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Luminescence polarization of CdSe microcrystals
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We have considered theoretically the polarization of the luminescence of small CdSe microcrystals
due to the hexagonal structure of the lattice. We derive the energy spectrum and wave functions of holes
in spherical microcrystals. It is shown that the value of the splitting between the A and B hole states in
microcrystals could be five times smaller than the corresponding value of crystal-field splitting 5 in bulk
hexagonal semiconductors. The times of radiative recombination and the polarization of light connected
with transitions between the electron and hole quantum size levels (QSL's) were calculated. The time
dependence of the luminescence polarization has been found. At the first instant after short impulse ex-
citation the degree of polarization should be equal to 13/51. It is shown that nonequilibrium electron-
hole pairs, with long lifetimes, are formed in microcrystals as a result of the hole thermalization to the 3
state after excitation into the B state. The recombination of these states requires the participation of
phonons, resulting in a strong dependence of the recombination rate on the temperature. The degree of
luminescence polarization of these states depends on the type of phonons involved in optical transitions.

I. INTRODUCTION

The optical properties of microcrystals have attracted
considerable attention in the past years. ' " In micro-
crystals smaller in size than the bulk exciton radius these
properties are determined at a first approximation by
transitions between quantum size levels (QSL's) of holes
and electrons. The quantitative descriptions of absorp-
tion and luminescence have to take into account the real
band structure of microcrystals because it leads to the
shift of optical transition energies and/or to the changing
of the optical selection rules. ' '"

The optical properties of small-size CdSe microcrystals
with hexagonal lattice structure have recently been inves-
tigated. ' The high quality of these microcrystals makes it
possible to reveal the fine structure of the absorption and
excitation spectrum due to the structure of the valence
band. The existence of intrinsic asymmetry in such mi-
crocrystals caused by the hexagonal axis of the lattice
leads to asymmetry of their optical properties. It should
lead and does lead' in particular to the polarization of
luminescence. The observed value of this polarization is
certainly reduced by the accidental distribution of the
hexagonal axis directions in different microcrystals. The
polarization of luminescence has been observed also in
large-size CdSe microcrystals. '

Investigation of the luminescence polarization could
provide information on the processes of thermal and spin
relaxation of electrons and holes in microcrystals. The
nature of their interactions with phonons has not yet
been established, and the degree of polarization, depend-
ing strongly on the type of this interaction, might reveal
it.

The following is a theoretical analysis of the linear po-
larization of luminescence of sma11-size CdSe microcrys-
tals with hexagonal lattice structure. The paper
comprises the following. First of all we will consider the
energy spectrum and wave functions of the hole's QSL's.

After that, the times of radiative recombination and
dependencies of the light absorption and emission on the
angle between the hexagonal axis of the microcrystal and
the polarization vector of light will be found. After con-
sidering the recombination kinetic of nonequilibrium
electron-hole pairs (Sec. IV) the time dependence of
luminescence polarization will be obtained (Sec. V). Fi-
nally, we will discuss received results.

II. ENERGY SPECTRUM AND WAVE FUNCTIONS
OF HOLES

A. 2

IIc =(Xi+ ,')') —-(pJ)'
2mp mp

(2)

where p= —iAV is the momentum operator, mp is the
mass of the free electron; y, and y are Luttinger parame-
ters, and J,J„,J, are the 4X4 matrices of the projections
of the spin momentum J =—,'. ' The simplest term f' ex-

pressing the main feature of the valence band of hexago-
nal semiconductor structures is

f = —b(J, —
—,')/2=— 0

0

Let us assume that the microcrystal is a semiconductor
sphere with radius a surrounded by an infinitely high po-
tential barrier. ' The energy and wave functions of QSL's
of holes and electrons will be treated in the framework of
the effective-mass approximation.

The hole Hamiltonian in hexagonal crystals Ps has a
rather complicated form. ' It could be obtained from the
Luttinger Hamiltonian HI (Ref. 16) by adding an aniso-
tropic term P:

A'=I, + f',
where HL could be treated in the spherical approxima-
tion:
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where 6 is the value of crystal-field splitting of the
valence band, the distance between A and B valence sub-

bands.
The effective-mass tensors in subbands A and B are an-

isotropic. Effective masses of holes along the hexagonal
axis mll„and perpendicular to this axis mi~ in the A

subband are connected with y parameters by the relation-
ship

mls ™o/(yl 2y) ml~ =mo/(yl+y) .

Corresponding values for the B subband are

(4)

mlB =mo/(y l+2y» mlB mo/(y l
—y ) . (5)

In suSciently small microcrystals, i.e., when the size
quantization energy of holes is larger than the value of
crystal-field splitting 6, we can find the energy spectrum
of Hamiltonian (1}within the framework of perturbation
theory.

