in Sec.
II D. The matrix elements of (27) can be obtained from
Eqs. (24) and (26). The results of the DC method will be
exact, within the assumptions of the discrete dipole
theory.

C. Remote fields and reflection coefBcients

For the transfer tensors we need (15). Moreover, since
only the 00 term in (15) involves a plane wave with real

are (all other terms will be strongly evanescent) and we
are only interested in remote fields, they all obey

f, (r ) =dooexp(ig[r —
rJ ] ) . (29)

Using (14) and (16) yields the expression for the remote
field

The DC method yields directly semi-infinite reflection
coefficients, since the basic main variables, p; and v, al-
ready relate to a semi-infinite system. Using (9), the re-
mote electric field EREM at a point r in the vacuum half
space follows from

S oo g

HAREM(r)=&o
' X fJ(r)pJ+ X X f w~(r)pw~

8'=0 w =1

(28)

Two single complex equations remain. The projection
used to arrive at (24) is the first step in matching the
real-space approach of the surface layer and the normal-
mode approach of the bulk. It remains only to derive the
interaction equations for a dipole located in the surface re-
gion Straightfo. rward use of (10) yields

Ns

p;=a; Eoee '+ao ' X f;Jp1.
j=1

~ 3

s 2

P(k)= Xe 'p+ X e ' P (k)v
m=1

(30a)

(30b)

Ns 2

j=l m=1

NB

=XX ~~p [rt-
U
]+

p s~

1 —exp(i [q —
a~q ]de )

oo N

+ao' x x f,~ p~.
W=O w =1

Use (10b), (15), and (18) to reorganize (25) to

(25)

(26a)

(26b)

Projecting this result onto the reflected polarization
direction t =s, Q and dividing the result by the (complex}
electric-field strength Eoexp(ikr), yields the proper ex-
pression for the semi-infinite reflection coefficient r, :

2~ia k
Is xs IIk, l

t.P(k)
~OEO

(31}

The DC method is rather involved from the mathemati-
cal point of view, but lacks several nuisances, such as
boundary conditions, that occur in continuum or hybrid
approaches. SIOA is the difference in optical response
for 0=90' and 0'.
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1. The eoipsometric angles %' and 5

For off-normal-incidence-reflection spectroscopy,
mostly ellipsometric observation is preferred. Standard
equations yield the ellipsometric angles %' and 5, once the
reflection coefficients are known:

r, /r =tangle' (32)

In our convention, 5 will run from 0 to m if the angle of
incidence 8 is varied from 0 to n /2.

t„rtt —exp[iq, (de —d~ )]tttr„
r =

t„exp—[iq, (ds —d„)]ttt (33)

r and t refer to reflection and transmission coefficients, re-
spectively, of slabs A and 8, having thicknesses d „and
ds, and q, the macroscopic Fresnel wave number in nor-
mal direction. Appendix C proves that (33) holds also for
off-normal incidence.

D. Factorization

Interaction equations controlling the optical response
from (110) surfaces of fcc crystals turn out to factorize,
allowing for independent treatment of s- and p-type
response. We will only discuss the Q =90' case (k„=O) as
an example. For factorization, all matrix elements hav-
ing a single x index should disappear. This we will inves-
tigate first for the secular matrix A (20) and the transfer
tensors f;. (10a) and (10b). The a tensors are diagonal
throughout by assumption. The c tensors are also diago-
nal (no proof). The dyads in (20), (15), and (16) factorize
if the xy, xz, yx, and zx components disappear and this
holds if the summation over p turns out to be antisyrn-
metric in p for given q. From Appendix A we know that

(34a)

So it turns out that the xy, xz, yx, and yz components of
the dyads d

q
are antisyrnrnetric in p and their contribu-

tions to (20), (15), and (16) will disappear if the phase fac-
tors in the p summation are symmetric in p. This is the
case since, for the phase factors of the x direction the fol-
lowing holds:

tpz, (~.—~. i
e

e, (x; —x.)=0,
e'~, (x; —x )=a/2 . (34b)

In this way, it turns out that the secular matrix A and
transfer tensors f;. factorize into x and yz blocks for
A=90'. As a result of the factorization of A the calcula-
tion of the normal modes takes place in two orthogonal
subspaces coinciding with the plane of incidence (p space)
and with the s direction (s space). Each subspace will

yield its own u, identified correspondingly as u, and u .
The common meaning of the p label follows, taking into
account the projection properties of the doo (Appendix

