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Spatially resolved measurements of the dynamics of sinusoidally driven space-charge domains in ultra-

pure Ge are presented for frequency-locked and driven chaotic oscillations. At liquid-He temperatures,
moving space-charge domains form due to impact ionization of shallow acceptors, resulting in a spon-
taneous periodic current oscillation for dc voltage bias. With a superimposed sinusoidal ac voltage bias,
these oscillations exhibit frequency locking and a quasiperiodic transition to chaos similar to those stud-
ied previously in the time domain by Gwinn and Westervelt. Spatial measurements using an array of
capacitive probes show that frequency locking and the transition to chaos initially occur via modulation
of the amplitude and motion of a single domain; thus the dynamics can be described by a low-
dimensional model. For larger ac drives in the chaotic region above the critical line, spatial coherence is
lost as domains form and disappear in the interior of the sample, and the electric field profile becomes
spatially complex.

I. INTRODUCTION

Bulk instabilities at low temperatures (T &30 K) are
observed in a number of semiconductors including
Ge, ' GaAs, InSb, and Si. These instabilities typi-
cally occur due to a regime of negative differential con-
ductivity (NDC), as suggested by Ridley. In cooled ul-
trapure Ge, a spontaneous current oscillation occurs
beyond the threshold for impurity breakdown due to a re-
gion of carrier-concentration-based NDC resulting from
impact ionization of shallow acceptors. " We have re-
cently used a movable capacitive probe to show that each
period of this current oscillation is due to the nucleation
and passage of a high-field domain through the sample. '

Because the domain is composed of trapped space charge,
the domain velocity is much slower than the free-carrier
drift velocity. '

The temporal frequency-locking behavior for the oscil-
lation in Ge with added sinusoidal drive has been studied
in detail in the temporal regime by Gwinn and Wester-
velt. ' These authors found quantitative agreement be-
tween the quasiperiodic transition to chaos observed in
Ge and universal predictions of the circle map. ' The
corresponding high-field domain motion in Ge during the
quasiperiodic transition to chaos was not studied in this
earlier work, and interesting questions remain open:
When the current becomes chaotic, do the variations in
the sample electric field remain spatially coherent, or do
they become more complex? Held and Jeffries investigat-
ed the loss of spatial coherence for a nondriven helical in-
stability' in an electron-hole plasma in n-type Ge at 77
K. Recently, Mosekilde et a/. have reported evidence for
complex spatial structures in numerical simulations of
driven chaotic Gunn diodes. '

In this paper we present time-resolved spatial measure-
ments of electric field profiles of space-charge domains in
ultrapure Ge when the sample oscillation is frequency
locked and driven into the chaotic regime with a

sinusoidal ac voltage added to a dc voltage bias. We use
an array of capacitive probes to measure the spatially
dependent electric field E(x, t) associated with the driven
instability. In the absence of an ac drive, each period of
the spontaneous oscillation has been previously shown'
to be due to a single space-charge domain transversing
the sample. In the frequency-locked regime below the
critical line, the spatial structure remains simple: a single
domain is present, but its height and velocity are modu-
lated by the external drive. As the drive amplitude is in-
creased into the chaotic regime, the spatial structure is at
first coherent, composed of a single domain modulated
chaotically in height and velocity. This result is con-
sistent with earlier temporal measurements of the quasi-
periodic transition to chaos in this system by Gwinn and
Westervelt, ' which were in quantitative agreement
with the circle map, a low-dimensional model. As the
drive amplitude is increased further into the chaotic re-
gime, we observe both a gradual loss of spatial coherence
and higher-dimensional behavior due to the nucleation
and destruction of high-field domains in the interior of
the sample. An early account of some of this work has
been reported in Ref. 16.

In theory, it may be possible to predict the drive pa-
rameters for which spatial coherence is lost by determin-
ing when domains nucleate and decay in the bulk of the
sample. However, this problem is dif5cult because
different parts of the sample are coupled by the require-
ment that the integral of the electric field along the sam-
ple equal the applied voltage. Hence, the growth of a
high-field domain in one part of the sample reduces the
electric field in other locations, and may suppress the
growth of domains or destroy existing domains, leading
to complex spatiotemporal dynamics. Criteria for the nu-
cleation and destruction of domains inside the sample are
determined in part by the local time-dependent profiles of
electric field and trapped charge density. For example, if
the electric field profile within a region is approximately
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homogeneous with an average value greater than E„the
threshold for spontaneous periodic current oscillations,
then it is likely that a high-field domain will be nucleated
within that region. Also, if the local trapped charge den-
sity is high, then a domain is more likely to form because
the net rate of impact ionization is increased.