Every state of the Hamiltonian (2) describing free holes
in a spherical potential well is characterized by the total
momentum F (F =—,', —'„.. . ).' ' The Hamiltonian (2) also
commutes with the parity operator I. As a result, the
common solution of (2) has the following form:

1
u3/2= —(X+iY)T,

2

1
u 3/2 —(X i—Y) l

2

ul/2= —[(X+iY)l 2Zf ]
1

6

jo(k)j2(3/pk)+ j2(k)jo(3/pk) =0, (8)

where k =a/2mii„E„/fi, p=mlB/ml„ is the ratio of
light- (5) to heavy- (4) hole effective masses in the fourfold
degenerate valence band. ' Wave functions of the odd
states with F=

—,
' have the form

u l/2= —[—(X i—Y)f+2Zl] .
6

The positions of QSL's for the boundary condition

%F~ I(a)=0 corresponding to an infinitely high potential
barrier surrounding the microcrystal have been found in
Ref. 5. In this paper we will only be interested in the odd
states with F=

—,', because, as will be shown further on,
they are the only states that participate in the optical
transitions to the lowest QSL of electrons.

The equation determining the energy of these QSL's,
E& can be written down as

VFMI=v 2F+1+Rl (r)( —1)
li

II
X g M Yl up, (6)

p m —M, m I'

where II have the value F—
—,',F+—,

' for odd solutions
and F—

—,',F+—,
' for the even ones. Radial functions

Rl (r) for every parity satisfy the set of second-orderI
differential equations. ' Linear combinations of the
spherical Bessel functions jl(x) (Ref. 5) are the solutions
of this set in the case of free holes. Yi (H, p) are the nor-
malized spherical functions,

i k l
m n p

are the 3j Wigner symbols, and u„(p=+—,', +—', ) are the
Bloch functions of the fourfold degenerate valence band
I 8..

A jll(k)
R2(r)= „, j2(«/a)+ . „,j2(kp'"«a)

a 3/2 jo(kP'/ )
(10)

A
R p( r) =

3/2 Jp( kr la )—a'"
jp(k)

jp(kP'/ r la)
(kpl/2)

k is one of the roots of Eq. (8) connected with the energy
of QSL's by the relation

E„=,(k)2.
2mllAa'

The constant A is determined by the normalizing condi-
tion

rr R0 r+R2 r =1

and is equal to

2

2 X Rl(r) g M Yl u„, (9)
1=0,2 m+p=M .

where M =k—,', 6—,', and radial functions Ri(r) take the

form

2

A =1 dx x j2(kx)+, j2(kp x) + jp(kx)—2= 2 Jo(k} l/2

jp(kP'/ )

' (k '/x)jp(k}
(kpl/2)

(12)

El, =A' q)2/(2mii„a ), (13)

When the effective mass of the light holes is much
smaller than the one for heavy holes (p«1}, Eq. (2)
reduces to j2(k)=0. The energy of the ground QSL of
holes E„ is "

R p
=C [jp(+2r /a) —jp(&2)],

R2= Cj 2(p2r/a),
(14)

I

where q&2=5. 76 is the first root of j2(x). The normalized
radial wave functions R0 and R2 of this state have the
following analytical form:
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10.0 1.0 III. POLARIZATION OF LUMINESCENCE
AND RADIATIVE RECOMBINATION OF THE SYSTEM

OF SELECTIVE EXCITED ANISOTROPIC
MICROCRYSTALS

/
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Let us consider the interband transitions to and from
the lowest QSL of electrons caused by the absorption and
emission of the linear polarized light. The wave function
of ground QSL of electrons has the form'

1/2

( )
2 sin(mr/a)

Y lS

0,0
/

I I I I I~I
f

I I f I I I I I I
[

I I I I I I I~/ I i I I I I I 1 I
[

I I I I I I I I l 0 0
=f ( r }Yoo l

Sa &,
0.0 0.2 0.4 0.6 0.8 1.0

RATIO OF MASSES P

FIG. 1. Dependences of the dimensionless ground-hole state
splitting v (P) and the two smallest roots of Eq. (8} on the ratio
of the light- to heavy-hole effective masses P.

where lSa & are the Bloch functions of the conduction
band and a is the projection of the electron spin: a= l or
f. The probability P of optical transitions is proportional
to the squared matrix element of the operator ep between
the electrons (18) and the holes (6) wave functions:

PM=pl &u„leplSa & l (2F+1)
a,p

where C=6.044/a / . The dependences of the first two
roots of Eq. (8) are plotted in Fig. l.