2. Comparison with the TS method

The key expression of the TS method giving the
semi-infinite reflection r, is

B). The factorization of the f;. immediately certifies the
factorization of the SS part of the DC interaction ma-
trices. Since x and s are identical and both u and p be-
long to the yz plane, factorization of the BSand BBparts,
as given by (24), is obvious, too. Similar arguments as
used before suffice to show the factorization of the SB
part given by (27), as follows from investigation of (26).
So for reflection from (110) surfaces of fcc crystals
rigorous factorization takes place in the discrete model
and u, will always be at right angles with k, g, k and

up.
III. NUMERICAL RESULTS

In this section we will treat some results obtained by
means of the discrete dipole theory, as developed in the
previous sections, where the emphasis will be on the mi-
croscopy and anisotropy of the angular-dependent
reflection problem. For any quantity X dependent on 0
we will define the anisotropic difference ~ as
X(0=90')—X(Q=O'). Unfortunately, the literature is
not very consistent with respect to optical anisotropy ter-
minology. A good overview about the issue can be found
in two review articles. ' We have made the following
choices. The anisotropic reflectance difference (ARD)
AR will always be defined as above with X =R, R being
the reflectance r*r. The important quantity is the rela-
tive anisotropic reflectance difference (RARD) defined as
bR/Ro, where Ro will be the Fresnel reflectance value.
This quantity comes closest to the reflectance anisotropy
measured by the experirnentalists. The differential
reflectance will not be considered in this paper. Final-
ly, the anisotropic difference of the ellipsometric angles 4
and 5 will be written as 5%' and 56.

All cases to be studied as numerical results will obey
the standard configuration, i.e., the systems will be made
up from simple fcc (110)-oriented lattice planes. Polari-
zabilities have been found from dielectric constants by
means of the Lorentz-Lorenz relation. The dielectric
constants have been derived from the electronic struc-
ture, as obtained from density-functional pseudopotential
calculations. Kramers-Kronig transforms have been used
to yield the real from the imaginary part of the dielectric
constant. For the bulk this approach is standard, ' but
for the surface the results from the electronic structure
calculation follow as the auxiliary integral I(to). Equa-
tion (16) of Ref. 24 has been used to convert I(co) into
surface dielectric constants, using Nz =3 for the number
of (free) surface planes. The dielectric constants for sur-
face and bulk can be found for Si(110) in Ref. 32. The
surface and bulk polarizabilities for GaP and GaAs(110)
are similar to the ones used in Ref. 31, but in Ref. 31, ar-
bitrary units have been used. Proper scaling can be used
such that at ficu=4. 0 eV the imaginary part of o.„be-
comes 0.022714 for GaP and 0.021 403 for GaAs in units
of no.

Further, two atoms will correspond to one dipole. This
has been done for two reasons. First, the Lorentz-Lorenz
equation does not allow one to assign polarizabilities to
any of the constituents separately for the III-V com-
pounds. Second, and this holds particularly for Si, this
choice reduces the influence of the nondipolar interac-
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tions, omission of which makes a one-atom-per-dipole as-
signment produce significantly worse results.

A. Microscopic quantities and eomyarison
of methods

The bulk value of the wave number can depend on the
polarization for cubic crystals only in continuum treat-
ments going beyond the traditional approach. Recently,
we have shown for the case of perpendicular incidence
that the discrete dipole model results in anisotropic bulk
optical response in a very direct way. The origin of this
faint bulk anisotropy in cubic systems has to be sought in
the disturbance of the static symmetry by the electromag-
netic field. For this reason, we have shown in Fig. 2, for
an angle of incidence of 75', the difference between the
absolute values of the normal-mode wave numbers q
and the Fresnel wave number qo (results in units of 1/a),
for bulk Si. The two kinds of wave numbers are almost
identical, differing less than 1% from the global value.
Further, Fig. 2 shows on the left-hand side the
differences for s- and p-polarized light if 0=0' and on the
right-hand side it shows the corresponding differences for
0=90'. At first glance it looks as if s and p polarizations
have reversed roles going from left to right in Fig. 2.
Careful study of the numerical data reveals that the
resemblance is not perfect. For 0=0' and s polarization
the system becomes triggered along the y direction, but
for 0=90' and p polarization the system becomes trig-
gered along the y and z directions. Nevertheless, roughly
similar anisotropic differences are obtained, although z
components are expected to decrease anisotropy. This is
a remarkable conclusion since, at a 75' angle of incidence,
the z component of the electric field exceeds the y com-
ponent about four times.

