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Phonon conductivity of doped germanium under unimial stress in the [110]direction
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The relaxation-rate expressions for elastic, inelastic, and absorption phonon-electron processes in n-

type germanium have been derived under [110]directional uniaxial tension. Using these expressions, the
phonon conductivity of Sb-doped Ge under tension is evaluated and compared with the experimental re-
sults given by Keyes and Sladek. It is found that a slight increase of Bohr radii of the upper two levels of
the donor ground states and decrease of shear deformation potential E„with stress can give better agree-
ment with the experimental results. This work suggests that the theory of electron-phonon interaction is
not a failure, as suspected by earlier workers.

I. IN1 RODUCTION

Although Keyes and Sladek' measured the phonon
conductivity a of Sb-doped Ge in 1962, the qualitative
features of the experimental results have not been ex-
plained satisfactorily. The regular decrease of the
thermal resistivity with stress at a constant temperature
in the liquid-He-temperature region is the main source of
trouble. Theoretically, ' a peak was qualitatively expect-
ed at a particular stress and later on Suzuki after quanti-
tative treatment of the problem in the [111]direction ar-
rived at the same result. Suzuki also applied his theory
on ultrasonic attenuation in Sb-doped Ge with no suc-
cess, which forced him to assume the presence of internal
stress in the sample. Other workers ' have also used the
idea of the presence of internal stress to explain the pho-
non conductivity of Sb-doped Ge at low temperatures but
their calculations are more or less parametric in ap-
proach and the ground-state wave functions have been
taken to be independent of the internal stress. Since the
phonon scattering by bound electrons is very sensitive to
the detailed nature of the donor ground state, the
knowledge of electron-phonon interaction via related
properties can also give information about the donor
state under stress. Realizing this, we derive here the ex-
pressions of 7 pp in the presence of uniaxial stress in the
[110] direction using the anisotropic form factor. A
theoretical analysis of the phonon conductivity of Sb-

doped Ge under uniaxial stress is then given. The possi-
ble reason for a discrepancy between the theory and ex-
periment in the [111]direction is also pointed out.

II. THEORY

A. The donor ground state under uniaxial stress

The ground state of the donor electron in a many-
valley semiconductor, in the effective-mass approxima-
tion, is

P„(r)=gaiF)(r)gi(r) .
J

In Ge, there are four valleys and j runs from 1 to 4.
Fi(r ) is the hydrogenlike envelope function and P (r ) are
the Bloch states. Valley-orbit interaction splits the four-
fold degenerate state into a singlet and a triplet state.
Kohn and Luttinger calculated the values of a~ for such
a system. In the presence of stress, P(r) should be per-
turbed and the degeneracy of the triplet state, in general,
should also be lifted. Many workers "have solved the
problem theoretically with the approximation that F,(r)
and P (r) remain unaffected under low uniaxial stress.
Only a 's are assumed to be perturbed. We report here
the calculations of a 's due to Gorman and Solin" when
the uniaxial stress is in the [110]direction:
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E„ is the shear deformation potential, 4A is the chemical
shift in the absence of stress (see Table I), S44 is the elas-

tic shear constant, and X is the tension. The form of
F,(r) is available in Ref. 9. The energy corresponding to
different P„(r ) under [110]stress is
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Eo=b, [—1 —2(1+ ,'s—b)'~ ], s, =b,(1—72sb),

s2= 4(1+—', sb ), s3 =5[—1+2(1+—,
' sb )

'~
] .

(3)

%e observe that a singlet-triplet system becomes a nonde-
generate four-level system under the infiuence of uniaxial
stress in the [110] direction. Figure 1 shows the energy
levels with varying (tensile) stress.

B. Phonon-electron relaxation rates 7
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The thermal equilibrium populations, required for the
calculations of ~, ~h, of these levels, are obtained to be

3

fo(T)= 1+g e
1=1

(4)

f,(T)=f,(T)e

with l =1,2, 3 and b, „=s —s„. Now starting from the
electron-phonon matrix element' in between the mth
and nth levels, we can calculate the relaxation rates for
the elastic, inelastic, and thermally assisted phonon ab-
sorption processes. Suzuki did not derive the expres-
sions for r, ~h (inel}, inelastic, and r, ~h(ab), thermally as-
sisted phonon absorption processes.

