
PHYSICAL REVIEW B VOLUME 46, NUMBER 12 15 SEPTEMBER 1992-II

D centers in spherical quantum dots
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A negatively charged donor center D (i.e., a neutral shallow donor D that binds a second electron)
in a spherical quantum dot is studied by use of a variational approach. A trial function which includes
electron-correlation effects and approaches the Chandrasekhar-type function in the limit of zero barrier
height is used. The well-radius and barrier-height dependence of the "binding energy" of the D center
is obtained. The dimensional characteristics are clearly demonstrated not only for the "binding energy"
and its maximum of the D center but also for the ratio of D to D "binding energy" and the
electron-correlation effect.

Recently, shallow donors in various quantum-well
structures, such as two-dimensional quantum wells
(2DQW's) and quantum-well wires and dots (QWW's and
QD's) have been the subject of considerable study. At-
tention has been mainly focused on the neutral shallow
donors D . Very recently, D centers (i.e., a D center
that binds a second electron) have been shown to form
readily in selectively doped multiple quantum wells be-
cause of the electron transfer from the weakly bound bar-
rier donors to the low-potential quantum wells. '
Though the effort has been directed toward understand-
ing the behavior of D centers in bulk semiconduc-
tors and 2DQW's, ' ' no information seems to be
available concerning the properties of D ions in QWW's
and QD's. The fundamental study of the properties of
such systems in low dimensions is important in its own
right, as reducing the dimensionality often introduces
unexpected physical phenomena.

Our interest in the study of the D ion in low dimen-
sions is motivated by the following reasons. With the ad-
vances in the epitaxial crystal growth techniques and the
intensive work done on the fabrication of QWW's and
QD's in a number of laboratories, the optical and elec-
tronic properties of these structures have been the subject
of both theoretical and experimental investigations. For
instance, Bryant" and Lee and Spector' have studied the
D states in QWW's, and Zhu, Xiong, and Gu, ' and
Einevoll and Chang' have studied D and acceptor
states in QD's, respectively. Asada, Miyamoto, and
Suematsu' have shown that the linear gain of quantum
boxes is much larger than that of bulk crystals at fixed
carrier density, and that the laser threshold can be re-
duced by use of the box structures. Schmitt-Rink, Miller,
and Chemla' have published a theory of the linear and
nonlinear optical properties of semiconductor microcrys-
tallites. Based on the study of the behavior of D
centers in doped multiple quantum wells, Huant and co-
workers' have shown quite recently that it has become

possible to control the D concentration in the struc-
tures with increased accuracy and pointed out that hav-
ing a well-controlled D population under equilibrium
conditions opens the possibility of studying many phe-
nomena related to negatively charged donors in semicon-
ductors. Pang and Louie' have predicted that for D in
a [(100 A GaAs)/(100 A GaQ75Alp25AS)]]5o multiple
quantum well, there is a sevenfold increase in binding en-

ergy over that of the bulk case. Therefore it is interesting
to study electronic properties of D centers in QWW's
and QD's for understanding the dimensionality depen-
dence of the binding energies of D ground states and
the possibility of some future device applications (D
population control). In addition, many calculations of
the correlation effect in multielectron states in quantum
dots have been done. For example, multielectron systems
with and without a magnetic field, ' ' and biexcitons in
dots have been studied. However, since no work
mentioned above treated positive-ion centers in mul-
tielectron systems, the study of two electrons in a dot
with a positive-ion center is therefore useful for achieving
a better understanding of the effect of positive-ion centers
on low-dimensional electron correlations.

In this paper, we report a calculation of the ground-
state energy and "binding energy" of a D ion in a quan-
tum dot, using a variational approach. The effective-
mass model is applied to the D ion and a trial function
is introduced. Then, the well-radius and barrier-height
dependence of the binding energy of the D ion is ob-
tained. The electron correlation in confinement condi-
tions is also considered.

For definiteness let us consider a D ion at the center
of a spherical quantum dot of radius Ro. The potential
due to the discontinuity of the band edges at the GaAs-
Ga, Al„As interface r =Ra is as follows:

Vo if r ~Ra
V(r)= ' (1)0 if r(RQ,
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where r is the electron-donor distance. According to the
hydrogenic-effective-mass theory, the Hamiltonian for
the D in a spherical QD is given by

H =H(1, W)+H(2, W)+ 2 (2).

with

H(i, W)= —V; — + V(r, ),2$'
(3)

where H(i, W) and 2/r, z are, respectively, the Hamil-
tonian of a donor in the spherical QD and the interaction
between the two electrons. It is written in a dimension-
less form so that all energies are measured in units of the
effective Rydberg Ry* and all distances are measured in
units of effective Bohr radius a*. 8'is set equal to 1. In
order to show the dimension features of Coulomb interac-
tions in D states clearly, we have neglected the
differences of the electronic effective masses and the
dielectric constants between the quantum dot and the
surrounding material in the Hamiltonian. It is reason-
able for the case of the strong confinement and small
dielectric-constant difference. However, we should point
out that if there is significant penetration into the barrier,
the effect of the electronic effective masses can be impor-
tant, and that the effect of the discontinuity of the dielec-
tric constants on the D states should be considered for
large differences.