The organization of this paper is as follows: Section II
presents experimental information and definitions. In
Sec. III we discuss the temporal behavior of the current
and the corresponding electric field profiles for
frequency-locked oscillations. Section IV shows data for
a driven chaotic oscillation which displays spatially
coherent behavior. Section V presents data for a driven
chaotic oscillation with larger drive amplitude, for which
the electric field profiles are much more complicated and
a loss of spatial coherence is observed. In Section VI we
explore the effect of the bias voltage, the drive amplitude,
and the drive frequency on the spatial coherence. Section
VII presents our conclusions.

II. EXPERIMENTAL PROCEDURES

The sample used for these measurements was cut from
a crystal of undislocated p-type ultrapure Ge with residu-
al shallow acceptor concentration Nz —1X10" cm
grown by E. E. Hailer and associates at Lawrence Berke-
ley Laboratory; the sample characteristics are described
in detail in Ref. 12. Samples from the same crystal were
used in earlier work on frequency-locking by Gwinn and
Westervelt. ' Similar behavior is also found for samples
cut from other crystals with comparable shallow acceptor
concentrations but with dislocations. ' We have experi-
mentally verified the absence of current filaments, '

which are observed in doped Ge with much higher im-
purity concentrations. ' After cutting to size
14.5 X4.0X4.0 mm and etching to remove surface dam-
age, Ohmic contacts were fabricated across opposing
4X4 mm faces via boron ion implantation. This pro-
duces a thin, degenerately doped p+ layer which acts as a
reservoir for holes in p-type Ge at liquid-He tempera-
tures. This geometry is chosen to ensure that electric
field lines lie primarily along the length of the sample.
The sample is mounted atop an array of capacitive probes
as described below, and cooled to liquid-He temperatures
by immersion in a cryostat. The temperature is held at
4.2 K by maintaining the liquid He at atmospheric pres-
sure, and the sample is surrounded by a cold radiation
shield held at the same temperature.

The voltage profile along the sample is measured with
an array of 16 capacitive probes fabricated using optical
lithography on a sapphire substrate. Each probe is 300
pm wide and extends across the entire width of the sam-
ple, perpendicular to the conduction direction. The
probes are arranged in eight pairs equally spaced along
the 14.5-mm length of the sample, which is insulated by a
thin (50-pm) sheet of mica. The capacitance of each
probe to the sample is calibrated by applying an ac drive
superimposed upon a dc voltage bias in the postbreak-
down regime, but well below the threshold E, ; the
probe-to-sample capacitance is =0.2 pF. An array of 16
charge-coupled amplifiers is used to sense the sample

E„„i(t)=Ez, + 3 sin(2n f&t ),
where E~, is the dc part of the applied field, A is the
drive amplitude, and fz is the drive frequency. By analo-

gy with circle-map theory, ' the frequency is expressed in
terms of the ratio folfz, where fo is the fundamental os-
cillation frequency for dc bias. The sample current is ob-
tained by measuring the voltage across a small (10 0)
series resistor. For all results reported in this paper, ex-

cept as specified in Sec. VI, the dc part of the applied
electric field is fixed at Es, =7.45 V/cm, which is above
the threshold E, =6.3 V/cm for spontaneous periodic
current oscillations. The fundamental frequency fo of
the spontaneous periodic oscillation for this dc bias field
is 1.2 kHz.

In order to understand the effect of the ac drive on the
spatial coherence, we measure the spatially dependent
electric field E(x, t) associated with a range of drive pa-
rameters. As a measure of the spatial coherence, we use
the linear correlation coefficient r, (x, r), defined as

r, (x,r) =
QE(d, t)E(d x,t+r)—
d

QE(d, t) QE(d x,t+r)2—
d d

(2)

where x and d are discrete distances along the conduction
direction and ~ is a time interval measured from an initial
time t. This function is sensitive only to changes in the
shape of the electric field profile, because the normaliza-
tion in the denominator removes the effects of differences
in the overall amplitude of the signals. Thus, r, (x,r) =1
corresponds to correlated motion, r, (x,r)=0 corre-
sponds to uncorrelated motion, and r, (x,r)= —1 corre-
sponds to anticorrelated motion. For each set of drive
parameters, we record the spatially dependent electric
field for 40 ms, and then calculate r, (x, r) using 1000
different values of t, separated by 40 ps. We then average
over t to determine r(x, r):

r(x, r)=(r, (x,r)), .

The function r(x, r) is peaked at a time for a domain to
move a distance x.

voltage profile, and the outputs of these amplifiers are
simultaneously digitized at a rate of 50 kHz per probe us-
ing a 16-channel A/D converter. The undesirable effects
of probe-to-ground capacitance and coupling between
probes are minimized by maintaining the probes at virtu-
al ground. Because the probe-to-sample capacitance is
small, perturbation of space-charge domain motion by
the probes is negligible. The electric field profile is ob-
tained by subtracting the sample voltages at each pair of
probes. The spatial resolution for this measurement is
approximately 400 pm, the center-to-center distance be-
tween probes.