We can consider the influence of term (3) on the energy
spectrum in the perturbation theory framework if the en-

ergy of the hole size quantization is larger than A. The
first-order perturbation theory gives the shift of the state
with M =+—,':

X fdr f(r)Yoo

3
2

XQRi (r) M — —M YI, M —q

(19)

0
53/2 4hf drr —Ro 0 3

2

= —hfdrr [R +—'R ]

3 2
2

+R2
2

For the states with M = + —,
' the shift is

2--''

(15)

where e is the vector of light polarization. This matrix
element is nonzero only for odd states of holes with F =

—,
'

because only these wave functions have components with
the spherical function Y giving nonzero contribution in

Eq. (19): fdQ Y& Yoo=51o. Substituting Eq. (9) into Eq.
(19) we obtain

5~/p= 45f dr r R2
2 3

2
3 '2
2

3 1

2 2

PM,.= l& +Mleplq, .& l'

46fdrr R—

3 '2
2

+ 2
2 2

= f«r V(r)Ro(r) I & u, =M leplS~ & I'

=K
l & uM leplSa & l';

here K is the overlap integral squared:

(20)

By substituting Eq. (10) into Eqs. (15) and (16) we can
define the splitting between states with lMl= —,

' and K= drr rR0 r (21)

53/2 5]/p —6f dr r [Ro(r)—
—',R 2(r)]

= —v(p)b, . (17)

The dimensionless splitting function v (p) depends only
on the ratio p between the light- and heavy-hole effective
masses —it does not depend on the size of microcrystals.
The function v(p) is plotted in Fig. l. If p 0 for the
ground QSL, v(0)=0.2. The splitting between the /I

and B hole states is five times smaller than in the bulk
semiconductor. As Fig. 1 shows, the splitting is very sen-
sitive to the value of p in the interval 0 (p (0.3.

ep=e,p, +e p++e+p (22}

where z is the direction of hexagonal axis of microcrystal,

e+ =(e„+ie )/3/2, p+ =(p +ip~) /23/.

The light with polarization e excites the transitions be-

Its value is independent of microcrystal size a and de-
pends only on p. The dependences of E on p for two
lowest QSL's of holes are presented in Fig. 2.

We can expand the scalar product ep for linearly po-
larized light in Eq. (20):
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P, &2
=2KP [—', cos 8+ —,

' sin 8]

,'K—P [1+P2(cos8)], (27)

IX05

z,
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FIG. 2. Dependences of the overlap integral squared E for
the first (curve I) and second (curve 2) QSL on the ratio of the
light- to heavy-hole effective masses P.

tween the hole states with M =
—,
' and the electron state

with spin up (marked as I —,
' ) and

I f )) with the relative
probability

I& (le+le I

e
&
I'=((' (S( e+(1 (X+(('&()

2

=K le+ &S1Ip.x+py Y) t &/21'

(e2+ e 2)Kp2/2

=ejKP /2=(KP /2) sin (8), (23)

I& &Ie p+I —-', &I'=(Kp'/2)sin'(8) . (24)

where P = (SIp~ I Y) is the Kane interband matrix ele-
ment and 8 is the angle between the light polarization
and the hexagonal axis of the microcrystal. The same ex-
pression describes the transition probability between the
hole state M = ——,'(I ——', )) and the electron state with
spin down ( I $ ) ):

where P2(x) is the Legendre polynomial. For the twofold
degenerate hole state with IMI =—', this probability is pro-
portional to

P3&2=2KP sin 8=—', KP [1—P2(cos8}] . (28)

1t means that the excitation probabilities of these two
states differ from each other and depend on the angle be-
tween light polarization e and the hexagonal axis C of the
microcrystal. For one orientation of microcrystals light
excites the states with IMI =—'„ for the others IMI= —,

'

states. This also causes the polarization of luminescence
because the selection rules of radiative recombination are
the same as those of absorption.

The relative probabilities of the radiative recombina-
tion of the electron-hole pair (EHP) are described by the
same matrix elements (24) —(26). For the IM, a) EHP
states the intensities I,.(M, a) of the light emission with
the polarization vector e' are proportional to

I, ( ——,', J, )=I, ( —', , 1)-(KP /2) sin (8'),

I, ( —
—,', 1' ) =I,.( —,', g ) —(KP /6) sin (8'),

I, ( ——,', l ) =I, ( —,', t )-(2KP /3 ) cos (8'),
(29)

1

r„(M,a) 3m0c I (30}

where co and c are the frequency and velocity of light, n is
the refractive index. Using Eqs. (20}one can find

1

r„(-,', 1)
1 1=—E,

r„( —
—,', l) rp

where 0' is the angle between e' and the hexagonal axis of
the microcrystal.

The total times of the radiative recombination of the
IM, a) states r„(M,a) can be obtained by summing up
probabilities (20) over all light polarizations. They have
the following form

Corresponding calculations for the hole state with M =
—,
'

(I-,' &) give

I & t le.p, I ,' & I'=K
I &S t'le, p-, I

v'2/3Z 1 & I'

—2 e2KP2 2KP2 cos2(8)

1

r„(-,', t)
1

r„(-,', l)

1 2 E,r, (
—

—,', l) 3'
1 1 E,r, (

—
—,', f) 3'

(31)

l&(le p I —,'&I'=((' (s( e p -(x+(('&()
6

(25} where

4conP

3 X 137m0c m0
(32)

=(KP /6) sin (8) .

The same calculations for the M = —
—,
' state (I —

—,
' ) ) give

I & l I e,P, I

—
—,
'

& I
=—', KP cos (8),

I( tIe p+ I

—
—,
' ) I'=(KP'/6) sin'(8) .

