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Theoretical tlescription of light amplification in ZnTe:0: A vibronic-laser material
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Recent gain measurements in ZnTe:0 at 2 K are discussed in the framework of a vibronic-laser model.

The behavior of the gain spectrum and of the saturation coeScient is understood within the model. Fur-

thermore, the use of a one-dimensional amplifier equation when describing the dependence of the emit-

ted intensity on the excitation length is justified.

I. INTRODUCrION

Gain measurements in ZnTe:0 at low temperature
have been recently reported' as an example of a broadly
tunable solid-state amplifier in the visible frequency
range. Their interpretation raises some interesting ques-
tions, which can be analyzed in the framework of a
vibronic-laser model.

First of all, let us briefly review the experimental re-
sults. As is well known, ZnTe is a direct-gap semicon-
ductor with a band gap of about 2.38 eV. The impurity
oxygen is isoelectronic with Te and gives rise to discrete
levels in the forbidden band gap. The impurity is excited
either indirectly via the valence-to conduction-band tran-
sition or directly by pumping into the discrete levels of
the impurity. The absorption and luminescence spectra
of ZnTe:0 at 2 K are shown in Fig. 1. They are well
separated, having only the zero-phonon line in common,
and show a peculiar structure that is associated with
phonon-assisted processes. The properties of these spec-
tra have been carefully discussed in Ref. 2, where further
references are given. They are well understood in terms
of a simple model for the luminescence from isoelectronic
impurities, which has been used in discussing the optical
properties of AgBr:I. Here, however, one has to consid-

er the coupling of both optical (longitudinal and trans-
verse) and acoustic (longitudinal and transverse) phonons
to the excitation in order to explain the rich structure of
the spectra. The separation between absorption and
emission spectra indicates that, with the exception of the
zero-phonon line, the emitted light will not be reabsorbed
within the material. This is different from what happens
in atomic transitions as they are currently described in
laser models. Furthermore, the emission takes place at
wavelengths that are longer than that of the absorption.
This indicates that the excitation decays to a state whose
energy is that of the ground state of the electrons plus the
energies of the phonons involved in the transition (see
Fig. 2, in which we have given a schematic model of the
transitions involved). We shall, nevertheless, stress that
the scheme presented should not be taken too seriously
because the localized electronic states should normally
not be described in k space. There are indications that
the lifetimes of the phonons in these states are very short.
As a consequence, the virtual lower phonon states will
not enter into the dynamics of the populations. There-
fore, we have a situation that reminds one of a typical
four-level laser model, where a rapidly decaying lower
state favors the buildup of inversion and thus a large
gain. This is also a feature of ZnTe:0 system, as shown
in Ref. 1. Contrary to the four-level laser model, howev-
er, we have here the efFects of a number of phonon-
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where g (to) is the frequency-dependent gain, and a is the
saturation parameter. The constant ~ stands for the
losses, and Io(to) is the spontaneous emission per unit
length. This equation (1} is well established for a two-
level atomic system, whereas its use in the context of a
vibronic system has to be justified. Our task will be to
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assisted transitions, or, roughly speaking, transition lines,
which all share the same electronic excited state. The
gain spectrum presented in Ref. 1 reproduces well the
luminescence spectrum of ZnTe:0. This result is inter-
preted' within a model for vibronic laser action. This
model gives the general framework in which the experi-
mental results on the amplifying properties of ZnTe:0
can be analyzed. As we shall see, it allows one to explain
the gain spectrum as well as the saturation properties ob-
served in ZnTe:O. The interplay of these two quantities
in determining the emission intensity as a function of the
excitation length is best illustrated in Fig. 3, where the in-
tensity emitted at four different wavelengths is presented
together with the solutions of (1), where the values of the
gain and saturation are fitted from the experimental
points and are, for k=629. 8 nm,

g =660 crn

a=10 arb. units,

~=40 crn

I0=2X10 arb. unitscm

In all curves in Fig. 3, all values of a remain the same
and are independent of the wavelength, whereas the spec-
tral dependence of the gain is the same as that of the
luminescence. This behavior raises another question that
we want to address. As shown in Ref. 1, the experimen-
tal points are well fitted by the solutions of the equation

trI+Io(to), —dI g(to)I

show that the pertinence of Eq. (1) to the description of
amplification in ZnTe:0 is justified from a microscopical
model. This means that we have to calculate the gain
spectrum and the saturation properties of ZnTe:0 con-
sidered as a vibronic amplifier. In order to do this we will
use the model of Ref. 4, which will be adapted to the
choice of this specific material.