The samples are voltage biased with a sinusoidal ac
drive voltage superimposed upon a dc voltage so that the
total applied electric field (equal to the applied voltage di-
vided by the sample length) E„„iis given by
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III. FREQUENCY-LOCKING DATA

This section presents data for the current and the elec-
tric field profiles associated with frequency-locked oscilla-
tions. Frequency locking was studied in the temporal
domain using similar samples by Gwinn and Westervelt.
In this section we consider only relatively small applied
ac drive amplitudes, so that the domain motion remains
spatially coherent. In Sec. V, we examine the case when
the drive amplitude A is suSciently large that domains
are created and destroyed inside the sample and domain
motion is spatially incoherent.

The temporal behavior of the driven oscillation in the
frequency-locked regime is summarized by the Arnold
tongue diagram in drive parameter space. Figure 2 of
Ref. 16 shows a series of Arnold tongues, within each of
which the sample oscillation is locked onto the drive in a
simple rational ratio. Experimentally, each tongue is
mapped by varying the frequency of the applied drive and
determining when the oscillation becomes unlocked using
a spectrum analyzer. The tongues extend vertically for
increasing drive amplitude until hysteresis is first ob-
served in the boundary of the tongue as the drive fre-
quency is varied. Even though this is a spatially extended
system, it has been shown to be well described at the
quasiperiodic transition to chaos by the circle map, '
which is a low-dimensional model. In this model, hys-
teresis in the boundaries of the Arnold tongues is
identified with the critical line. The tops of the Arnold
tongues approximate the critical line, which is not neces-
sarily a smooth curve. Above the critical line, the
tongues overlap and it is possible to drive the oscillation
chaotic.

Figure 1 shows the temporal and spatial behavior for a
frequency-locked oscillation with a 1:1 locking. The ap-
plied ac drive shown in Fig. 1(a) has amplitude A =0.78
V/cm and drive ratio fo/fd=1. 00, above the critical
line in Fig. 2 of Ref. 16. The ac part of the resulting
current oscillation is plotted in Fig. 1(b) using the same
time scale as in Fig. 1(a). The oscillation has a shape very
similar to that observed for the spontaneous periodic
current oscillation, ' with a sharp decrease in current fol-
lowed by a slower increase. The spatially dependent elec-
tric field E(x, t) measured with the array of capacitive
probes is shown in Fig. 1(c). The local electric field as a
function of time is shown at eight equally spaced posi-
tions along the sample with the trace taken closest to the
injecting contact at the bottom of the figure. As shown, a
high-field domain nucleates at the injecting contact and
moves smoothly through the sample. The domain ap-
pears similar to those observed in Ref. 12 for the spon-
taneous current oscillation. As the domain in Fig. 1(c)
approaches the receiving contact, the domain amplitude
decreases and a new domain is nucleated at the injecting
contact.

Figure 2 shows results for a 1:2 locking of the current
oscillation to the added ac drive. The drive parameters
are 3 =0.78 V/cm (as used for Fig. 1) and fo/fd =0.48.
The ac part of the applied bias is shown in Fig. 2(a) and
the ac part of the current is shown in Fig. 2(b). The
current oscillation appears similar to the current oscilla-
tion for the 1:1 locking shown in Fig. 1(b), except that the
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FIG. 1. Data taken for a 1:1locking of the current oscillation
onto the added ac drive, with Ed, =7.45 V/cm, A =0.78 V/cm,
and fo/fd=1. 00: (a) Time-dependent part of E„„,(t); (b)
time-dependent part of the sample current; (c) local sample elec-
tric field vs time at eight equally spaced locations with the trace
nearest the injecting contact at the bottom. The time axes are
the same in (a)—(c).

oscillation shown in Fig. 2(b) has an additional feature on
the rising portion of the current trace. Figure 2(c) shows
the corresponding electric field as a function of time at
successive positions. The figure shows a moving space-
charge domain periodically traversing the sample as in
Fig. 1(c}. The period of the domain motion in Fig. 2(c)
does not correspond to the drive period, but rather to the
slower fundamental period of the oscillation. The drive
frequency is manifested in the measured sample electric
field as a modulation in the amplitude and velocity of the
domain as it moves through the sample.

The phase of the domain motion in Figs. 1(c}and 2(c}
is such that each new domain is nucleated on the rising
edge of the ac drive. In general for this system, the ob-
served behavior of lockings which are of the form 1:N,
where N is an integer, is analogous to the 1:2 locking
shown in Fig. 2. Every N drive cycles, a domain is nu-
cleated at the injecting contact on the rising edge of the
drive. The amplitude and velocity of the domain are
modulated by the drive as the domain moves through the
sample. Lockings which are not of the form 1:N involve
the nucleation of domains on more. than one phase of the
ac drive. For these lockings, we observe domains nu-
cleated on the falling edge of the drive as well as the ris-
ing edge. The domains nucleated on the falling edge start
in the bulk of the sample, away from the injecting con-
tact.

