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polarized-scattering intensities of defects in tetragonal crystals

S. Klauer and M. Wohlecke
Vniversitat Osnabriick, Fachbereich Physik, Postfach A/69, D $5-00 Osnabr6ck, Federal Republic of Germany

(Received ll November 1991)

In polarized Raman scattering of point defects in crystals the spectrum is a spatial average of
discrete energetically equivalent orientations. Recently, Zhou et al. have introduced the behavior-

type (BT) method. The primary aim of the BT method is the determination of the defect symmetry

Oq and its vibrational modes, which is reflected in the group-theoretical form of the Raman tensor of
the single defect. In cubic systems partial or complete preferential orientation of the defects is often

necessary to compete for the loss of information in an ensemble average, in order to yield suKcient
discriminating power. Iq the BT theory an orientating operator F acting on the population numbers

of the defects in their discrete orientations is introduced. Instead of solving the set of equations for

the polarized Raman intensities for the tensor components, the method focuses on the appearance
of symmetry-induced, simple algebraic relations among the so-called Raman intensity parameters
(IP's), which are characteristic for the possible symmetries of a defect mode. It introduces the

concept of the behavior type of a mode, which denotes the complete set of IP's, together with the

algebraic relations among them. The extension of the BT method to tetragonal crystals necessitates

the compilation of the appropriate tables needed for a practical application. The main features of

the method introduced by the symmetry of the tetragonal axis can be summarized as follows: (i)
The total of 80 possible modes within 25 different symmetry groups O~ can be classified into 20 sets

of representative modes, of which 16 can possibly be distinguished by the method. For comparison

in cubic systems there are 124 possible modes in 33 symmetry groups Oz, classified into 24 sets

of representative modes, of which 15 can be distinguished. (ii) The optical anisotropy induced by

the tetragonal axis reduces the number of possible scattering configurations for polarized light. (iii)

The lowered crystal symmetry weakens the averaging effect such that the discriminating power of

the method is increased. This holds especially for cases when the defects cannot be orientated,

leaving still 13 distinguishable sets of modes compared to only 7 sets in cubic systems. A series of

tables essentially contains all the results: In the theoretical part they provide the summary of all

possible modes and their classification into sets of representative modes, the influence of preferential

orientation, the listing of all possible characteristic BT s, and the relation to the symmetries 0& of

the mode and of the orientating operator F to which the BT's belong. Tables compiled for a practical

application provide the relations of the polarized scattering intensities to the IP's, and a guide to
A

select the suitable symmetry of F as well as the discriminating Raman polarization geometries.

I. INTRODUCTION

The properties of dynamical modes of defects in crys-

tals are often investigated by means of infrared absorp-
tion or Raman scattering. In both methods the exci-

tation energy of localized elementary excitations is usu-

ally more or less well displayed in the spectral distri-
bution. Information on the electronic charge distribu-
tion of the point defect is hidden in the polarized spec-
tra. Raman scattering intensities, which depend on the
polarization of the incident and scattered light beam,
yield information on the defect symmetry and its related
local vibrational modes. Recently, a procedure, called

the behavior-type (BT) method, has been introduced by

Zhou, Goovaerts, and Schoemaker, which allows one to
gain important physical insight. This procedure is solely
based on symmetry arguments and applicable to ran-

domly or preferentially oriented defects in cubic crystals.
The application of the BT method is supported by a set
of compiled tables. " The use of these tables has been

demonstrated for various defects in alkali halides. 2 4

Although the BT method in its original form has been
introduced for nonresonant Raman scattering, under cer-
tain favorable circumstances the BT method applies to
resonant scattering experiments as well. A full extension
to resonant Raman scattering in cubic crystals was pro-
posed in the introductory work alreadyi and has been
worked out in detail by Leblans. An excellent intro-
duction to the applications of the method for nonreso-

nant and resonant Raman scattering as well as a discus-

sion of the limitation is contained in the review article
by loosen and Schoemaker on applications of the BT
method in cubic crystals. Resonant applications include
heavy-metal defects with laser-active Tl (1) structure,
F~(Li+) defects in KC1, and electronic Raman scattering
of KCl:Sm2+

All studies reported so far had been performed in cubic
compounds. An extension of the BT method to tetrag-
onal or even trigonal systems is possible but requires an

independent compilation of the corresponding tables and

furthermore a discussion of the influence of an optical
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axis on the suitable experimental set-ups. Compounds
with lower than cubic symmetry are often realized and
may occur in a sequence of structural phase transitions.
In this contribution we deal with an extension of the BT
method for nonresonant scattering to tetragonal crystal
structures. In Sec. II the basic ideas of the method shall
be outlined. In the next sections the specific features due
to the tetragonal symmetry are described and the tables
necessary for applications are introduced in some detail,
completed by a discussion from both a group-theoretical
(Sec. III) and a practical, experimental (Sec. IV) point
of view.