For determining the electronic structure and the
"binding energy" of the ground state (spin singlet state)
in a spherical QD, we use a trial function which includes
electron-correlation effect and approaches the
Chandrasekhar-type trial function at VO=O. It is as
follows:

0 —A (1+Cr]2 )I% (A ],r] )0 (A2, r2 }+%(Xz,r) )0 (A &, rp }J

(4)

where C and A,
&

and A, 2 are variational parameters, and A

is the normalization constant. %(A, , r, )a. re the ground-
state eigenfunctions of H(i, A,; ) which is equal to H (i, W)
of Eq. (3) as W=A, , We should point out that %(A, , r, ).
can be exactly obtained with the use of different series
forms in different regions of the radial equation. ' It is
interesting to note that 4'(A, „r) and %(A,2, r) approach
exp( —

A, &r) and exp( —A2r) within a normalization con-
stant as Ro approaches infinity. In the limiting case, it is
clearly seen that the electrons are in ground-state hydro-
genic orbitals; they tend to stay apart, keeping down their
repulsive interaction energy, as indicated by the correla-
tion factor (1+Cr&2 }, which becomes relatively small as
r&2~0. Using the variation method for the limiting case,
Chandrasekhar found A,

&

= 1.075, A,&=0.478, C =0.312,
and the corresponding binding energy Ez =0.0518 Ry'
which is very close to the "exact" value of 0.0555 Ry*.
However, with the polarization term in r, 2 omitted
(C =0), the variation method gave A

&

= 1.039, A2=0. 283,
and Ez =0.027 Ry*, which is only about half of the "ex-
act" value. It is the reason why the correlation factor is
included in the trial function of Eq. (4). It is also interest-
ing to point out that the dimensional characteristic of the
electron-correlation effect can be studied by using the tri-
al function with the correlation factor. Using the trial
function, the variational energy E(D ) is given by

E(D )= min &VlHl+&,
A. ), A,2, c

where

& q'IHlq'& =
& +IH(i, ~i) I

q'&+ & q'IH(2, ~p) I
q'&+ & +1[1/r„—(2—2A &)/r&

—(2—2A2)/r2] I
e & .

The first and second terms are calculated partly analyti-
cally and partly numerically. The third term can be cal-
culated numerically. Compared with the binding energy
of a D center in a three-, two-, or one-dimensional sys-
tem, the "binding energy" of the D ground state in the
dot is defined as follows:

E~(D )=E(D )+Eo E(D )—
=2EO E~(D ) E(D ),— —

where E(D ) is the lowest level of the Hamiltonian of
Eq. (3), i.e., the D ground-state energy in the spherical
QD, which can be solved exactly as mentioned above,
and Eo and E~(D ) are, respectively, the lowest level of
an electron in the spherical QD without the Coulomb po-
tential and the "binding energy" of the neutral donor,
which is equal to Eo E(D ). —

In order to check the calculation method, the ground
state of a D ion in a spherical QD with Vo =0 has been
calculated. Calculated results have shown that the best

I

values of A, &, A,2, and C are 1.075, 0.478, and 0.312, respec-
tively. With these values the binding energy obtained is
0.0518 Ry*. It is exactly the same as that obtained by
Chan drasekhar.

In order to study the well-radius and barrier-height
dependence of the "binding energy" of a D ion in a
spherical QD, a numerical calculation has been per-
formed for the spherical QD of Ro between 0 and 10a'
with different Vo. In Fig. 1, we have plotted the "binding
energies" of a D center in spherical QD's of VO=40
Ry* and 00 Ry* as a function of Ro. It is readily seen
that the binding energy of Vo= ac Ry* increases more
rapidly than that of V0=40 Ry* with decreasing Ro.
For a finite barrier height, it increases monotonically un-
til it reaches a maximum and then decreases rapidly with
decreasing Ro. The "binding energies" are much larger
than those (0.0555 and 0.480 Ry*) of three-dimensional
(3D) D and two-dimensional (2D) D centers as Ro
is smaller. The maximum of the D center in the spheri-
cal QD with Vo =40 Ry* is equal to 2.41 Ry* at
&o =0.340a' [much the same as the position of the max-
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FIG. 1. "Binding energy" E~(D ) of D ground states in
spherical QD's of Vo=40 Ry* (solid curves) and ao Ry*
(dashed curves) vs the well radius Ro. Arrows indicate relevant
transverse scales. Effective atomic units are used. The same
units are used in all of the following figures.