The paper will then be organized as follows. In Sec. II
the model of Ref. 4 is adapted to the characteristics of
ZnTe:0. In Sec. III the theoretical and experimental re-
sults are compared and discussed.

II. THE MODEL

The simplest model that allows one to describe the
emission properties of ZnTe:0 consists of two electronic
levels coupled to optical and acoustic phonons and to the
electromagnetic field. The main features of this model
and the algebraic manipulation that allows one to write
down equations for the vibronic transitions have already
been discussed extensively elsewhere. ' Here we quote
only the relevant difFerences, which are due to the specific
choice of the material. The two main coupling terms in
the Hamilton operator for this system are the dipole cou-
pling to the electronic states and the electron-phonon
coupling. The contribution of the first interaction is stan-
dard and can be found in Ref. 4. The electron-phonon
contribution needs some comment: as already anticipat-
ed in the Introduction, the electronic states couple to
both optical and acoustic phonons (longitudinal and
transverse}. From the form of the phonon density of
states of ZnTe:0, one infers that a suitable model for the
electron-phonon interaction is obtained by coupling the
excitation to all four types of intervening phonons instead
of considering optical phonons only in an Einstein model,
as in Ref. 4. Therefore, we rewrite the electron interac-
tion as

4

H, t h g g 0 gA (bq+bqt) (2)
i=1 j q

where bq and bq are the phonon operators and o',J are
electron operators at position j. The phonon frequencies
will be O'. The four constants A,

' describe the coupling
to the four types of phonons. In order not to over com-
plicate the notation, in the following we will consider
only one type of phonon type and drop the index i and
the sum over it. In the results the index i has to be re-
stored. As usual, we have replaced the electronic vari-
ables by psedudospin operators, because we consider two
electronic states only.

The quantity of interest is the global polarization of the
emitting rnediurn, which in the notation of Ref. 4 is given
by

P(x, t)= g g f„+ I S„+,
n

FIG. 3. Emitted intensity vs excitation length for different
wave lengths: (a) A, =629.8 nm, (b) A, =638.1 nm, (c) k=646. 6
nm, and (d) A, =651.9 nm. The solid lines correspond to the
solution of (1) when the parameters g, a, K, and Io are found
with a fitting of the experimental points.
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Here the quantities S*=g S* are mean values of the
operators describing the transitions between the exited
state and the lower vibronic states, and (r,2 ) is the ma-

trix element of the dipole operator between the two elec-
tronic states. The vibronic states are labeled with the in-
dices l~ and n~. The quantities f&„are the overlap in-

tegrals between the excited and nonexcited vibronic
states. These states are the eigenstates of displaced har-
monic oscillators and correspond to the eigenstates of the
electron-phonon part of the interaction given by (2}. In
order to calculate P, we need to know the explicit expres-
sions for S*and f,„. These are obtained from the equa-
tions governing the evolution of the different vibronic
transitions. These equations, whose general form is given
in Ref. 4, are greatly simplified owing to the characteris-
tics of ZnTe:O. As one sees in Fig. 2, the luminescence
spectrum indicates that the final state of all transitions,
with the exception of the zero-phonon line, consists of
the electronic ground state plus some phonons. In terms