l. Elastic processes

The energy conservation for the elastic process is as
follows:

ls(n)+lrlc0 l
—Int. , Is(m}=ls(n')+fico l

where Int. denotes appropriate intermediate states. Here
m can take on any values 0 to 3 for any given initial state
n. For completeness we have derived the relaxation rates
in the second-order perturbation theory arising from all
levels. Following Ref. 12 we can write the single-mode
relaxation rate off the 0 level as

n,„f0( T)C0 l
gael

'(0, 0)=
KP Ug

(&,)'((M' )') ((M( )')
=, [(~~„}—S.,] +4a.,r.,

(5)

where (0,0) represents the process for which both initial
and final states are 0 states, and Mc„=+~4,f '- la a"
where

cos 8)
(a b)— —

4f =1+.
2

OJ is the angle between q and the z axis, the z- axis is
defined as being from the origin to the jth minimum of
the conduction band, and a and b are the transverse and
longitudinal Bohr radii, respectively. Values of:"~z for
different values ofj and A, are given in Table II.

In a similar way we can obtain v;& '(1, 1), r,&
'(2, 2), and

r,, '(3, 3) as
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i;i '(3, 3)=

and

n,„fs(T)co A, I'& (M„'"')') ((M(' )')',' .=. ..I« „)'-I~,.I'I'+41~,.I'r,'.

q; zh(el)=i;& '(0, 0)+q;& '(l, l)+q',
&
'(2, 2)+i;i '(3, 3) . (9)

2. Inelastic scattering

These processes are

ls(n)+ficoqz —Int. , ls(m)=l s(n')+ficoq i

E„.being less than E„. Here complication is much increased as compared to the unstressed sample because the energy
of the intermediate state may even be higher than the initial state. This would introduce some terms in the matrix ele-
ment which ultimately cause a singularity in the transition probability for a particular value of co & if appropriate level
width is not added in their denominator. We, for consistency with the treatment given in elastic scattering, adopt the
scheme given by Heitler. ' For example, the transition probability for the process (2,0) is

2~ ~20
Wzo(qk~q'k')nqi, ( 1 + nq z ) = z

~ mq &
—

aqua
+

M(q M)i M(2M)i Mg) M(i M@M(p
f „+r, +f „+a„—r, f „+a„—ir, +e„—r,

MQ" M)2 M(sM)q
(10a)

To avoid the pseudoresonance of the fifth term, we have added level width I
&

in it. In Eq. (10a) all terms other than the
said one will not contribute significantly to the transition probability. So, such terms can be neglected. Thus finally we

get

n,„fz(T)coq& (bzolfi+coq&) ((Mf& ) )((M)z ) )
inel(2, 0)=

4~p vi. a' ui. ' (ficoqi. ~sr) +rs
—1—Acu20 qA,X 1 —exp

B

Similarly we can find the expressions for q;«'i(3, 0) and i;«'i(1, 2):
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r;„,'i(1, 3)= n,„f,(T)co~& (b, ,3/Pi+co«) ((M)0 ) &((MIti ) &

4~v" ~ ~ U' «~,.—~30)'+ro
—1—%co

X 1 —exp
13 qA,

k~T

1 exp

(14)

The i;„eI(1,0) process can be neglected.
Finally, we can write

r, zh(inel) =r;„,'~(2, 0)+r;„,'~(3, 0)+r;„,I(1,2)+r;„,'&(3, 2)+r;„,'&(1, 3) .

3. Absorption processes

These can be summarized as

ls(n)+ficoq. i.+A'co
2
—Int. , ls(m) —Is(n'),

E„.)E„. Here, pseudoresonances would appear in the transition probability due to the intermediate states, for which
E is different both from E„and E„.. To avoid these resonances we once again follow Heitler's' technique to add level
width in the denominator. In order to maintain the consistency the same method is employed also near the actual reso-
nance where Ace 2 =E„. E„. T—hrough similar approximations used in the preceding section, we can write the thermal-

ly assisted phonon absorption relaxation rate for different transitions as
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n,„fp(T)co ], lb]p/f] co
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Near true resonance, these expressions cannot be used as they become zero due to the factor lb f]coq] l
in the numera--

tor. On adding the level width with 5, however, near resonance the expressions from Eqs. (16)—(21) can be approximat-
ed to the following forms:
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, '(0,2)= g [&(Mg) &[&(Mg) ) &+&(M) ) &
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w,b (2, 1)=0; as the matrix element for 2 to 1 transition is zero . (19')
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It should be remarked that near resonance, Green's function technique should be employed to calculate r,b'. In the
absence of such expression for the nondegenerate four-level system and to maintain consistency with the rest of the
mathematical treatment we have used the above written approximate expressions only.