II. THE BEHAVIOR-TYPE METHOD FOR
TETRAGONAL CRYSTALS

In a crystal containing defects each impurity con-
tributes to the Raman scattering intensity according to
the frequency of its local mode and the site symmetry of
the polarizability changes with respect to the normal co-
ordinates of the mode. The latter is characterized by the
Raman tensor, a second-rank tensor, which is symmetric
for nonresonant Raman scattering. The Raman tensor
connects the electric fields with polarization vectors a
and b of the incident and scattered lights, respectively.
Because each local mode belongs to an irreducible repre-
sentation of the point group of the defect, nonzero Raman
tensor elements or equalities among them are predictable
by means of group-theoretical methods for each mode.
Thus six configurations (a, b) of pairs of electric field
orientations are in principle sufficient to determine all
tensor elements of a particular mode. Unfortunately, in
a scattering experiment focusing on defects in a crystal,
an ensemble with different orientations contributes to the
signal. Therefore no simple relations can be established
between the measured Raman scattering intensities I,-;,
in the various configurations and the Raman tensor ele-
ments of a distinct defect. It is the aim of the BT method
to investigate to what extent the defect point group and
the irreducible representation of the local mode can be
derived from a set of polarized Raman scattering data.

to the tetragonal group D4, which is a subgroup of D41„
when each population number N&"& accounts for the sum
of defects in the pairs (v„, iv„) of orientations connected
by the inversion i A. ccording to Ref. 7 the polarized Ra-

man intensity I "- of one member of the defect ensemble
B,b

is given by the following expression:

I,'",' = XI.(am~'b)'. (2)

Here Io denotes the intensity of the incident laser beam
and the factor k accounts for the instrumental efficiency
governed by the spectrometer, filters, polarizers, and the

detector used. The Raman tensor T of the defect in
the nth orientation v„ is expressed with respect to the
common orthogonal axes of the tetragonal crystal sys-
tem. Starting with the Raman tensor of one defect in

an arbitrary initial orientation vi, i.e. , T, all the other

T for orientations v„=~vi follow from T by sim-

ple transformations using the h symmetry operations R„
of the crystal point group: T = R„T R„—(n}The transformed Raman tensors T and the corre-
sponding transformation matrices R„are given in Table
I, expressed in terms of the elements Tt~ of the Raman

tensor T of the mode in its initial orientation vi, i.e. ,

Tr = (T . The directions o of the rotation axes
v

are expressed in terms of the rectangular frame z, y, z
fixed to the principal crystal [100], [010],and [001] direc-
tions. For example, ch = z means oJ~ [100], n = z means
n (( [001], and n = zy means a )] [110].

The intensity Is &, given as a sum over n, is rewritten in
7

a fourfold sum over the components of the corresponding
polarization vectors, i.e. ,

3

) atbj ahb(Ptj kl

i,j,k, l=1

The polarization vectors a and b of the incident and
scattered light are expressed in the orthogonal reference
frame of the crystal. This defines the components P,~ y~

of a symmetric tensor of rank four:

A. Raman scattering intensities and intensity
parameters

h

P;, a& = kIo) N" T;,
"

T~", t (4)

To allow an easier reading and comparison with the
introductory work we use the notation and the terms in-
troduced by Zhou et al. The Raman scattering intensity
I

&
of an ensemble of point defects in a crystal is the

superposition of scattered light I "- of h energeticallyi, b

equivalent defects with orientations v„weighed by their
population numbers N&"l:

h

a, b a, b

There are up to h=16 different orientations in tetragonal
systems with point group D4h, but because of the invari-
ance of the Raman tensor under spatial inversion, h can
be limited to 8. Thus the point group can be restricted

which are called intensity parameters (IP). From the set
of 81 elements P;z ~~ there remain only 21 independent
IP, the maximum number of independent elements of a
symmetric fourth-rank tensor. It is pointed out that the
IP are not simple shortcuts. The introduction of the IP in
Eq. (4) provides a separation between merely geometrical
factors due to the scattering configuration, which can
be externally adjusted in the experiment, and intrinsic
properties of the defect ensemble. The P;& y~ conceal all

the information on the population numbers N&"& and on
the symmetry of the defect contained in the T;z, which
can principally be derived from polarized Raman data.

Experimental constraints, such as the need of set-ups
with difFerent scattering configurations for several crys-
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TABLE I. The Raman tensors T transformed to the eight possible orientations of a defect in a tetragonal crystal, starting~n)
from a defect with a general Raman tensor in an arbitrary initial orientation. The transformation matrices R„p D4[001],
n = 1, . . . , 8 are expressed with respect to the fixed crystal system (x, y, z). The T and R„are given an identifying number
for reference,

(1
1: C1 —— 1

1)
(Tll T12 T13)

T21 T22 T23

&Tsl T32 Tss )

2: C2 ——

( Tll T12 T13 )
T21 T22 -T2s

( r., r., r..)