I

of the vibronic transitions, this means that the vibronic
states corresponding to the lower oscillator have huge re-
laxation rates and do not contribute to the dynamics
directly. This allows us to greatly reduce the number of
transitions involved in the model of Ref. 4. We can then
think of our system as consisting of an excited state cou-
pled to an ensemble of nonexcited vibronic states which
decay very rapidly. When considering one vibronic tran-
sition only and the explicit form of the pumping, one ob-
tains the usual four-level model for a laser. This ensures
that the gain of the system will be very large. However,
in the case we are dealing with here, all transitions are
coupled via the same excited state, and we have to con-
sider their interplay, too. Furthermore, the global polar-
ization is introduced as a variable. The equations are un-
derstood as describing the evolution of the mean values
of the material quantities interacting with a classical field
of amplitude E(x, t) = gkEk(x) exp(itokt ). The material
equations that are appropriate to our problem are then

P+(x, t) = i ggk—Ek (x)f e
0

e
q

—t'0 (t —t')
q

„exp
COq 2

yg 1

'2

Too(t') dt' (4)

and

d~00 lCt)k t
ro ~+-}P iX«E-k(x}e "P

dt k

+i g gkEk (x)e " P
k

(5)

We have introduced here the explicit form of the overlap
integrals for the relevant transitions, which are expressed
as

fo„=II,exp —g . (6)
q 0 nf Qq

In (4) and (5) T~ describes the population of the excited
level, s is the energy difference between the two electronic
states, and gk contains the dipole matrix element for the
electronic transition and is the coupling constant to the
field. Furthermore, we have introduced the excitation
rate y~ for the excited state. There is also an equation
for the population of the electronic ground state, which is
not written here. It couples the two electronic states only
and is not relevant to the gain, whereas its contribution
to saturation will be automatically considered. For later
use we have decomposed the time-dependent part of the
field in plane waves of frequency cok. All of these equa-
tions contain relaxation rates that are related to spon-
taneous emission and nonradiative transitions or whatev-
er process is supposed to contribute to the linewidth of
optical transitions. In the material under study at 2 K

there are mainly two sources of linewidth: spontaneous
emission, which determines the width of the zero-phonon
line, and the width, which originates in the density of
states of the phonons, whose relevance to the linewidth
has been emphasized in Ref. 3. Apparently there are no
relevant contributions of nonradiative transitions. There-
fore, we have introduced into (5} the relaxation rate cor-
responding to the spontaneous linewidth yo in the equa-
tions for the populations. The density of states contrib-
utes to the relaxation too. In the Appendix we show how
this relaxation time, which afFects the global polarization
P, can be made explicit in the equations. Using the re-
sults of the Appendix, the equation for the polarization is
rewritten as

P(x, t)= i ggkE—&

k

X g e
t —[i(cok +c—n0)+yn ](t —t')

0

S"
x e T+(t') dt',

pg f

where y is the relaxation rate related to the phonon den-
sity of states, and S is defined in the Appendix.

As already mentioned, the electromagnetic field is
treated as a classical variable E(x, t) in one dimension.
This approximation is justified in light of the experi-
ments. In the usual slowly varying envelope approxima-
tion, and written with respect to a definite-frequency
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component in the stationary regime, the field intensity
obeys the equation.

dIk
=g„[Ek (x)P +E„(x)P+],

4x

where P*(x,t) have been defined in (3) and are calculated
from (4) and from its complex-conjugate form for P
Our strategy will now be the following: we solve (4) and
(5) by a perturbative expansion around the equilibrium
value of the excitation in the stationary regime. This is

I

the procedure already used in Ref. 4. Then we insert the
result into Eq. (8) and compare it with the corresponding
terms of the expansion of (1) for aI «1 This will allow
us to identify the explicit expressions of g(co) and a.