(26)

The total probability of the excitation of the twofold
degenerate state of holes with IMI =

—,
' is proportional to

is the characteristic time of the radiative recombination
for bulk semiconductors. We can estimate ~0=1.0 ns for
CdSe using P /2m0=20 eV.

The radiative recombination times in microcrystals for
different states (31}satisfy the rule 1:2:3and are of rp/K
order. The value of the overlap integral squared K (21) is
very sensitive to the ratio of light- to heavy-hole effective
masses P (see Fig. 2). In most of the semiconductors P is
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dN

dt

+ W, /z —,
' cos (8),

N-1/2, )
—1/2, f

+ W]/2 —,
' sin (8),

1 1

3/2

(34)
T T

dN3/2 f 3/2 f 1/2+ +
dt ~p( 2y T) &3/2

N, /2

+—3/2

dN T

dt

TN 3/2 f N1/2+ +
+ir 3/2 3/2

where r„(M,a) are the times of radiative recombination
(31), r3/~ is the time of the hole thermalization from the
states l+ —,') to the states l+ —,') and r 3/2 is the time of
the thermalization from the states l+ —,

' ) to the states

—, ), r;, is the long time of the indirect optical recom-
bination of the

l

——'„1) EHP state. The nonhomogene-
ous terms in the right side of Eq. (34), which are propor-

of the order of 0.1. At such P the value of EC consider-
ably reduces the oscillator strength of the interband opti-
cal transitions between the ground hole and the ground
electron state and makes the radiative recombination
times in the semiconductor microcrystals one order of
magnitude larger than ~0.

At the same time direct optical recombination of the
l
—', , 4) and

l

—
—',, 1) EHP states are impossible because

the matrix elements ( —', lepl1) and ( —
—,'lepl 1') are equal

to zero. Such states could be formed as a result of the
thermalization of the holes initially excited into the states
with M=+ —,'. The

l
—'„1) and

l

—
—,', 1 ) states could

recombine only with the emission or absorption of pho-
nons. At low temperature these processes occur much
more slowly than those of direct optical recombination
(31). This leads to the formation of the long-living EHP
states in rnicrocrystals with hexagonal lattice structure.

IV. KINETIC OF ELECTRON-HOLE PAIR
RECOMBINATION

In Sec. III we obtained Eq. (29) for the dependence of
luminescence intensity I,.(M, a) on the angle 8 between

the vector of light polarization e' and the microcrystal
hexagonal axis C due to the annihilation of the lM, a)
EHP state. The total intensity of luminescence 2,. should
be a product of I, (M, a) and the number of microcrystals
containing such e-h NM (C) integrated over all direc-
tions of microcrystal axis C and summed up over all pos-
sible EHP states:

J, = g f I;(M, a, )NM (C)dQ . (33)
M, a

The numbers of microcrystals N]]t (C) are determined
by the probabilities of the EHP excitation described Eqs.
(23)—(26) and by the kinetic of the radiative and thermal
relaxation of excited EHP's. For the holes excited in the
upper l+ —,

' ) states this kinetic can be described by the
following system of equations:

dN1/2, t N1/2, t 1 1

1

—N 1/2, 7
+

dt Si( 2 & 1 ) V3/2 V —3/2

1 1 1K=
r„(——,', 1 ) 3'

(36)
1 =2 1 =3

r„(2, t) rd„' r„(2, 1')

The times of the thermalization r+3/2 in Eq. (34) are
determined by the hole interaction with the phonons.
The spectrum and wave functions of the phonons in the
spherical microcrystals differ from the ones in bulk semi-

conductors. Each phonon state should be characterized
by the orbital momentum I and it is 21+1-fold degen-
erate with respect to the projection momentum m. The
wave functions of these states were found by Englman
and Ruppin and Ruppin. '

The Harniltonian of the electron interaction with such
spherical phonons in the second quantization representa-
tion can be written in the form

U, ~
= X kl n(r)~b] „Y]~(8,y)+b]L„Y]m(8 ]p) j

I =0, 1, . . .
/~m ~l, n

(37)

where b& „and b& „are the creation and annihilation
operators of the nth type of the spherical phonons with
the orbital momentum 1 and the momentum projection
m. The radial functions g] „depend on the type of pho-
nons. For the longitudinal optical and surface phonons
these functions have been found in Refs. 22 and 2.

The thermalization of holes from the upper l+ —,')
states is followed by phonon emission. The probability of
the transition from the

l —,') to the
l —,') holes states is

determined by the squared matrix element:

tional to 8 M, take into account the angle dependence of
the probability of the EHP excitation by the light with
the polarization vector e (23)—(27).

For the holes excited directly in the l+- —', ) state,
therrnalization is impossible and the kinetic equations
have a much more simple form:

dN3/2 't N3/2 + W3/2 —,
' sin (8) . (35)

dt r„(—,', 1)

The systems (34) and (35) concern only the EHP states
with an electron in the

l 1 ) state. A similar system could
be written for the

l $ ) electron state but it is not neces-
sary. The second electron state only leads to the factor 2
in Eq. (33).