The total relaxation rate due to the thermally assisted phonon absorption process is

r, 'h(ab) =~ b'(0, 2)+~,b'(0, 3)+r,b'(0, 1)+r,b'(2, 1)+~b'(2, 3)+r,b'(3, 1) .
Following Kowk' we obtain the level widths for 0, 1, 2, and 3 levels as follows:
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TABLE II. Value of:-,.z for different values ofj and A, .

I

-3 -2 -1
Tension

1&O8dyn/cm )

FIG. 1. The energy of the four 1s-like donor states in n-type
Ge when uniaxial stress (tension) is applied in the [110] direc-
tion.
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where A, =l for longitudinal mode and A. =2,3 are for
transverse modes x=(fm. q&/kz T), kz is the Boltzmann
constant, v& the phonon velocity, and co & the phonon fre-

quency. 7 7b +'Tpp +7 ph+7ph'ph is the total relaxa-
tion rates. rb

' =U z /L„L, is the Casimir length;

rz, '=Ace~~', re p),
—rept(el)+r, ~t(inel)+r, ~t(ab) is the

total electron-phonon relaxation rate; ~ph'ph=B1&q~T
for longitudinal Phonon and ~ph'ph=Bt~q~T' for trans-
verse phonon. Values of the parameters and physical
constants used in this calculation are v& =5.37X10
cm/sec, vz = v3 =3.28 X 10 cm/sec, L, =0.146 cm,
A =5.10X10 sec, B& =6.89974X10 secK
B,=1.0X10 "K,p=5. 35 g/cm .

TABLE I. Parameters used for the calculations of electron-
phonon relaxation rates.

&ex

a
b

E„o
7l

P

2.0X 10' /cm
0.32 meV
6.9865 X 10 cm
1.5749 X 10 cm
—8.0 eV
16.5 eV
0.541 66 X 10 cm /dyn
0. 1X 10 cm /dyn

C. Phonon conductivity

According to Holland, ' phonon conductivity a( T) can
be written as

III. RESULTS AND DISCUSSION

Our initial calculations of phonon resistivity versus
stress at T =2.82 K with all relaxation rates derived in
the preceding section show a small peak near
X=—1.25X los dyn/cm (see Fig. 2). For consistency,
we preferred to use our present derived expressions at
X~O also. For these calculations parameters used are
given in the caption of Fig. 2. These parameters were ob-
tained through the best computer fit of the phonon-

U

3

~~
()

Ul 2
4)

CI

a
E 1
L4
i-

I

2

Tension (1P dyn cm )

FIG. 2. Thermal resistivity vs tension at constant tempera-

ture, T =2.82 K for Sb-doped Ge. Solid line shows calculation

for adjusted value of E„and r, dashed line shows calculations

for g=O, p=0, and E„=165 eV; Eq = —8 eV;
A =5.10X 10 sec; L, =0.146 cm; circles are the experimen-

tal points.
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conductivity data without stress (see Fig. 3). Two impor-
tant aspects which were not considered in these initial
calculations are the following.

(i) Variation of the Bohr radii corresponding to various
levels: The hydrogenlike envelope function, in fact, must
be perturbed in the presence of stress. The effect of this
perturbation may be seen through the change in Bohr ra-
dii. Fritzsche reports that the tensile stress expands lev-
els 1 and 3 and the other two levels are somewhat con-
tracted. The variation in r with stress, however, is ex-
pected to be larger due to the dilatational efFects' ' on
the center of gravity of the conduction-band minima as
well as donor states.

(ii) The effect of stress on E„: According to the experi-
mental observation of Tekippe et al. ,' stress in [100]
direction suggests that for n-type Si, E„should slightly
decrease with stress. We believe that the [110) stress
which affects the thermal resistance much more than the
[100]stress should have a larger influence on E„.

To improvise the calculation, therefore, we have
chosen the value of E„=E„O(1—g~X~), E„o being the
zero stress value of the deformation potential. To incorp-
orate the first aspect, the Bohr radii of the lower two lev-
els (0 and 2} have been kept constant for convenience and
taken equal to the mean Bohr radii ro. Here r stands for
both a and b, while for the upper two levels (1 and 3) we
define r„=rp(1 +p~ X~). p and ri are adjustable parame-
ters. While calculating v, &h for transitions from the
lower to upper levels we have 2/r = 1/ro+ 1/r„.