III. GAIN AND SATURATION COEFFICIENTS

The calculation of the gain spectrum is performed as
outlined in the previous section. The first-order contribu-
tion to the global polarization is

2

P+ (x,t)= i g—gkEk (x)f dt'e " N g .
—rQ (t —t)

q exp
Qq

For a given observation frequency coo the gain is then
determined by

g(coo) =gkN g g 5(Q, —e —coo)
n q

Xexp

q

0
n 'I

(10)

This quantity shows the same behavior as the lumines-
cence spectrum when ~0 is varied. Therefore, we see ex-
plicitly that the gain spectrum and the luminescence
spectrum have the same dependence on energy, which
corresponds well to the experimental results reported in
Ref. [1]. As an illustration of the inffuence of the inter-
play of the different vibronic transitions in the gain spec-
trum, we evaluate the gain spectrum g(co) using the
simplified expressions in the Appendix, with a phonon
density of states approximated by Lorentzian curves cen-
tered on the experimental phonon energies. The values of

the parameter S;, 0;, and y; are obtained from the
luminescence spectrum, Fig. 2. The result is shown in
Fig. 4, taking into account the contributions of all pho-
non types, and can be compared to the measured
luminescence spectrum. To each diff'erent transition cor-
responds a sharp line in the spectrum. However, due to
the finite width y of the lines, they superimpose in the
sum and also lead to substantial gain in those spectral re-
gions in which the single line would not show any. A
more quantitative calculation can be done within the
model presented in Ref. 3 for AgBr:I, which corresponds
well with the one used here, using an experimental pho-
non density of states, and leads to the gain spectrum
shown in Fig. 5, where it is compared to the experimental
luminescence curve. The agreement between both curves
is satisfactory. Values for the gain, however, are more
diff1cult to determine because the density of 0 centers is
not known with sufficient accuracy. From (10) one also
sees that the gain has as a lower bound the gain of the
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FIG. 4. Approximate theoretical gain spectrum from (A5).
The dashed line corresponds to the gain spectrum for the
longitudinal-phonon contribution alone.

FIG. 5. Gain spectrum calculated with the model of Testa
et al. (Ref. 3) (a) compared to the experimental luminescence
curve (b) for liquid-helium temperature.
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pure electronic transition. This is useful in order to
evaluate the order of magnitude of the gain to be ob-
tained in this material.

The calculation of the saturation coefBcient is more in-
volved and requires the use of third-order terms in the
field amplitude. The corresponding expressions are
cumbersome and are found in the Appendix of Ref. 4 [see
Eqs. (A7) and (AS)]. These expressions are inserted into
(3) and give the third-order contribution P' ' to the polar-

I

ization. As is well known, this quantity is expressed as
the product of the third power of the field amplitude
times the gain and the saturation coeScient a. Because
we want to give an expression for a, we need to discuss
P' ' in some detail. In our system with only one excited
state, P' ' reduces in the sum of two terms, one of which
is the complex conjugate of the other. Therefore we need
to discuss only this single term, which we call M in the
following. Its explicit expression is

i(cf)p cok +60' cog )E

2f dt Jt f f dcok dcok dcok e Ngk, gk gk

XEk (x)Ek (x)Ek (x) exp —2 g

ra+�i�(~k

~k

'2

5(coq —e cok +cok cok )
1

n q

m

Xg g 5(Qq —e+cok )
m q

where coo= ko/c. For the component of the field with frequency coo, we find that (11)reduces to

M=2gk Ek (x)N g +5(Qq —coo—e)
n q q

'2 n

1
expn!

q

Qq

Ek (x)Ek (x)
X f f dcok dcok

ro+c ~0—~k,

A
qXg g 5(Qq —e+cok —coo —cok )exp

m q

Atq

0
m!

(12)

The first term in the product is the gain spectrum. The rest of the expression under the integral contains once more the
gain spectrum. In a good approximation we can then write the last two terms in the product.

M=2g(~, )Ek iEk I,'f fd~k d~k g g 5(e —Q, +~k ~k +~,)
n q

2 n

nl

exp

(13)

where g(coo) is the gain given in (10). This approximation relies on the following pmperties of the functions under the
integral in (11): the first term has a sharp maximum around coo, and therefore the function Ek (x) can be approximated

1

by Ekp(x). The other term has the form of the gain curve on which coo lies. Therefore it may be approximated by a 5
function with the argument cok —cok, thus giving the desired result. Taking now the sum of M and its complex conju-

gate, and remembering that P' ' is expressed as the product g(co)iEk i IEk ia, we find from (13) that the saturation
0 0

coei5cient is given by

cx —f fdco dco

exp
Xq

& Q',

ro+c(~0 k

2

+5(e—Q +cok cok +coo)—1 q

n q

+c.c. ,
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which is independent of co0 because the integrals extend
over the full co range. This gives theoretical support to
the experimental result on the independence of the satu-
ration coefficient of the frequency stated in Ref. 1.