Figure 3 shows data taken for a 2:3 locking of the sam-
ple oscillation to the external drive, with drive parame-
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FIG. 2. Data taken for a 1:2 locking of the current oscillation
onto the added ac drive, with Ed, =7.45 V/cm, A =0.78 V/cm,
and fp/fr=0. 48: (a) Time-dependent part of E„„,(t); (b)
time-dependent part of the sample current; (c) local sample elec-
tric field vs time at eight equally spaced locations with the trace
nearest the injecting contact at the bottom. The time axes are
the same in (a)-(c).

FIG. 3. Data taken for a 2:3 locking of the current oscillation
onto the added ac drive, with Ed, =7.45 V/cm, A =0.99 V/cm,
and fp/f~=0. 68: (a) Time-dependent part of E„„,(t); (b)
time-dependent part of the sample current; (c) local sample elec-
tric field vs time at eight equally spaced locations with the trace
nearest the injecting contact at the bottom. The time axes are
the same in (a)-(c).

ters A =0.99 V/cm and f0/fd =0.68. The ac part ofE„„,(t) is shown in Fig. 3(a) and the sample current is
shown in Fig. 3(b). Because the locking is not of the form
1:N, the period of the frequency-locked oscillation is
longer than the period of the fundamental oscillation; in
this case the period is twice the period of the fundamen-
tal oscillation. The current oscillation has a sawtooth
shape which alternates between two excursions. Figure
3(c) shows the electric-field profiles E(x, t) associated
with this current oscillation. The data show that the
deeper excursion of the current is associated with the
launching of a high-field domain at the injecting contact.
This domain is nucleated on the rising edge of the ac
drive, as in Figs. 1 and 2. The smaller downward excur-
sion of the current in Fig. 3(b) is associated with the
launching of a high-field domain several millimeters from
the injecting contact, as shown in Fig. 3(c). Comparison
with Fig. 3(a) shows that this domain is launched on the
falling portion of the ac drive.

Lockings which are not of the form 1:N, for which
domains nucleate at more than one drive phase, are ob-
served to be more sensitive to changes in the drive fre-
quency than 1:N lockings, for which all domains nucleate
on the same drive phase. Hence, the Arnold tongues for
the lockings which are not of the form 1:N are narrower
relative to the 1:N tongues' than the corresponding
tongues in the case of the circle map. ' For example, the
ratio of the width of the 2:3 tongue to that of the 1:2
tongue in Fig. 2 of Ref. 16 is much smaller than the cor-
responding ratio for the circle map.

IV. TEMPORAL CHAOS, SPATIAL COHERENCE

This section presents an example of a driven chaotic
oscillation for which the electric field in the sample is
spatially coherent even though the current is temporally
chaotic. We first discuss the temporal behavior of the
driven oscillation, as measured from the sample current.
Several standard techniques are used for plotting this
chaotic signal. To provide contrast and to show that the
nonperiodic oscillation is not due to noise, these plots of
the chaotic current oscillation are juxtaposed with plots
of a frequency-locked oscillation. The drive amplitude
used to drive the sample oscillation chaotic is A =0.85
V/cm, well above the critical line. The drive frequency is
at f0 lfd =0.62, approximately equal to the
golden mean og =(t/5 —1)/2. Each plot of the temporal
behavior is preceded by the corresponding plot for the
frequency-locked oscillation at the nearest wide Arnold
tongue, the 1:2 tongue. The drive parameters used for
this frequency-locked data are identical to those used for
Fig. 2, A =0.78 V/cm and fp /fd =0.48.

Figure 4 shows the power spectrum of the current,
measured with a signal analyzer using a Hanning win-
dow, for the frequency-locked and chaotic cases. The
power spectrum of the 1:2 frequency-locked oscillation,
shown in Fig. 4(a), is very clean with a signal-to-noise ra-
tio of approximately 65 dB. Figure 4(b) shows the power

spectrum of the current oscillation driven chaotic with

fp lfd approximately equal to the golden mean erg, plot-
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of the wrinkled torus for the quasiperiodic transition to
low-dimensional chaos.

The spatially dependent electric field associated with
the chaotic sample oscillation is shown in Fig. 7(a). As
above, the local electric field as a function of time is
shown at eight equally spaced positions along the sample
with the trace closest to the injecting contact at the bot-
tom. The data show that even though the current is tem-
porally chaotic, the electric field variations are spatially
coherent in the following senses. High-field domains are
observed to nucleate near the injecting contact and move
smoothly through the sample. Domains are nucleated
only near the injecting contact and always succeed in
reaching the receiving contact. A new domain is nucleat-
ed only when the previous domain exits the sample at the
receiving contact. The nonperiodic nature of the oscilla-
tion is manifested as a variation in the amplitude of the
domains when they first enter the sample and as a varia-
tion in the times between domains. The observed spatial
coherence beyond the quasiperiodic transition to chaos
indicates that the time dependence of the driven current
oscillation may be determined by only a few degrees of
freedom, in agreement with Gwinn and Westervelt. '

0.4 .