3: C2 ——

-1)
(

Ts
T31 T32 T33 )

4. C"= (—1
1

( Tl1 -T12»s )
T22 -T2s

i T., -T., T..)

—1)
(T22 T21 T23 )

l T12 T11 T13
I T»r»r»)

( 1

6 C"=

( T22 T21 T23 )
T11 -T13

T»)

( -1 )
7:t"4 ——

]
1

1)
(

-T12 T11 T13
r., T-., r..)

8 C'
1

1)

T» -Tls
I

-Tsl Tss)

tais with high accuracy of the alignment and the polar-
ization dependence of light propagating in crystals with
one optical axis, usually impede the determination of all
the P;& ~t from 21 independent scattering configurations.

Because the factor k is unknown, relative IP are obtain-
able only.

For a better survey and easier comparison with previ-
ous BT work the shorthand notation introduced in Ref. 1

TABLE II. Explicit expressions for the intensity parameters (IP) of defect ensembles in tetrag-
onal crystals, expressed as a function of the population numbers N~") and the Raman tensor

W1)
components T,~

= T of the mode in its initial orientation.
ij

kIp Pllll = ql = kIo(Tll Ml + T22 M2)
kIo P2222 = q2 ——kIo(T22M1 -~ T„M2)
kIO P3333 = qs = kIp TssM

kIp P2233 = rl = kIo(T22 TssM1 + Tll TSSM2)
kIo Pllss ——r2 ——kIo(T11TssM1 + T22 TssM2)
kIO P1122 —I'8 = kIp T11T22M

kIo P2323 = sl = kIo(T2sM1 + TlsM2)
kIo Plsls ——S2 ——kIo(T1SM1 + T2SM2)
~IO P1212 —ss —k~p T12M

kIo P1213 1 kIO(T12 T1SM1 + T21T2SM2)
kIp P1223 = t2 = kIo(T12 T2SM1 + T21 T1SM2)
kIo Plsss = ts = kIo Tls Tss(M1' + M2')

kIo Pllss = ul = kIo(T11T2SM1 + Tls T22M2)
kIp P2213 ——u2 = kIo(T22 TlsM1'+ Tll TssM'2')
kIp P3312 = us ——kIo T12Tss(M',"+ M2 )

BIO P2223
&Io P3323
~'Ip P1113
kIO P331s
kIO P1112
k'Io P2212

vl = kIo(T22T2sM1+ T11TlsM2)
V2 = kIo(T2sTssM1 + TlsTssM2)
vs = kIo(T11TlsM1'+ T22T2SM2)
v4 = kIp (T1s Tss Ml + T2s Tss M2')
vs ——kIo(T11T12M1" + T21T22M2")
ve = kIo(T21 T22M1" + Tl1 T12M2')

With the following abbreviations:

M, = N, + N2 + Ns + N4,
M, =

¹

—N2+ Ns —¹)
M,-=¹-N.-N. +N:;
M1" ——N1 + N2 —Ns —N4)

M2 ——N5 + N6 + N7 + N8.,
M2 ——Ng —N6+ ¹

—¹;
M2 ——N5 —N6 —

¹ + Ns)
M2" ——Ng + N6 —N7 —Ns,

M = M1+M2,
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shall be used to designate the IP:

q1
——kIoP

rl —kIOP2233)
s1 ——kIp P23 23)
t1 ——kIo P12 13
&1 = kIQP11 23,
v1 ——kIo P22 23
v4 ——kIO P33 13)

q2 = kIoP2222,
2 = kIpP11331

s2 ——kIp P13 13)
t2 = kIOP1223,

'

+2 —kIOP22 13
v2 ——kIoP33
V5 —kIOP11 12i

q3
—kIo P33 33

r 3 —kIO Pl 1 22 ~

s3 ——kIpP12 12,
t3 kIOP1323'
us = kIOP33 12
v3 = kIpP11 13)
vs —kIOP22 12)

B. Preferential orientation of the defects

The intensity parameters depend on the population—(n)numbers N("& and the Raman tensors T, see Eq. (4).
Both are influenced by the symmetry under study. First,
the symmetry group 01 of the defect governs the actual

form of the tensor T and therefore also the IP values.
-(~)

Second, the usual initial random population distributions
N~"& can be altered by applying external forces. The
influence of the forces are described by a so-called ori-
entating operator F acting on the population numbers.
The symmetry of F is defined to be the largest subgroup

Using Eq. (4) and the tensors in Table I the explicit
expressions of Table II for the 21 IP were calculated as a
function of the population numbers N(") and the Raman
tensor elements T;z.