An essential part of the microscopy is the behavior of
the normal modes. Section II 0 concerning factorization
yielded the orientation in space of u, . How uz is exactly
oriented in the p subspace to which it was found to be

confined requires additiona1 study. In macroscopic treat-
ments, it has to be concluded from the divergence of the
macroscopic field that this field and the refracted wave
vector have to be at right angles, since the macroscopic
charge density equals zero in dielectric systems. Howev-
er the p's or u 's are not simple substitutes for the mac-
roscopic polarization field P, causing a fundamental
difference between the discrete and continuum ap-
proaches. To study the behavior of the u we have inves-
tigated for a photon energy of 3.0 eV transparent and ab-
sorbing model substrates. The substrates have polariza-
bilities obtained by means of Lorentz-Lorenz from an iso-
tropic dielectric constant of 10.0 for transparent and
from an isotropic dielectric constant of 25.0+ i5.0 for ab-
sorbing substrates. %'e start with a calculation of the two
dot products u~ k and u~.k as a function of angle of in-
cidence 8; for the transparent model substrate. For the
transparent substrate these dot products are real and the
angle between u and k, k can be found from these dot
products in a meaningful way. The angles are shown in
Table I, where we subtracted also 90 in order to
highlight orthogonality. It is obvious that u~ comes only
to orthogonality with k for all angles of incidence. On
the other hand, this orthogonality is not perfect. The
values are at least 11 orders of magnitude above the digi-
tal noise level. So the proper statement has to be that
within the framework of a discrete dipole approach, the
u~ are almost at right angles to the refracted k, obvi-
ously in good agreement with what one expects from the
classical approaches.

%e also want to find out what happens with this state-
ment when the material becomes absorbing. So we have
calculated again the dot product u-k as a function of
angle of incidence for the absorbing model substrate.
The dot product is shown in Table II as it is, since a com-
plex angle will not add much to our understanding. In
absolute value, the absorbing dot product u k is about

TABLE I. Orthogonality of u~ with respect to k or k for a
transparent substrate with a=10.0 and Ace=3.0 eV for various
8;.

Si

Q =90'

It
II

C
I

f I

/

3~4.

No.

Q =0'

0.000
30.000'
60.000'
85.000

((u k) —90

0.000 000 00
—20.902 449 84
—44.105 540 56'
—66.637 321 09'

&(u k ) —90

( —3.885 780 59 X 10 ' )'
(—8.738 321 07 X 10 )'

(—1.319007 98 X 10 )'

(—1.411 843 52 X 10-')

Q =90'
I I

2 3

Energy (eV)

I I

2 3

Energy (eV)

FIG. 2. Difference between discrete dipole and Fresnel wave
numbers as a function of energy for Si in units of I/a. 8; =75;

, s polarization; —.—.—,p polarization; left-hand side,
0=0, right-hand side, Q =90.

0.000'
30.000
60.000
85.000'

Aa)=3.0 eV

0.000 000 00
—20.902 143 88
—44.105 154 39'
—66.636 953 40

e= 10.0+i0.0

(—3.885 78059X10 ' )'
(4.254 585 26 X 10 )'
(6.013638 97 X 10 )

(6.185 678 55 X 10-')'
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TABLE II. Dot product u~.k for an absorbing substrate,
a=25.0+i5.0 and A'co=3. 0 eV for various 8;.

No.

0=0'

0.00'
30.00
60.00
85.00'

—1.00107X10 ' +i —1.22078X10
2.646 83 X 10 + i5.647 96X 10
4.35036X 10 +i9.753 34X 10
4.875 09 X 10 +i1.12004X 10

fL =90'

0.00'
30.00'
60.00'
85.00'

Ace=3.0 eV

—1.00108X10 ' +i —1.22010X10
—1.31009X 10 + i —2.822 22 X 10
—2. 105 91 X 10 + i —4.868 29 X 10
—2.332 51 X 10 +i —5.58683 X 10

a=25.0+ i5.0

twice as large, as compared to the transparent case. So
even as complex quantities the two vectors uz and k are
almost at right angles. In the discrete model, it is a far
from straightforward exercise to show this by explicit cal-
culation. The differences increase rather precisely with
k, in good agreement with our earlier findings. The ab-
sence of perfect orthogonality of refracted wave vector
and polarization has to be ascribed in the discrete ap-
proach to bulk local-field effects. The same phenomenon
is also known from continuum treatments.