FIG. 4. Power spectra with Ed, =7.45 V/cm and (a) the os-
cillation locked to the drive with parameters A =0.78 V/cm
and fplfd =0.48; (b) the osci11ation driven chaotic with drive
parameters A =0.85 V/cm and fp/fd =0.62.

0.3

0.2 —.

: (a)

ted with the same scale as Fig. 4(a}. Compared to Fig.
4(a), in Fig. 4(b) there is a large rise in the broadband
noise level, as is characteristic of a chaotic oscillation.

In Fig. 5 we show the result of using the method of
time delays ' to plot the attractors using the sample
current for the 1:2 frequency-locked oscillation and for
the driven chaotic oscillation. In both cases the time de-
lay v=36 ps, approximately 7%%uo of the drive period for
the driven chaotic oscillation. The reconstructed attrac-
tor for the frequency-locked oscillation is shown in Fig.
5(a). The attractor is a closed loop, as expected for a
periodic oscillation. Note that the figure shows many
periods of the oscillation, but because the oscillation is
clean and periodic, the attractor appears as a single loop.
Figure 5(b} shows the reconstructed attractor for the
driven chaotic oscillation. In this case the attractor is
more complicated, as expected for a chaotic attractor.

Figure 6 shows the corresponding Poincare maps for
these two oscillations. These plots are constructed by
sampling the current at a fixed drive phase y. We then
construct the first return map by plotting the current at
the (n+1)th drive cycle as a function of the current at
the nth drive cycle. The Poincare map for the 1:2 locked
oscillation consists of two points because the oscillation
repeats every two drive cycles. This is shown in Fig. 6(a),
where for clarity we have plotted circles instead of points.
The Poincare map for the driven chaotic oscillation is
shown in Fig. 6(b). The folds in the Poincare map at the
bottom and along the right in Fig. 6(b) are characteristic
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FIG. 5. Reconstructed attractors from sample current using
7 =36 ps with Ed, =7.45 V/cm and (a) the oscillation locked to
the drive with parameters A =0.78 V/cm and fp/fd =0.48; {b)
the oscillation driven chaotic with drive parameters A =0.85
V/cm and fp/fd =0.62.
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(a) V. TEMPORAL CHAOS, SPATIAL INCOHERENCE

FIG. 6G. 6. Poincare maps constructed by strobing the sample
current at a fixed phase of the ac drive and plotting as a map,
with Ed, =7.45 V/cm and {a) the oscillation locked to the drive
with parameters A =0.78 V/cm and fp/fd =0.48; (b) the oscil-
lation driven chaotic with drive parameters A =0.85 V/cm and

fp/fd =0.62.

Figure 7(b) shows the correlation function r(x=1.6
mm, r) as defined in Sec. II, calculated for this driven
chaotic oscillation. There is a large peak in the correla-
tion function at a time interval ~=0.08 ms. This large
peak occurs because the electric field is spatiall
coherent. The time at which the peak occurs corre-
sponds to the transit time for the domain to travel x =1.6
mm, the distance between adjacent pairs of capacitive
probes. The second peak in the correlation function
occurs approximately one fundamental period later. As
expected, this second peak is smaller than the first peak.
A series of successively smaller peaks is observed [but not
shown in Fig. 7(b)] separated by approximately one fun-
damental period.

80

~ I I { ~ I I

In Sec. IV we showed that we can drive the sample os-
cillation temporally chaotic while maintaining spatial
coherence in the sample electric field. In this section we

fr
show that for a larger drive amplitude and higher dririve
requency, the driven chaotic sample oscillation is associ-

ated with spatially incoherent variations in the sample
electric field. This section is structured very similarly to
Sec. IV. First, we present several different plots of the
temporally chaotic sample current. Each of these is jux-
taposed with the corresponding plot for a frequency-
locked oscillation. The parameters used here to drive the
oscillation chaotic are A =1.91 V/cm and fo/fd =0. 18.
This drive has a higher frequency and a larger amplitude
than that used for the driven chaotic oscillation discussed
in Sec. IV. The parameters used for the frequency-locked
data shown in this section are A =1.63 V/cm and
fo/fd=0. 19, resulting in a 1:4 locking. Both of these
drive amplitudes are well above the critical line.