The probabilities 8', /2 and 8'3/2 are proportional to
the light intensity and the number of microcrystals n~M~

taking part in the absorption at the frequency co. The
numbers of rnicrocrystals n»2 and n3/2 can differ from
each other because the levels of holes with M = + —,

' and
+ —,

' are split by the amount 53/2 5]/2 (17). As a result
the photons with energy A'co excite the l+ —', ) and l+ —,

' )
states in microcrystals with different sizes. Its relative
numbers are determined by the size distribution of micro-
crystals. 8'3/2 W1/2 W if this distribution does not
change too rapidly ((Bn /Ba )/(n /a) [(53/2 5]/p) /
(fi m /m, a ) j «1).

Using Eqs. (31) we write the times of the radiative
recombination in the form
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3/2

3

4 2

&l, 2&m, (- i)
2

2= 2
~l, 2~m, ( —1)Jln

3 '2
2

ln
J2

2 .

(38)

where a radial integral

JI„=f dr r Ro(r)Rz(r)gI„(r) .

It is seen that only phonons with 1=2 and m = —1 can
take part in such transitions. We obtained Eq. (38) by us-

ing the identity

2
2fdQV~, YI (O, y)VM= ' ' [Ro(r)+R&(r)]+ —( —1) +'~ 5iz M M, Ro(r)R2(r), (39)

3 '2
2

2
1 4——5 5 J2

12 m2 2 —3 & ln7 3/2 7T

=2
5i,»m, 2Ji. . (40)

where the wave functions VM are determined in Eq. (9).
The same calculation for the transitions from the

~
—,
' ) to

the
~

——', ) hole states gives

where the indices i, f, and jmark the initial, final, and all
intermediate EHP states with energies c;, cf, and c. cor-
respondingly, the index q marks all phonon states with
the energy Ace . The matrix elements of EHP-photon
transitions MPf" have been considered in Sec. III. We
will now consider the matrix elements of EHP phonon
transitions M,~".'".

The phonon-induced spin-flip transitions of electrons
are allowed by a spin-orbit term

Only phonons with I =2 and m =2 take part in these
transitions, but the times of the thermalization in both
cases are equal to each other: 8, , =A[cr, p], , (43)

/2
—7 3/ (41)

X 5(ef —e; —A'co+ A'coq }, (42)

Finally, let us discuss the recombination time 7;, of the
~ —,
'

J, ) EHP states and the polarization properties of these
transitions. Direct optical recombination of the

~

—„l)
EHP state is impossible because a photon cannot have
the projection of momentum equal to 2. Nevertheless,
this process could occur with the absorption or the emis-
sion of the phonons taking up a part of this projection.

This recombination proceeds through several virtual
intermediate states and two channels and these processes
can be considered. The electrons from the

~ 1 ) state
transfer to the

~
1) state emitting or absorbing spherical

phonons with m = W 1. Energy conservation is not
necessary for the transition to the virtual intermediate
state. The intermediate

~

—32, 1) EHP state formed by the
phonons can recombine radiatively. Polarization proper-
ties of this recombination are determined by the second
state of this process and are described by the I,, ( —'„1}
dependence [Eq. (29)].

The other channel can be described as the lifting of
holes from the state g) to the

~ —,
' ) or to the

~

—
—,
' ) states

by emitting or absorbing phonons. These
~

—,', 1) and

~

—
—,', 1) EHP states emit light with polarizations corre-

spondingly determined by the I, ( —,', 1) and I, ( ——,', 1)
dependences [Eq. (29)].

The time of such two-step recombination can be writ-
ten down in the form

(MP".~")
17++ cj j fT„R

q j (e, —EJ
—Rm)2

where cr is the Pauli matrix, and A, is the coupling param-
eter. This term, contained by the electron Hamiltonian
of semiconductors with hexagonal lattice, ' mixes the

~ 1 )
and the

~ l ) electron states. Due to this term the wave
function of the lowest QSL of electrons in second-order
perturbation theory has the form

%,&(r)=f (r)Yo o~S f) +A Y&+&gf„(r)(„~Sl ), (44)

where f (r) is the unperturbed wave function, Eq. (18),

g,=(—', )'~ f dr r f,(r) Bf(r)
(e —e„),

e, and f„are the energies and wave functions of the vth
QSL of electrons with orbital momentum I = 1, e is the
energy of the lowest electron QSL. Using Eq. (44) one
can show that the matrix element of electron-phonon in-
teraction (37), ( 4, & ~ 0, ~ ~%', ~ ), is nonzero only for the
transitions occurring with emission or absorption of pho-
nons with I =1 and m =+1.

Interaction of the spherical phonons with
~
+ —', ), ~

+ —,
' )

hole states have been considered above in Eqs. (38)—(41).
The transitions from the g) to the

~ —,
' ) state and from

the
~

—', ) to the
~

—
—,
' ) state have been shown to have the

same probability and to be caused by the phonons with
orbital momentum I =2.