To finish the treatment of the behavior of the normal

modes, the bulk Brewster minimum will be studied. In
view of expression (31) for the reflection, the reflection
can only become zero if the dot product t.P(g) vanishes.
The proper Brewster angle will be obtained if t and P(g)
are perpendicular. Disregarding the dipoles in the sur-
face layer, we will verify this for the contribution of the
bulk normal modes to P(g). In Table III, we have col-
lected some results concerning the relevant dot product
u~.Q, converted into an angle for the transparent model
substrate. We see that the angle where the two vectors $
and u~ are exactly at right angles coincides with the clas-
sical Brewster angle, 72.45' in this case. For the two
main azimuthal orientations, there is a small anisotropy
in the Brester angle of (3.4X10 )'. If we confine our-
selves to bulk cases only and consider simple continuum
treatments to be sufBcient, it does not make any
difference whether for the Brewster angle criterion,
orthogonality of u~ and Q or orthogonality of f and k is
considered. In view of the results of Tables I and II, the
two criteria, however, cannot be identical. This con-
clusion follows directly from the discrete approach, but
the remark as such is also known from more elaborate
continuum treatments. Since for transparent media the
dot product happens to be a simple real number, it
suSces to use continuity to prove the occurrence of a
zero. For absorbing media we see that the zero occurs
only in the real part of the dot product, whereas the
imaginary part keeps a nonzero value. As a result, only a
minimum can be found in the reAection. In principle the
zero in the real part can be used to define and/or locate
the Brewster angle for absorbing substrates. Returning

TABLE III. Orthogonality of u~ and P for a transparent substrate (e= 10.0) and the dot product
u P for absorbing substrate (@=25.0+i5.0) at A'co=3. 0 eV, both for various t);.

No.

0=0'
((u P)—90

0.000
30.000
60.000
72.250
72.500
78.750
79.000
85.000

—90.000 00'
—50.902 45'
—14.105 54'

(
—2.215143X10 ')'
(5.359 128 X 10 )'

13.362 68'

1.000000+ i —2.304 824 X 10
8. 125001X10 '+i5.714473X10
3.448126X10 '+i1.609349X10

1.850776X 10 + i1.949 825 X 10
—2.680720X10 +i1.951 559X10
—1.100815X 10 '+ i1.969 606X 10

Q =90'

0.000
30.000
60.000
72.250
72.500
78.750
79.000
85.000

—90.000 000
—50.902 14
—14.105 15'

( —2.211373X 10-')
(5.396 &06 X 10-')'

13.363 05'

1.000000+ i —1.411 876X 10
8. 124890X10 '+i5.711396X10
3.447854X10 '+i1.608504X10

1.819744 X 10-'+ i1.948 804X10-'
—2.711764X 10 +i1.950 537X 10
—1.101 125 X 10 '+ i 1.968 571 X 10

A'co=3. 0 eV t..=10.0 t.=25.0+ i5.0
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Most quantum-mechanical derivations of the dielectric
constant rely upon absorption, mostly under the assump-
tion that it depends weakly on place. Conservation of en-

ergy is usually for optics expressed as

A +R +T=1, (35)

(36b}

and according to (36a) the total absorbance A can be cal-
culated microscopically. The absorbances found from
(35) and (36} turn out to be the same only up to the last
digit, if the calculation incorporates the electromagnetic

34self-interaction of the dipole, as obtained by Lorentz.
We have systematically included the self-interaction in all
our calculations (if included into the intraplanar transfer
tensor it becomes canceled by an identical term). Absor-
bance builds a very critical test for the quality of
discrete-dipole calculations. From slab calculations we
know, e.g., that conservation of energy as stated by (35) is
lost if the internal dipole fields are switched off. We show
the local absorbances A; in Fig. 5 for the same case
shown in Fig. 3 (polarizabilities again from Table IV).
The local absorbance differs in behavior strongly from
the dipole strength. The most striking feature in Fig. 5 is
the abrupt kink exactly after three dipole layers. This,
however, is by no means surprising, since we have used
explicitly in our calculations a simple rectangular profile
with a width of three dipo1e 1ayers. Since we know from
Fig. 3 that the dipole strength behaves smoothly as a
function of layer index, it is clear from (36b) that a rec-

where R has been given before, T =t*t is the transmit-
tance, and A the absorbance, usually found from (35).
This absorbance A is a dimensionless quantity indicating
which fraction of the incoming energy flux becomes ab-
sorbed in a slab or semi-infinite medium. For an indivi-
dual layer, the local absorbance A; is defined as