The power spectra of the sample current are shown in
Fig. 8 for each of these two sets of drive parameters. Fig-
ure 8(a) shows the power spectrum of the 1:4 locked oscil-
lation, showing a very high signal-to-noise ratio. The
power spectrum of the driven chaotic oscillation is shown
in Fig. 8(b). The large sharp peak at 6.6 kHz corresponds
to the strong ac drive. At lower frequencies the noise lev-
el has risen to the point where no sharp peaks can be dis-
cerned.
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FIG. 7. Driven chaotic oscillation with Ed, =7.45 V/cm,
A =0.85 V/cm, and fp/fg =0.62: {a) local sample electric field

vs time at eight equally spaced locations with the trace nearest
the injecting contact at the bottom; {b) «{x=1.6 mm, ~) vs ~.
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I ~ ~ { ~ ~ I I I I I I I ~ ~ I0
0 2 4 6 8

f (kHz)

FIG. 8. Power spectra with Ed, =7.45 V/cm and {a) the os-

cillation locked to the drive with parameters A =1.63 V/cm
and fp/fd =0.19; (b) the oscillation driven chaotic with drive

parameters A =1.91 V/cm and fp/fd =0.18.
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The reconstructured attractors for these driven oscilla-
tions are shown in Fig. 9. The reconstructed attractor for
the 1:4 locked oscillation is a closed curve which comes
back onto itself after making four loops, as shown in Fig.
9(a). The attractor for the driven chaotic oscillation,
shown in Fig. 9(b}, does not come back onto itself. The
corresponding Poincare maps are shown in Fig. 10. For
the 1:4 locked oscillation, the map consists of four points,
which are plotted as circles in Fig. 10(a). Figure 10(b)
shows the Poincare map of the driven chaotic oscillation.
This Poincare map is fuzzier than the Poincare map
shown in Fig. 6(b} for the driven chaotic oscillation dis-
cussed in Sec. IV. The fuzzier Poincare map in Fig. 10(b}
is indicative of a higher-dimensional attractor. In princi-
ple, one can extract the dimensionality of the attractor
from time-series data. However, for higher-dimensional
attractors, dimension measurements are easily corrupted
by experimental noise, and their interpretation is not
straightforward. For this work we feel that measure-
ments of the time-dependent spatial profiles are more
direct and robust.

Figure 11(a) shows the spatially dependent electric field
associated with the driven chaotic oscillation using the
same parameters as in Figs. 8(b), 9(b), and 10(b). The spa-

(a) (b

~yy:~ I.

FIG. 10. Poincare maps constructed by strobing the sample
current at a fixed phase of the ac drive and plotting as a map,
with Ed, =7.45 V/cm and (a) the oscillation locked to the drive
with parameters A = 1.63 V/cm and f0/fd =0.19; (b) the oscil-
lation driven chaotic with drive parameters A = 1.91 V/cm and

fo/fd =0.18.

tial structure shown in Fig. 11(a) is much more compli-
cated than that of the spatially coherent chaotic oscilla-
tion shown in Fig. 7(a}. In particular, Fig. 11(a) shows
that individual domains are nucleated and destroyed in
the bulk of the sample. At times there are multiple
domains in the sample. The bottom two traces in Fig.
11(a) show fluctuations in the local electric field at the
drive frequency before any domain is nucleated. The
next several traces show the growth and decay of larger
structures. Very few of the domains in Fig. 11(a) succeed
in reaching the last pair of capacitive probes, which is 1.6
mm from the receiving contact. The complex spatial
structure shown in Fig. 11(a) shows that, as suggested by
the Poincare map in Fig. 10(b), for this set of drive pa-
rameters many degrees of freedom are important in the
system dynamics.

The corresponding correlation function r(x = 1.6
mm, r) for this driven chaotic oscillation is shown in Fig.
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FIG. 9. Reconstructed attractors from sample current using
7 =36 ps with Ed, =7.45 V/cm and (a) the oscillation locked to
the drive with parameters A = 1.63 V/cm and fo/fz =0.19; (b)
the oscillation driven chaotic with drive parameters A =1.91
V/cm and fo/fd =0.18.

FIG. 11. Driven chaotic oscillation with Ed, =7.45 V/cm,
A = 1.91 V/cm, and f0/fd =0.18: (a) local sample electric field

vs time at eight equally spaced locations with the trace nearest
the injecting contact at the bottom; (b) r(x =1.6 mm, ~) vs ~.
The horizontal line indicates r(x = 1.6 mm, ~)=0.
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VI. THE EFFECT OF DRIVE PARAMETERS
ON SPATIAL COHERENCE

In Secs. IV and V we demonstrated that we can ob-
serve spatial coherence or spatial incoherence when the
oscillation is driven chaotic, depending on the drive pa-
rameters. In this section we map the dependence of spa-
tial coherence on the drive parameters by measuring the
spatially dependent electric field E(x, t) for many
different combinations of drive parameters. We use 16
difFerent drive frequencies equally spaced in fo Ifd, in the
range 0. 12 ~f&& If d