In Figs. 4(a), 4(b), and 4(c), we have plotted r, '„(el),
r, ~h(ab), rb ', and r~,

' with co for three values of tensile
[110] stress at T=2.82 K. r, 'h(inel} has been found to
be negligible at this temperature. In the unstressed Sb-
doped Ge the donor 1s state is a two-level system; hence
only one peak in the 7 ph vs N curve appears at
co„=4.86X10" Hz. Under the [110] stress, the degen-
eracy of the triplet levels is lifted and six resonance peaks
should appear in Fig. 4. Since some energy gaps are
nearly equal, we can observe only two prominent peaks.
It is obvious from Fig. 4 that for low and high values of
stress, i.e., ~X( &0.5X10 and ~X~) 1.5X10 dyn/cm,
boundary scattering of phonons would be an important
mechanism as there is a very large region of phonon fre-
quencies (around 1.2X 10' H3) in which neither r, 'h nor
r, ' is effective. For 0.5X10 & ~X~ &1.5X10 dyn/cm,
there are at least two large peaks in ~, 'h close to each
other. As a result the whole region of low-frequency
phonons is dominated by 7 ph and relatively ~b

' becomes
less important. It was also found that while the rnagni-
tudes of the higher-frequency peaks strongly depend
upon E„,the lower-frequency peaks remained nearly con-
stant when E„ is changed. The behavior of the low-
frequency peaks is consistent with the data of ~ at high
stress. Therefore at high values of stress () 1.5X10
dyn/cm ), the high-frequency peaks which become small-
er due to the increased 5 for the corresponding transi-
tions are further shortened by a proper adjustment of the
Bohr radii r„. p was estimated from the adjusted value of
r„at X= —2.77 X 10 dyn/cm and from this, r„was cal-
culated at X=—1.0X10 dyn/cm . With this value of
r„and the values of A and L, from Fig. 2, E„was adjust-

100

10

&0
100

I r» l

)01
Temperature ( K)

FIG. 3. Lattice thermal conductivity K at X=0. Solid line

shows the present calculations; circles are for the experimental
results.

ed at X = —1.0X 10 dyn/cm for the best fit of the pho-
non conductivity. g was found from E„at
X = —1.0X 10 dyn/cm and E„oand now the stage is set
for the final calculation of phonon resistivity at all values
of X.

Figure 2 includes the improvised theoretical calcula-
tions as well as experimental results of thermal resistivity
versus stress. Keyes and Sladek' also report the phonon-
conductivity variation of a similar sample of Sb-doped Ge
under constant stress —1.45X10 dyn/cm, but at 2.82
K the value of ~ found from these data is higher
(=7.90X10 ' W/cmK) than the one given in Fig. 2
(=6.66X10 ' W/cmK) at the same stress. This indi-
cates an inaccuracy in the evaluation of stress. Keeping
this inaccuracy in mind, the present theoretical explana-
tion of ~ versus stress at T =2.82 K is quite satisfactory.
Similarly, the same discrepancy among the theoretical
and experimental values of phonon conductivity in Fig. 5
cannot be treated as the failure of the theory as suggested
by earlier workers. ' The appropriate theoretical
description of the phonon conductivity around T= 1 K is
still lacking even in the unstressed Sb-doped Ge and so a
larger discrepancy at lower temperatures in Fig. 5 has not
been taken care of.

As a matter of fact, E„should also be level dependent.
A decrease in the Bohr radius r of a particular level with
stress will lower the value of E„also. This would further
increase the scope of modifying the theoretical results but
due to the suspected inaccuracy in the experimental re-
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I l 1 I suits, we have not gone into this minor detail.
Lastly, the surface roughness as well as states would

largely depend upon the stress. The thermal resistivity
will definitely be better explained if stress smoothens the
boundary, which, as reported earlier, becomes a strong
source of phonon-scattering mechanism at high stress.
This would also allow only a smaller rise of r with stress.
This work, therefore, puts up a justification for the theory
of electron-phonon scattering under stress. Unless so-
phisticated measurements of phonon conductivity, and
the excitation spectra of doped semiconductors are done,
failure of the theory for the [111]compression or tension
should not be given importance. For example, the double
degenerate level of the ground state corresponding to
some donors in n-type Ge under [111]stress may split up
due to internal random strains. Together with this the
other effects, discussed in the paper, will probably lead to
a correct analysis of the phonon-conductivity measure-
ment under [111]uniaxial stress also.
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