(36a)

tangular profile for a is likely to yield a kink after three
layers. So the real surprise is the smoothness of the di-
pole strength. Now in the x direction the striking phe-
nomena occur. For 0=0', p type and 0=90', s type the
local absorbance in the surface region exceeds by a factor
of 2 the absorbance in the nearby bulk. It is obvious that
such deviations can no 1onger be treated as sma11 correc-
tions in that area, but the results seem to be in disagree-
ment with those shown in Fig. 3. This unexpected behav-
ior is explained by the behavior of the polarizability. It is
easy to see from (36b) that for a diagonal a the absor-
bance becomes determined by the imaginary part of a.
For the x direction the imaginary part of the surface po-
larizability is almost twice as large as the corresponding
bulk one (9.718 vs 4.717 in units of ao). For the y direc-
tion this difference is small (5.099 vs 4.717). In connec-
tion with the smooth behavior of l p; l

the results of Fig. 5

are clear. In Fig. 6 we show the corresponding
differences. Again, the p-type differences are by far the
largest. Surprisingly, however, the differences no longer
display the kink.

In order to test the reliability of the DC method for
off-perpendicular cases, a comparison has been made
with the TS method. Having studied many different
cases, we found that the differences between the two
methods is typically of the order of 10 as far as RARD
results are concerned. These deviations are a11 due to

Si

0 0 Q =90'

8 16

1
Layer

I
Layer

32
1
Layer

24 32

FIG. 5. Local absorbance A; as a function of layer index i,
Si, Lo=3.0 eV; 0;=75; —.—- —., s polarization;, p po-
larization; left-hand side, 0=0', right-hand side, Q =90'.

FIG. 6. Anisotro pic difference local
5A; = A;(90 ) —A;(0 ); —- —- —., s polarization;
ization; otherwise as Fig. 5.

absorbance
, p polar-
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small and insignificant imperfections in the implementa-
tion of the TS method. The DC method yields exact re-
sults within the basic assumptions of the discrete ap-
proach.

B. Macroscopic numerical results

Using the standard configuration mentioned at the be-
ginning of Sec. III, we have calculated the angular-
dependent anisotropic behavior as a function of frequen-
cy and angle of incidence for the elementary semiconduc-
tor Si and the two III-V compounds GaP and GaAs.
Three angles of incidence have been used, i.e., 60', 70',
and 80', where the first always will correspond in the
figures to the solid, the second to the dot-dashed, and the
third to the dot-dot-dashed lines. For all those cases we
will investigate the RARD for s and p polarization and
the anisotropic difFerence in the ellipsometric angles 4
and A.

Figure 7 shows for Si the s-type RARD for the three
angles mentioned before. The overall shape of the spec-
tra is identical to, but significantly smaller than, the per-
pendicular incidence results obtained before. This fur-
ther supports our previous remark that not much is go-
ing to be accomplished measuring at off-normal angles of
incidence. For a fixed frequency the angular-dependent
behavior of the ARD has already been given in I. Al-

though Fig. 7 displays only three angles of incidence, the
conclusion is that the angular dependency of the s-type
RARD does not depend much on energy. Figure 8 shows
the p-type RARD as a function of energy for the same
three angles. Different angles of incidence have stronger
impact upon p-polarized anisotropy and affect particular-
ly the p-type energy dependence. Most apparent is the
reversal in sign passing from a 70 angle of incidence to
80, due to the crossing of the Brewster angle. This rever-
sal of sign is most clearly observed for the lower energies
whereas, near 5 eV, this phenomenon tends to disappear.
It is particularly noteworthy that the 60' results are lower
in absolute value than the 70' results. This seems to
violate the angular dependence found in I, but in this pa-
per the experimentally preferred RARD is treated. The
behavior of R0 explains the deviations. The most strik-
ing feature in Fig. 8 is made up by the strong peak at 3.0
eV for an 80' angle of incidence. As argued already in I,
semiconductors at low energies have almost dielectric be-
havior and the corresponding critical behavior near
Brewster's angle. The anisotropic differences themselves
are not affected by the phenomenon of the Brewster an-
gle, it appears from the discrete dipole calculations. The
ellipsometric SIOA data are shown for Si in Figs. 9 and
10. Figure 9 shows the behavior of M'. In general, the
results resemble those obtained for the p-type RARD as
shown in Fig. 8, but with reversed sign, because the p
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FIG. 7. Relative anisotropic reflectance difference AR, /Rp

as a function of energy, Si; s polarization;, 0;=60',
8 =70' -"-"-0.=80'