~ 1. At each drive frequency we mea-
sure E(x, t) and compute the correlation function
r(x = l.6 mm, r) for each of 20 equally spaced amplitudes.
Figure 12 is a plot of the measured values of r,„,the
maximum value of the correlation function r (x = 1.6
mm, r) with respect to r, for each set of drive parameters.
This plot uses shading to indicate the value of r,„.The
drive amplitude is on the vertical axis and fo/fd is on
the horizontal axis. Note that the vertical axis extends
over a much larger range in Fig. 12 than in Fig. 2 of Ref.
16 and that for most of the data shown in Fig. 12 we are
driving the sample well above the critical line. The
lighter regions in Fig. 12 correspond to drive parameters

0.8

~my' 0 7

0.6

0.5

0.4

0
0

o Fig. 11
~ Fig. 7

0.5

f /fd

1.0

0.3

0.2

0.1

FIG. 12. Density plot of r,„constructed by measuring
E(x, t) on a grid of 18 drive frequencies and 20 drive ampli-
tudes. The value of r,

„

is indicated by the shading. The black
dot ( A =0.85 V/cm, fo/f~ =0.62) indicates the drive parame-
ters used for the driven chaotic oscillation in Sec. IV and the
white dot ( A =1.91 V/cm, fo/fd =0.18) indicates the parame-
ters used for the driven chaotic oscillation in Sec. V.

11(b). The height of the first peak is r =0.4, as compared
to r =0.7 for the spatially coherent driven chaotic oscilla-
tion shown in Fig. 7. The first peak in Fig. 11(b) is small-
er and broader than that in Fig. 7(b), because for Fig.
11(b) the sample electric field appears spatially in-
coherent. The first peak in r occurs at roughly the same
time r as in Fig. 7(b). This suggests that the domains
move at approximately the same velocity as in the case of
the spatially coherent oscillation. As in Fig. 7(b), there is
a second peak in Fig. 11(b), occurring approximately one
transit time after the first peak. The relative decay in
height from the first peak to the second peak is 43%%uo in
Fig. 11(b) and 29% for the spatially coherent data in Fig.
7(b).

for which the domain motion is spatially coherent and
the darker regions correspond to less correlated behavior.
The drive parameters used for Figs. 4(b), 5(b), 6(b), and 7
and those used for Figs. 8(b), 9(b), 10(b), and 11 are each
indicated by dots in Fig. 12. As expected, the drive pa-
rameters used for Fig. 11 lie in a much darker region of
Fig. 12 than do the parameters for Fig. 7.

The least correlated regions in Fig. 12 correspond to
complex behavior, which occurs when the electric field
variations due to the drive become comparable to domain
sizes for the undriven oscillation. The darkest region in
the upper left of Fig. 12 corresponds to drive parameters
A =2 V/cm and folfd =0.3. This region of minimum
correlation occurs when the drive period is approximate-
ly equal to a characteristic time ht =0.3 ms given by the
domain velocity divided by the domain width. As dis-
cussed in Sec. I, the nucleation and destruction of
domains is determined in part by the time-dependent
electric field and charge-density profiles over a length
scale slightly larger than a domain width. A high-field
domain may nucleate when the electric field over a region
becomes comparable to E, =6.3 V/cm, the threshold for
spontaneous periodic oscillation for dc bias. Similarly, a
high-field domain may be destroyed when the local elec-
tric field decreases suSciently. Different regions of the
sample are coupled by the fact that the spatial integral of
the electric field over the entire sample is equal to the ap-
plied voltage at all times. This coupling results in com-
plex behavior, as shown in Fig. 11(b). When A is
suSciently large (A &Ed, E, ), the t—ime-dependent ap-
plied field swings below E, and it becomes likely that the
local sample electric field crosses thresholds for the nu-
cleation and destruction of domains. For very large A,
the ac drive destroys all domains before they reach the
receiving contact. In this limit the correlation coe%cient
increases because the domains make relatively smaller
contributions and the system behavior is dominated by
the drive response. Above the critical line, the system
displays hysteresis between several accessible states as the
drive parameters are varied. Theoretical diagrams of ac-
cessible states for model systems above the critical line
consist of complicated structures with islands. It is possi-
ble that some of the finer variations in correlation evident
in Fig. 12 are associated with these structures.

Note that over intervals of the order of the transit time
between probe pairs, the spatial coherence of the electric
field for the driven oscillation is not strongly dependent
on whether or not the oscillation is locked. The range of
drive parameters in Fig. 12 includes regions in which the
oscillation is frequency locked to the drive as well as re-
gions of chaotic oscillations. Even when the spatial
structure is complicated, domains move along the con-
duction direction with velocities close to the velocity of a
domain for dc bias. The data in Fig. 12 are determined

by the spatial coherence over times that are much shorter
than the domain transit time. By contrast, the question
of whether the oscillation is locked or chaotic can only be
determined by examining a time series over a number of
transit times.