From (14) it follows that the saturation coefficient cal-
culated from the data for the pure electronic transition
gives an upper bound for the realistic values of a. In
fact, the short lifetime of the lower vibronic states implies
that the saturation will not be very different from that
found for the pure electronic transition. This gives a
qualitative explanation of the result expressed by (12).
This point deserves some additional comments. In order
to understand the saturation process, we use the follow-
ing picture: one photon of frequency co0 is emitted. Be-
cause of the rapid decay of the lower vibronic states,
reabsorption, if it happens at all, cannot be influenced by
transitions between lower vibronic states. This is ex-
pressed in (11) by the presence in the integrals of a
frequency-dependent function which does not contain
phonon frequencies. In the next step there is once more
emission from the same excited state at the same frequen-
cy, and so on. Saturation builds up from the repetition of
these processes to an arbitrary order, and therefore, it is
expected to give the same frequency-independent value
for all emission frequencies that share the same excited
state. This is evident when using the approximate form
(7) of the equation for P(x, t). Having carried out the cal-
culations that lead to (14), one sees by inspection that a is
approximately given by the expression for the saturation
of the pure electronic transition. A different situation
would arise if an appreciable population of the lower vib-
ronic levels as well as transitions between these levels
would be present. In this case we expect a to be frequen-
cy dependent. An illustration of this different behavior is
discussed in Ref. 9. When the terms in the expansion of
the solution for material variables in the vibronic model
are substituted into (8), we obtain an equation that is
equivalent of the expansion of (1) in powers of aI. This
means that (1) gives a satisfactory description of the
ampli6cation properties of ZnTe:O.

In conclusion, we have shown that the one-dimensional
amplifier equation (1) gives a good description of the
emission properties of ZnTe:0, and that the vibronic
model of Ref. 4 allows the determination of the gain and
saturation parameters in (1).

APPENDIX

The expressions (9) and (14) require numerical calcula-
tions in order to give quantitative results. An insight into
their structure is obtained from approximate analytical
results which rely on an assumption about the form of
the phonon density of states. We need to discuss the sum
over the phonon wave vector q which appears in (4) in
some detail. The sum over q is rewritten as an integral
using the phonon density of states p(Q~ ),

S(t)=g e0
—iQ (f —t')

kq

0
Inq(1 t ) (g ) (A 1)

S(t) e
—(y+iQ)tS (A3)

with

S= f dQ&p(Q ) (A4)

When inserting (A3) into (7) we obtain the same ex-
pression that can be derived from the equations in Ref. 4,
with a decay rate that is determined by the density of
states. For general forms of the density of states, one can
only quote an implicit expression. In this spirit, the ma-
terial equations become

i ggk—Ek (x)g, e
k n

t —[i(t +cok —n0)+yn jt
X e

0

(A5)

and the gain is given as in Ref. 4 by

52
4 (n + 1)y;S;"e ' N

(A6)

where a sum over all involved phonon types is carried
out.

This expression was used to calculate the approximat-
ed gain spectrum in Fig. 4. The values of linewidths and
peak frequencies are taken from the experimental data.
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For an Einstein model, we would 5nd the expression
used in Ref. 4. When the density of states is approximat-
ed by a sum of a Lorentzians with centers at frequencies
0 corresponding to the maximum of the density of states
and widths corresponding to the experimental ones, we
interpret (Al) as a Fourier transform and rewrite

S(t)—f ( y+1 0)( i T)~( )d
0

where q)(v) (y=t t') is—the time Fourier transform of
the normalized coupling and the explicit form of the
Lorentzian has been introduced. It is evident that this
expression is equivalent to
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