FIG. 8. Relative anisotropic reflectance difference 4R~/Rp
as a function of energy, Si, p polarization;, 0;=60',

6t =70 -"-- —0 =807 g
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FIG. 9. Anisotropic ellipsometric difference angle 5% as a
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component enters the expression for %' through the
denominator (32). The 4 difFerences are a few tenths of a
degree and should be easily measurable, if the angle of in-
cidence repeatability were not a problem. This remark
applies even more to 6A as shown in Fig. 10, being almost
one order of magnitude larger than the corresponding 5%'

data. The 56 results do not resemble any of the results
shown before, the main reason being the nonzero
response for energies below the optical energy gap of Si.
The measurement procedures used until now for the in-
vestigation of SIOA are only able to detect a signal if the
system under investigation becomes absorbing. Measure-
ment of the ellipsometric 5b. overcomes this problem.
Recently, however, Wormeester et al. have shown that
also for perpendicular incidence, ellipsometric detection
of SIOA can be used advantageously in experiment. The
phase difference disappears for energies approaching
zero. Since the angle 6 can be associated with the optical
pathlength, expressed in wavelengths, it is easy to under-
stand why this happens. The anisotropy introduces a
rather constant difference in optical pathlength, whereas
the wavelength goes to infinity for Rm going to zero.

Figures 11 and 12 show the angular-dependent SIOA
for GaP(110). In general, the results obey the behavior
discussed already for Si. GaP is an indirect-gap III-V
semiconductor, but with less difference between its direct
and indirect gap than Si. This semiconductor is particu-
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FIG. 10. Anisotropic ellipsometric difference angle 6b as a
function of energy, Si; 0; =60'; —- —- —., 0; =70',
—"—"—,0; =80.

FIG. 11. Anisotropic ellipsometric difference angle 6+ as a
function of energy, GaP; 0;=60; —- —.—., 0, =70',
—-- —"—,0; =80.
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FIG. 13. Anisotropic ellipsometric difference angle 5% as a
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larly known for having surface-state transitions, being
within the energy gap. The beginning of the transitions
at 2.5 eV have been associated with A 5-C3 surface states
or resonances. ' If we consider the absolute values of the
p-type results, it can be seen that they are not as far apart
as for Si. Again, Brewster's angle has to be located some-
where between 70 and 80' for all energies investigated.
As for Si, the ellipsometric difFerence 5% (Fig. 11) shows
a particularly weak dependence from the angle of in-
cidence, apart from the change in sign. The 60' and 70'
results in particular are almost identical. As for the 5b,
results shown in Fig. 12, again the subband-gap anisotro-
pies are interesting, especially for a 70' angle of incidence.
GaP displays there a phase anisotropy three times
stronger than Si over almost the entire subband-gap ener-

gy range.
The last results concern the III-V semiconductor

GaAs. The characteristic features of the SIOA response
of GaAs(110) are the two peaks at 2.7 and 3.6 eV. '

Apart from the 55 results, this characteristic double-
peak structure dominates all types of angular-dependent
SIOA obtained from GaAs. The anisotropy in the two el-
lipsometric angles 5% (Fig. 13) and M, (Fig. 14) follows
the previous patterns, 5'LII being almost invariant with
respect to the angle of incidence, and 56 having strong
subband-gap values. The latter, however, are less strong
than for GaP.