Figure 13(a) shows an example of data for which the
oscillation is temporally locked but spatially complex.
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FIG. 14. (r,„)vs drive amplitude A for three different
values of Ed, . The arrows indicate the value of A for which the
minimum in applied electric field first decreases below E,=6.3
V/cm in each case.

FIG. 13. 1:4 frequency-locked oscillation with Ed, =7.45
V/cm, A = 1.61 V/cm, and fo/f„=0.21: (a) local sample elec-
tric field vs time at eight equally spaced locations with the trace
nearest the injecting contact at the bottom; (b) r(x =1.6 mm, ~)
vs r. The horizontal line indicates r(x =1.6 mm, ~)=0.

The figure shows the local sample electric field at succes-
sive positions as a function of time, with the bottom trace
nearest to the injecting contact. The drive parameters
are fo/fd =0.21 and A = 1.61 V/cm, and the current os-
cillation is locked onto the drive in a 1:4 locking. This
drive is sufficiently large that E„„i(t)swings below E, .
Because the oscillation is locked onto the drive, the local
electric field at each position in the sample is periodic
with a period equal to 0.7 ms, the shifted fundamental
period of the oscillation. However, the time dependence
of the local electric field varies considerably aplong the
eight traces in Fig. 13. This is unlike the data shown in
Figs. 1(c) and 2(c), for which E««i(t) )E, for all t, and a
single domain with relatively constant shape moves
through the sample. Near the injecting contact in Fig.
13, the electric field as a function of time has large fluc-
tuations at the drive frequency. Closer to the receiving
contact, these fluctuations are smaller and a high-field
domain is observed at the fundamental oscillation fre-
quency.

The corresponding correlation function r(x = 1.6
mm, r) is shown in Fig. 13(b). The height of the first peak
in the correlation function is approximately the same as
that for the spatially incoherent chaotic data shown in
Fig. 11(b). However, in Fig. 13(b), peaks in the correla-
tion function r(x =1.6 mm, r) are periodic in r, and the
height of the second peak is equal to the height of the
first peak because the oscillation is frequency locked.

As discussed above, the loss of spatial coherence
occurs for an ac drive sufficiently large that E„„,(t)
swings below E, =6.3 V/cm. In order to investigate the
relation of this threshold field to the loss of spatial coher-
ence, we measured the spatial coherence of the electric-

field profiles for two dc bias fields Ed, above that used for
Fig. 12. At each bias we measured E(x, t ) and computed
r(x =1.6 mm, r) for the same grid of 20 equally spaced
drive amplitudes and 16 drive frequencies equally spaced
in folfd as used for Fig. 12. For each set of drive pa-
rameters, we determine r,„,the maximum amplitude of
the correlation function r(x = 1.6 mm, r) over the delay r
We then average over fo/fd to determine the average
maximum correlation amplitude (r,„)as a function of
drive amplitude for each dc bias field, as shown in Fig.
14. The results for the bias field used for Fig. 12 are
shown as circles and the results for the two higher bias
fields are indicated by squares and triangles. For low
drive amplitudes, the spatially dependent electric field is
spatially coherent for all three of the bias fields and
(r,„)is large in each case. As the ac drive amplitude is
increased, a loss of spatial coherence occurs and (r,„)
decreases. This decrease is fastest in the case of the
smallest dc bias field and slowest for the largest bias field.
This difference suggests that changes in the local electric
field which result in the nucleation and destruction of
domains in the bulk of the sample are more 1ikely when
the instantaneous applied electric field is close to E„the
threshold for spontaneous periodic current oscillations.

VII. SUMMARY AND CONCLUSIONS

Driven space-charge domain motion in long samples of
ultrapure Ge has been studied using an array of capaci-
tive probes. Below the critical line for the occurrence of
chaos, we observe frequency-locking behavior and an Ar-
nold tongue diagram similar to that obtained by Gwinn
and Westervelt. Our spatially resolved measurements
show that each period of the spontaneous oscillation is
associated with the passage of a single space-charge
domain through the sample. Frequency-locking initially
occurs via smooth changes in the amplitude and motion
of the domain rather than the production or destruction
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of additional domains. The quasiperiodic transition to
chaos is initially low dimensional in the sense that only a
single domain is involved, in agreement with the success
of the circle map in describing the temporal data of
Gwinn and Westervelt. '

At larger drive amplitudes above the critical line, the
motion becomes higher dimensional as domains are creat-
ed and destroyed in the interior of the sample. Local for-
mation and destruction of domains inside the sample de-
pend on the local time-dependent profiles of electric field
and trapped space charge, which both change continually
in a driven sample in the postbreakdown regime.
Different parts of the sample are coupled by the require-
ment that the spatial integral of the electric field equal

the applied voltage, so that the formation of a high-field
domain in one location tends to suppress the formation of
domains in other locations, and may actually destroy oth-
er domains. In this regime the chaotic electric field

profile becomes spatially complex as well as temporally
chaotic.
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