Using Eqs. (41) and (36) we can rewrite system of Eqs.
(34) and (35) as
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dN = —&-i/2, y
+ W, /2 —,

' sin (8),

dX 3/2
T

dt

T
3%3/2 't Ni/2+ ' +

+dr rT

N-i/2, y
(45)

T TN —3/2, f N —3/2, f Ni/2, f N —i/2, f+ +
ir T 'rT

dpi /2 2 2+ + W&/2 —', cos (8),
r

2

+dr 7T

For microcrystals directly excited in the
~

—,', t' ) state, Eq.
(35) reduces to

dN3/2

dt

3N3/2 ) 2+ W3/2 2
sin (8)

+dr
(46)

Solution of Eq. (45) gives the time decay of the number
of microcrystals containing EHP with an electron in the

~
1 ) state:

N, /2(t) =exp[ t (2—/rd„+2/rT)]N&/2(0),

N„,(t) =exp( 3t/r—d„) N3/2(0)—

N, /2(t) =exp[ t (1/—rd„+2/rT)]N i/2(0),

exp[ t (2—/r T 1/r—q„)]—1

&T ~&dr

exp [ t ( 2/r—
T 2/rd—„)]—1

N, /2 (0)— N, /2 (0)
2 2rT /r—d„

exp[ t (2/—rT+2/rd„—1/r;, ) ]—1

N-'3/2(t) =exp( —t/r ) N'-3/2(0) 2+2 Nl/2(0)r T rdr rT rir

(47)

exp [ t (2/r T +—1/rd„—1/r;, ) ]—1
N i/2(0)2+ rT/rd„rT/r—;,

The system of Eqs. (47) describes the time dependence
of the number of microcrystals N +3/2 appearing as a re-
sult of thermalization. The decay kinetic of the micro-
crystal number directly excited in the g, l' ) state has the
form

N, /2(0)- W, /2
—', cos (8),

N, /2(0) —W, /2 —,
' sin (8),

N3/2 (0)=0 N 3/2 (0)=0

N3/2(0)- W3/2 —,
' sin (8) .

(50)

N, /2(t)=exp( 3t/rd, )N3/2(0—) . (48)

Initial concentrations NM(0) in Eqs. (47) and (48) depend
on the angle 8 between the C axis of microcrystals and
vector polarization e of the exciting light and the condi-
tion of the initial excitation.

It is reasonable to consider two types of these process-
es: luminescence decay after steady-state excitation and
decay after short impulse excitation. In the first case, the
numbers of microcrystal NM(0) are

—', cos (8)
'"2/r +2/rN 0=W

—,
' sin (8)

N, /2(0) = W, /2

V. TIME DEPENDENCE OF LUMINESCENCE
POLARIZATION

We can completely describe the luminescence polariza-
tion properties of these structures by substituting solu-
tions (47) and (48) together with initial conditions (49)
and (50) in Eq. (33). We only need the angular depen-
dence of the intensity of the phonon-assisted lumines-
cence. As was mentioned in Sec. IV its properties are
determined by the channel through which the recombina-
tion goes on. If the main channel is connected with the
tiip of the electron spin I;(—,', J, ) has the form

N3/2(0) =(rd„/3rT)[N, /2(0)+N, /2(0)],

N 3/2(0) =(rir/rT)[Ni/2(0)+N 1/2(0)],

N3/2(0) = W3/2( rd„ /3 ) sin (8)/2

(49)

In the second case, if the excited impulse is shorter
than the times of thermalization rT and recombination
rd„ these numbers NM(0) can be written down in the
form

I,, ( —'„1)-KP sin (8')/2
+ir

=KP [ 1 —P2 [cos(8') ] ] /3 .
+ir

(51)

If the mechanism of the holes lifting to the
~ —,

' ) and
~

—
—,
' )

states dominates, the dependence of the luminescence in-
tensity is described by the following expression:
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I
d 2 cos'(8') sin'(8')

(52)

As a result Eq. (33}for the total intensity of luminescence can be written down as

2 8'

sjnz(8~) 1 d, 1 T Pz[cos(8')]+N, /z(t) +N 3/z(t)
+ir

(53)

where the —or + signs correspond to the one of the two indirect channels of recombination and NM(t) depends on the
angle 8 between microcrystal axis and polarization vector of exciting light through initial conditions described by Eqs.
(49) and (50). Substituting Eqs. (50) into Eqs. (47) we found for the case of the short-impulse excitation:

S,.-KP W f —,
' sin (8) sin (8') exp( 3t /r—d„)+~4 cos (8) cos (8') exp[ t (2/rd—„+2lrz ) ]

+ —,', sin (8) sin (8') exp[ t (1/rd„+2—lrz )]