imum of Ez(D )] (Ref. 13) and 43.4 and 5.00 times as
large as those of 3D D and 2D D centers, ' respec-
tively. Furthermore, it is interesting to study the varia-
tional approach and the dimension features as Rp ap-
proaches zero. We have performed a variational calcula-
tion for small Rp with Vp =40 Ry*. The "binding ener-
gies" have been obtained to be equal to 2.36, 2.15, 1.17,
0.70, 0.343, 0.128, 0.0526, and 0.0518 Ry* for
Ro/a'=0. 3, 0.28, 0.25, 0.24, 0.22, 0.2, 0.1, and 0, re-
spectively. The data show that the variation of the
"binding energies" with Rc &0.2a' (not shown in Fig. 1)
is much slower than that with Rp &0.2a*. This can be
understood as we note that there is no bound state for an
electron in the dot with Rc &R, =0.5~/(Vo)'~ and
without the positive-ion center. It is also interesting to
note that the "binding energy" is almost independent of
Vo as Ro is large, and that its value (0.143 Ry') of
Rp=10a*, however, is still much larger than that of a
3D D center while the "binding energy" of the corre-
sponding D center approaches that of a 3D D center.
We have also calculated the "binding energy" at
Rp = 15a * which is equal to 0.0520 Ry' and very close to
the bulk limit (0.0518 Ry*).

In Fig. 2, we have shown the variational parameters as
a function of Rp ~ As seen in the figure, the A, &, A,2, and C
are almost independent of Vp as Rp is large. In the re-
gion, A, , is almost a constant, A.2 increases and approaches
k„and C decreases slightly as Rp decreases. However,
this is not the case of small Rp. As Rp decreases from
some small Rp, both A, , and A, 2 of Vp=40 Ry* decrease
and A, 2 of Vp= Oo Ry* still increases and approaches A,

&

which is almost a constant in the region. The A, 2 of
Vp =40 Ry* decreases quicker than the k, . In the small-
er Rp region, C, as shown, increases for Vp =40 Ry' and

FIG. 2. Variational parameters k&, k2, and C vs the well ra-
dius Ro. Solid and dashed curves represent the parameters of
Vo =40 and ~ Ry*, respectively.

still decreases for Vp= Oo Ry' as Rp decreases. It is in-
teresting to point out that for infinite barrier dots, the
electron-correlation effect becomes small and the varia-
tional energy is not very sensitive to the variational pa-
rameter C as Rp approaches zero and Coulomb effects
are frozen out. At a given small Rp, however, the
difference between A,

&
and A, 2 is larger for a small fixed C

than that for a large fixed C. In Fig. 2, we have shown
that A, &, A,2, and C approaches 1.18, 0.99, and 0.27 as Rp
approaches zero. In order to study the electron-
correlation effect, we have performed the variational cal-
culation without the polarization term Cr&2 in Eq. (4). It
has been found that the A,

&
and A, z are less than those ob-

tained by the variational method with CWO, and that the
difference between A, , and A, 2 is larger than that with
CPO. It means that with the help of the polarization
term Cr, 2, one can make a single-electron orbital
4(A, &, r, ) close to the other %(A,2, rz) in a D center. The
ratio of the "binding energy" difference due to omitting
the term Cr, 2 to the "binding energy" is also calculated.
For the dot with infinite barrier height, the ratio is equal
to 0.007, 0.0216, 0.0648, 0.139, 0.210, and 0.514 for
Rp/a *=0.1, 0.3, 1, 3, 10, and Oo, respectively. What we
have mentioned above shows that as an increasing
confinement (reducing the dimensionality) makes one
electron with a spin close to the other with the opposite
spin and have less room to avoid the other in a D
center, the electron-correlation effect on the wave func-
tion and "binding energy" can become weak.