GaAs /
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!
g ~ I

I

0

Energy (eV)
FIG. 14. Anisotropic ellipsometric difference angle 55 as a

function of energy, GaAs;, 8; =60', —.—.—., 8; =70';
-- —.-- 8-=80'
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IV. CONCLUSIONS

It has been shown that the angular dependence of
SIOA can be mell described by means of the discrete di-
pole model using the DC method. The results obtained
by the DC method are exact within the assumptions of
the discrete dipole approach and confirmed by the TS
method. Contrary to the s-type normal-mode eigenvector
u„ the p-type eigenvector u is not exactly at right angles
to the refracted wave vector k . It has been found that,
in general, the p-type response yields the more interesting
results. The discrete model provides direct access to the
microscopy of the semi-infinite problem, provided the
DC method is used. Dipole strengths for p-polarized
light turn out to be more than twice as strong near
Brewster's angle than the s-type dipole strength. The
Brewster minimum, itself, is caused by the projection
occurring in the discrete dipole expression for reflection.
Also, the anisotropy in dipole strength and reflection is
larger for p-polarized than for s-polarized light. Absorp-
tion, local fields, and retardation are directly incorporat-
ed in the discrete approach to the surface reflection prob-
lem. Problems with boundary conditions or the necessity
to distinguish explicitly between longitudinal and
transversal modes, as known from continuum models, do
not exist in discrete models. The spectroscopic aniso-
tropic response has been calculated in detail for the (110)
surfaces of the three important semiconductors Si,GaP,
and GaAs. In general, the theoretical results favor mea-
surements of SIOA at perpendicular incidence, as is usu-
ally the case now. Only near Brewster's angle for almost
transparent substrates an increased sensitivity for SIOA
can be found using p-polarized light. The additional ex-
perimental diSculties that have to be expected when us-
ing this advantage probably render the option only as a
potential one.

Brillouin zone. Suppose a function f (r) being defined on
1R, has two-dimensional translational symmetry as fol-
lows:

f(r)=f(r+s „),
Smn ~ 1+nS2

(A2}

The two vectors s1, s2 spanning the surface Bravais lat-
tice, generate a 2X2 matrix S having s, , s2 as its rows.
The surface Brillouin zone can be found from GII given by

SGII =2~x (A3)

because the rows S„S2of GII span the surface Brillouin
zone (E represents a 2 X 2 unit matrix). Hence,

Spq =PS1+CS2II (A4)

generates an arbitrary surface reciprocal-lattice vector.
In this notation the two-dimensional Fourier transform
of f (r) becomes

f(k)=
2~2(k2 —kz )

(A6)

f (r) =f (rll, z) = g f(p, q, z)exp(igl r), (A5a)
PC

=

1
f(p, q, z) =,

, drllf (rll, z)exp( igl —r'),
1s, X 21 1%sll

(A5b)
r=(rll'z) .

Is, X sz~ is the area of the surface Wigner-Seitz cell (1WSll}
and enters the equations as the Jacobian Det(S ) required
by the integral transform yielding (A5). Next, one needs
the two-dimensional Fourier transform of the three-
dimensional spherical wave f (r) =exp(ikor)/r. Its
three-dimensional Fourier transform is
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APPENDIX A: THREEFOLD INTEGRAL TRANSFORM

Transfer tensors are obtained from scalar planar sums.
The expression for the scalar planar sums can, for this
appendix, be written as (without prime)

S.(r, k}=g exp(ik. s „)exp(iklr —rj „~)/~r —
r~.

(A 1)

Efficient evaluation of scalar planar sums Si(r, k) for
points outside the plane itself is indispensible in advanced
dipole theory. Ewald's threefold integral transform
satisfies those needs. The original Ewald derivation,
however, is not general and is far from transparent, due
to the old notation. An improved general derivation has
been given by Litzman. This appendix treats an equally
general derivation, elucidating the role of the surface

To this result one applies the integral transform

f(kll, z) = f "
dk, j'(k)e' " . (A7)

;q ., exp(ikor') exp(ilzl+ko —
kll )

~

~

~

drlle
'

ll', =2+i
QO Qk —k

O II

(A9)

Equations (A5) and (A9) can solve, in general, interplanar
scalar sums. %e start by rewriting the real-space sum S

In order to be able to use Cauchy's theorem, the result of
this step has to be written as

ik z

j(k„,z)=, lim f dk2~' & 0 -- 'k,' (k„+ir—i)' '

(A8)
k„=+k,' —k

Extending the contour with a hemicircle and calculating
residues is essentially easy, but (A8) introduces a moment
of freedom as to the sign of k, . For reasons of physics,
choices will be made such that solutions always run away
from the plane. This yields the required result as
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(Al) (omission of index j): Eq. (A15) requires application of the difFerential opera-
tor"

S(r,ko)=e f (r(),z),
;),, (, , ) exp(ik() (r —s „~ )

f(r z) —ge ' 0 ll ™ (A 10)
fi(r)=a [VV +k 1]SJ(r,k) (A16)