1 —exp[ t (2/rr —1/rd„) ]-
—,
' cos (8) sin (8') exp( 3tlrd„)—

rz' re
1 —exp[ t (2/r—r 2/rz, )]-

+ —,', sin (8) sin (8') exp( 3tlrd„—)
2 2rz /rd—„

dr+ —,'cosz(8}[1+Pz [cos(8') ] ] exP
&r

+ —,', sin (8}[1TPz[cos(8'}]] exp
1f

1 —exp[ t (2/r r +—2/rd„—1/r;, ) ]
2+2'rz /rd„—rT Iriz

1 —exp[ t (2lr—z + 1/rd„—1/r;, ) ]

2+rT/r~, rr/r;, — (54)

Here we assumed that W3/z Wi/z W. Using the relationship sin (8)=2[1—Pz(cos8)]/3 and the following identity:

dQ I

f [1+rj'Pz(cos8') ][1+rIPz(cos8) ]= 1+ Pz(cosy }, (55)

where g is the angle between the polarization of exciting light e and the polarization of luminescence e, we found from
Eq. (54)

2, -KP W/81 9[1+—,'Pz(cosy) ] exp( 3t lrd„)+4[1+—4Pz(cosy) ] exp[ —t (2/rd„+2/rz ) ]

+ [1+—,'Pz(cosy) ] exp[ t (1/rd„+ 2lrz )]—
1 —exp[ t (2lrz —1/—rz„)]+6[1——', Pz(cosy)] exp( 3tlrd„)—

2 rz /rd. —

dT+ 6[1+—,'Pz(cosy) ] exp
lr

1 —exp[ t (2lrz 2/r—d„)]-+3[1+—,'Pz(cosy) ] exp( 3tlrd„)—
2&T i&dT

1 —exp[ —5(2lrz +2lrd„—1/r;, )]

+ir 2+2~T ~~dT ~T ~ ir

QT+ 3[1+—,'Pz(cosy)] exp
+ir

1 exp[ t—(2/rz + 1/rd„1—/r;, )]—
2+&T ~&dT &T ~&i/

(56)

U»ng Eq. (56) we can find the time dependence of the linear luminescence polarization degree (DLP}p(t} for the light
propagating parallel to the direction of the excitation:
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t= ii
JJ

p(r) =
II

9 exp( 3—t/~~„)+16exp[ t —(2/rz, +2/rz )]+exp[ t—(1/rz„+2/rr)]

1 e—xp[ —t (2/rr —1/r&„)] 1 —exp[ t (—2/rr 2/—~&, )]+ 3 exp( —3t /r&„) —4 +
2—

wT /w~, 2 —2wT /wyr

1 —exp[ —r(2/sr+ I/r&„—I/r;„)] 1 —exp[ r(—2/r&+2/r&„—1/r;, )]+3 exp r lr-;,
Ir 2+ rr /r~„—sr /r;, 2+ 2~T /+dr ~T /+ir

X 63 exp( —3t /r&„)+ 32 exp[ —t (2/r&„+2/r& ) ]+7exp[ t (—1/r&„+2/rr ) ]

1 —exp[ —t (2/rr —1/r~„) ] 1 —exp[ —t (2/rr —2/r~„)]+3 exp( 3t/—r„„) 12 +7
2 —rrlr, „ 2 —

2wT /w~,

1 —exp[ r( 2/r—r + I /r~„1/r, „)—]+ exp( t l—r;, ) (40+ 4)
1I 2 rr /r—~„rr /r—

,,
1 —exp[ —t (2/7 r+2/ zr„—1/r;„)]

+(20+1) 2+2' r /rq„rr /r;—,
(57)

2.5

2.0—
&O

1.5—

1.0—

C4 0.5—

O
0.0—

—0.5—

~ —1.0—

A
—1.5 —-

0.0
I f

20.0
I I I I

[
I I

40.0 60.0

TIME t (ns)
FIG. 3. Time dependences of the degree of linear polariza-

tion. 1, recombination assisted by flip of the electron spin. 2,
recombination assisted by the virtual hole lifting into the

~
+ —)

states. Solid lines were calculated for ~z„=9.4 ns, ~;,=1000 ns,
~& =3 ns and dashed lines with ~& = 1 ns.

where J~~ is the intensity of luminescence polarized like
the exciting light e [y=O, P2(cosy) = 1], and 2t is the in-
tensity of luminescence with a polarization perpendicular
to the e [g=n/2, P2(cosy)= —

—,']. The DLP depends

strongly on the relationship between the radiative recom-
bination time v.

&, and the time of the hole thermalization
~T. A general result exists only for the initial lumines-
cence after short impulse excitation. From Eq. (54) one
can obtain p(0) =

—,", . After that it decreased down mono-
tonically. If rr «rz„«r;„p(t)= —,', for the time range
'Tr « r & 'Tg„. In the longest times (t ))rz„), DLP is due

to the recombination of long-living states
~

—,', l) and

i

——32, T). If the main channel of the phonon-assisted
recombination is determined by the lifting of holes to the
i + —,

' ) states, then p( ae ) = —,
' and the DLP as a function of

time has a minimum. In the other case when the main
channel is connected with the flip of electron spin, Eq.
(54) gives p(ae)= —

—,', and DLP becomes negative. The
dependence of DLP on time corresponding to this case is
shown in Fig. 3.