In Fig. 3, the ratio cr of Ez(D ) to Ez(D ) has been
plotted as a function of 1/R p. The enhanced
confinement freeze-out effect for the D states in a spher-
ical QD of Vo= oo Ry' is clearly seen from this figure.
The effect is very similar to that of the D states in a
magnetic field. This has been understood from the fact
that the extension of the outer orbital in a D center



46 D CENTERS IN SPHERICAL QUANTUM DOTS 7549

Vo=80

0.3-

40

0 2- ~ 2—
I
C)

IJJ

0
Q 2

0 i {units ofl&'I ' j

3D 2DGW 20 QSW SQD

FIG. 3. Ratio 0 of E&{D ) to E&(D ) vs one over the well
radius Ro. Solid and dashed curves represent the cr of Vp =40
and ~ Ry, respectively.

sharply decreases with increasing the confinement even in
a large Ro regime or a weak field regime, compared with
the extension of a neutral donor orbital which decreases
rather slowly. However, the o of V0=40 Ry' increases
quickly, approaches its maximum, and, then, decreases
quickly as I/Ro increases from zero. The maximum can
be slightly different between different barrier heights. It
is interesting to note that the limit value or maximum of
cr, shown in Fig. 3, is larger than that of 3D D states in
a magnetic field and about the same as that of 2D D
states in a magnetic field. It, in fact, means that the
limit or maximum value of cr, i.e., the freeze-out effect, is
strongly dependent on the confined dimensionality and
weakly dependent on the barrier height and the well
shape. Then, we can conclude that "binding energies"
and their maxima of D ground states increase with the
confined dimensionality more rapidly than those of D
ground states since the maximum or limit value of o in-
creases with increasing dimensionality.

According to the confined dimensionality dependence
of the freeze-out efFect mentioned above and using the
maxima' of "binding energies" of D states in 2DQW's,
QWW's, and QD's with difFerent well shapes and barrier
heights, we can correctly estimate the maxima of D
states in the corresponding structures. In Fig. 4, we have
shown that the ' binding-energy" maxima of D states in
various dimensions. The values of 2DQW's (Ref. 28) and
spherical QD's are obtained by variational approaches
while the values of QWW's are estimated by using the
binding-energy maxima of D states in QWW's (Refs. 11
and 12) and the o limit value of 3D D states in a mag-
netic field. ' They are, respectively, 0.326, 1.15, and
2.41 Ry' for the 2DQW, QWW, and spherical QD with
V&=40 Ry and 0.355, 1.50, and 3.38 Ry* for these
structures with V0 =80 Ry*. The binding energies of 3D
and 2D D states are also shown in Fig. 4 and are equal
to 0.0555 (Ref. 25) and 0.480 Ry', respectively.

FIG. 4. Maximum "binding energy" E&'"{D ) of D
ground states vs the well dimensionality and barrier height Vp

(see the text). 2DQW, QWW, and SQD stand for two-
dimensional quantum well, quantum-well wire, and spherical
quantum dot, respectively.

It is well known that the D ion has one and only one
bound state in three-dimensional systems. Phelps and Ba-
jaj have shown that it is not bound for a zero-orbital
angular-momentum triplet state of a D ion in two di-
mensions. The corresponding triplet state of a D ion in
spherical QD's can be easily constructed within the
framework of our trial function by antisymmetrizing it
relative to the interchange of electron spatial coordinates.
Using this trial function, we have calculated the variation
energy E(D ) of the zero-orbital angular-momentum
triplet state and obtained a negative "binding energy"
defined as Eq. (7), i.e., an "unbound" state, even though
the triplet state is really bound in the dot and including
the impurity potential should lower the energy of the
state without the potential. It should be interesting to
know whether there are positive binding energies for
higher angular-momentum triplet states in spherical
QD's. This work is in progress.

In conclusion, it is worthwhile to point out that we
have obtained the magnitude of "binding energy" of the
D ground state in spherical QD s and its well-radius
and barrier-height dependence. Then, the electron-
correlation effect of the D center in spherical QD's and
the dimensionality dependence of the cr and E~(D )

have been clearly demonstrated. It wi11 be useful for
understanding the electronic properties in low-
dimensionality systems and for designing future devices.
Speaking of the variational calculation, we believe that
the kind of trial function used consisting of the exact
solutions of single-electron states of an appropriate Ham-
iltonian is more powerful and suitable for application to
D ions not only in spherical QD s with Ro)R, (Ref.
27) but also in QWW's and 2DQW's with and without
external fields. Using this kind of trial function, we are
studying the behavior of D centers in 2DQW's and
QWW's in a magnetic field. This will be reported else-
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where. Finally, we should point out that D centers
could be located anywhere in a spherical QD and that the
"binding energy" will decrease as the D location shifts
to the edge of the spherical QD. The quantum dots can-

not be spherical. It should be interesting therefore to ex-
tend the present work to a systematic investigation of the
positional dependence of D "binding energies" in
spherical QD's and other kinds of quantum dot.
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