The function f(r((,z) has exactly the two-dimensional
translational symmetry as that required by (A5). Appli-
cation of (A5) yields for the two-dimensional Fourier
transform off (r((,z)

1

(s, Xs, ~

sw')X dr~~
e

~wsll

APPENDIX 8:
PROJECTION PROPERTIES OF d~ [EQ. (15))

From (A15) and {13c}it follows that

)k /=Q(k',
,
(+g((, }z—«,', =k . (Bl)

Application of this differential operator yields the expres-
sions used in the main text and given in Eqs. (13), (14),
(15), and (16).

exp(iko (r s—„~ )
X

/r —s „/

Taking into account that from (A3} it follows that

g~~~ sk(=2trZ (ZeZ),

Eq. (Al 1) can be written as

1f(p q»)=
(, x, )

(Al 1)

(A12)

Using this relationship, it turns out that for the d, the
following holds:

k~d~ x=k~[k 1 —k ks ]x

=k k x —k k x=0 (B2}ue pe pe

independently from x. As a result, the net effect of d~
becomes projecting onto a plane perpendicular to k~ of
the vector x upon which it operates.

APPENDIX C: TAO-SLAB METHOD

X
—i(0+s ) (r((

—s~„)
(ws

mn

exp(iko(r —s „~)
X

fr —s „[
(A13}

An elementary translation from
r~~ s to r~t also known

as the transposition rule, and a combination of the sum
and the integrals over Wigner-Seitz cells at sites mn
yields

;() +s( ), exp(ik, )r'~
(p, q, z) = w

Is, Xs2I

(A14)

Application of (A9) to (A14} yields a simple expression
for f(p, q, z). With that result one can return to Eq. (A5)
and one arrives at the final general and elegant result:

2~i;(q+sll ) exP t«[z[
S r, ko= e

(s) X$2(
(A15}

D =tvmtwv rvw~wv . (Cl)

The Jones matrices for the front face, the interior, and
the back face of the slab are given by the following ex-
pressions:

The assumption is that the response of the wiggling
zone can be incorporated into the traditional reflection
and transmission coefficients. Hence, using a classical
description, it is possible to isolate the separate
coefficients in the following way. Figure 15 shows the
configuration of this traditional model. The response of
this slab will be calculated using Jones matrices and vec-
tors. V refers to vacuum and M to medium, which
should also explain the combinations. First we define D
by

=Qk() —{k ((+g~) E
1

E
2

E+
3

E+
4

Equation (A15) cannot be used if z =0 and is poorly con-
vergent for ~z~ &a. However, for ko&&2m/a and z~ao,
only the 00 term of (A15) is required to find exact results.
This is the optical limit and explains why (A15) is ideal
for calculating the propagator. To verify the inter-
relationship between this derivation and the Litzman one,
the following rule might be useful: The surface reciprocal
lattice belonging to a cleavage plane of a bulk crystalline
solid coincides with the projection of the bulk reciprocal
lattice onto that plane To obtain .transfer tensors from

E, E E E

FIG. 15. Re6ection-transmission from a slab using the Jones
matrix description. V, vacuum; M, medium; d, slab thickness;
E,+. , Jones vector forward propagating fields; E, ; idem back-
ward propagating fields; i, 1, 2, 3, 4.
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E+ ~MV

tvM ~VM D 2
(C2) SLAB

1

r vstexp( —
iqd )+Drlv exp(iqd )

exp( iqd ) —rM ~exp(iqd )
(Csa)

—igd 0
iqd E3

(C3)

E+
4

SLAB
1

tvM tMv

exp( iqd—) r—M v exp(iqd )
(C5b)

E +
3 ~VM

tMV rMv D

E+
4

E4
(C4)

Substituting the value for D given in (Cl) into (C5a)
yields, after some elementary algebra, the following rela-
tionship:

Those matrices contain no explicit angular dependence.
For this reason, the final result will automatically include
the angular dependency. Straightforward multiplication
of the three matrices given in (Cl)—(C3) yields the total
Jones matrix for the slab. Using E4 =0, one obtains the
following expressions for the re6ection coefficient rsLAB
and transmission coefficient tsLAB of the slab:

~SLAB ~VM +~MVe tSLAB
lgd (C6)

Wijers and Del Sole pointed out that (C6) yields the
main TS equation (33). This derivation completes proof
of the validity of (33) as concerns the angular dependen-
cy.
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