Time dependence of DLP after steady-state excitation
can be obtained in a similar way by using Eq. (49) instead
of Eq. (50) as initial conditions. In this case the main
difference is due to the accumulation of the EHP's by the
long-living states [see Eq. (49)]. The initial DLP depends
strongly on the main channel of the phonon-assisted
recombination and it can significantly reduce the initial
DLP p(0) for the case of spin-flip recombination.

VI. RESULTS AND DISCUSSION

We have found the energy spectrum of holes in the
small-size CdSe microcrystals with the hexagonal lattice
structure. At first approximation this spectrum is similar
to those of the microcrystals with the cubic lattice struc-
ture. The ground state of the holes is practically fourfold
degenerate with respect to the momentum projection
M =+—,', + —,'. In microcrystals with a hexagonal lattice
structure the crystal field splits this state into two twofold
degenerate states with M = + —,

' and with M = + —,'. The
value of the splitting 63/2 61/2 does not depend on the
microcrystal radius a. It depends only on the relation-
ship between the light- and heavy-hole effective masses P
and could be five times smaller than its bulk value h. In
CdSe, b =25 rneV. 2~

This fine structure is difficult to observe in the absorp-
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tion because the broadening of the transition between
electron and hole ground states is of the order 200—300
meV due to the microcrystal size distribution. Neverthe-
less, it is possible that this splitting was observed in Refs.
1 and 2. The Stokes shift of the luminescence from the
resonant excitation was found in CdSe microcrystals with
average radius 16 A. This shift does not depend on the
frequency of excitation and was equal to 9.3 meV. If we
connect this shift with thermalization of holes from the

~
+ —,

' ) states on the ~+ —', ) states the independence of the
Stokes shift of the frequency agrees with the indepen-
dence of 53/i 5i/i of the radius. For 8=25 meV one
can find that 53/z 5t/i 9.3 meV at P=O. 10 (see Fig. 2).
This looks very reasonable because for most cubic semi-
conductors the value of P is close to 0.1.

The above considerations showed that the hexagonal
axis of the microcrystal gives the possibility to form eight
well-defined ~M, a ) EHP states where M = + —,', + —,

' and
a= l or a= t. The wave functions of holes correspond-
ing to these states have the mixed s-d type of symmetry
and they differ significantly from the wave function of the
lowest electron QSL. As a result the squared overlap in-
tegral E is significantly smaller than 1 and it reduces the
oscillator strength of the interband optical transitions.
The times of the radiative recombination of the EHP
states r„(—', , f)=r„(——', , J, ), r„(—,', 1')=r„(——,', J, ), r„(—,', $)
=r„(—

—,', t') are of the order of 10 ns and satisfy the rule
1:2:3[see Eq. (31)].

Direct optical excitation and recombination of the
~

—
—,', 1') and

~
—,', l) EHP states are forbidden by the

selection rules. These states can be formed as a result of
the hole thermalization from the ~+ —,

' ) states. The radi-
ative recombiation of the long-living

~

—
—,', 1) and

~
—,', $ )

EHP states is governed by phonon-assisted optical transi-
tions. The recombination times decrease exponentially
with the temperature since they are proportional to the
number of phonons [ -exp( RcozhlkT) ].—

At low temperatures the acoustic phonons will give the
main contribution to the recombination because they
have minimal energy and their number is maximal. By
considering the quantization of the phonon spectra
within the microcrystals one can estimate this energy for

the phonons with orbital momentum I = 1 as
Aco h, =ski(4. 49/a) and for those with I =2 as
A'cosh 2=st(5. 76/a), where s is the sound velocity.

The anisotropy of the microcrystals leads to the selec-
tive excitation of the EHP states by the linear polarized
light. The holes with M = + —, are mainly excited in the
microcrystals where the hexagonal axis C is parallel to
the light direction n. The excitation of holes with
M =+—,

' mainly takes place in the microcrystals where
Cln. The luminescence of such a system of anisotropic
microcrystals will be polarized because the polarization
of emitted light has the same angle dependence. The
DLP depends strongly on the processes of recombination
and thermalization of the nonequilibrium EHP's and on
the time dependence of the pumping light. In the first
moment after the short impulse excitation the DLP could
be —,", and it falls afterwards due to the thermalization of
holes on the lowest ~+ —,

' ) states.
The DLP of the long-living states is determined by the

type of the phonons assisting the process of recombina-
tion. The DLP may be different for the recombination
assisted by acoustic phonons and with optical ones. If
the main contribution to the recombination is given by
the phonons with orbital momentum 1 =1, which flip the
electron spin, the DLP in the long times will be negative:
p( ae ) = —

—,', . In the case when the recombination occurs
with the phonons with 1 =2, p( ~ ) =—,

' and the DLP as a
function of time has a minimum. The above considera-
tion has shown that the experimental investigation of the
luminescence polarization degree gives important infor-
mation on EHP phonon interaction.
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