From Table II it is easily verified that the IP q; and
s; are positive or zero, while nothing can be predicted
for the other. Similar to the IP, only relative values of
the population numbers N(") and the tensor elements Tz
can be determined from Raman data in practice.

Taking into account that only relative values are avail-
able, 20 independent equations derived from Eq. (4) cor-
respond to 28 unknowns [5 Ty and (h —1) = 23N("&]
in cubic systems. Therefore, the 21 scattering intensities
are not sufficient to yield all unknowns. The situation
is drastically changed in tetragonal systems. Here the
strongly reduced number h=8 of different orientations re-
sults in only 12 unknowns to be determined from a set of
20 equations. Unfortunately this advantage can possibly
not be fully exploited because of limitations due to the
light polarization behavior in uniaxial crystals, see the
discussion in Sec. IV. Similar to cubic crystals, the pro-
duction of an anisotropy in the distribution of the defects
onto their orientations will generally allow us to extract
information on the symmetry of the mode to higher ex-
tent, but will complicate the evaluation of the equations
in Table II.

A complete solution of these equations, which are even
cubic with respect to the unknowns (N("), T& j may be-
come very diKcult, if not impossible, due to a lack of
sufficient experimental precision. In most cases this is
beyond the capability and the aim of an investigation.
Usually knowledge of the defect symmetry and the trans-
formation properties (irreducible representations) of the
modes allow clear conclusions on the incorporation of a
defect.

TABLE III. (a) The right cosets of the 9 representative
symmetries F1 g D4 of the orientating operator F. (b) The
left cosets of the defect symmetry group Oz & D4. The ori-
entations are labeled with the numbers of the symmetry el-
ements of the tetragonal group D4 as introduced in Table I.
The subscripts label the different cosets. Orientations, which
belong to the same coset, possess the same population num-

bers.

Cg

C2 [001]
Cs [100]

Cs [110]

Ds [100]
D2 [110]

C@[001]
D4 [001]

(a) The right cosets of Eq

{1}1(2}2 {3}s(4}4 {5}s(6}s (7}7 (8}s
(1, 2}1 {3,4}2 (5, 6}s (7, 8}4
(1, 3}1 {2, 4}2 {5,7}s {6,8}4

{1,6), (2, 5), (3, 7). (4, 8)4

(1, 2, 3, 4}g {5,6, 7, 8}2
(1, 2, 5, 6}1 (3, 4, 7, 8}2

(1, 2, 7, 8)1 {3,4, 5, 6}2
(1, 2, 3, 4, 5, 6, 7, 8}1

Og

C, [oo1)
C2 [010]

C2 [110]

D2 [100]
D2 [110]

C, [oo1]
D4 [001]

(b) The left cosets of 01

{1}1(2}2 (3}s (4}4 {5}s(6}s (7}y (8}s
(1, 2} (3, 4} (5, 6) (7, 8},
(1 4}~ (2 3}2 (5 7}s (6 8}4

(1, 6}1 (2, 5}2 (3, 8}s (4, 7}4

{1,2, 3, 4}1 (5, 6, 7, 8}2
(1, 2, 5, 6}g (3, 4, 7, 8}2

(1, 2, 7, 8}1 (3, 4, 5, 6}2
{1,2, 3, 4, 5, 6, 7, 8)1

F1 g D4g, which leaves F invariant. Orientations related
by the inversion i, v„, and iv„, may be influenced by F
in a different manner, but in the BT method they are
treated as partners with one common population num-
ber N("&, because the Raman tensor is invariant under
inversion. This allows us to treat F in the tetragonal
g1'oup D4.

Under the action of F there will be subsets of orien-
tations v„, which are influenced in the same way by the
symmetry F1, thus decomposing the set V of all orien-
tations into disjunct subsets V1, V2, . . . , V of orienta-
tions with the same population number. Zhou ef at. 1

have shown formally, that these subsets correspond to
the right cosets I"1, I"2, . . . , I" created by the symmetry
group I'1. This result allows us to construct the sets of
orientations with the same population number given in
Table III(a). The possible subgroups F1 C D4I„which
are considered for the symmetry of the orientating oper-
ator F are listed in Table IV, where they are classified
into 8 groups of representative symmetries F1. The sets
of independent population numbers are derived from the
right cosets of the point group F1, see Table III(a). The
number of independent population numbers equals 0, the
number of right cosets. To illustrate the influence of ex-
ternal forces described by F, one can say that F arranges
those orientations v„ into one coset, which have the same
angle with the principal axis of I"1.
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TABLE V. The symmetric Raman tensors for all the possible dynamical local modes which can occur in a tetragonal crystal
structure, arranged according to the 25 essentially different possible symmetry groups O~ C D4h[001]. The tensors have been
transformed from the local frame (s', y', z') of the defect to the reference frame (z, y, z) of the crystal. The directions of the
local reference axes are given with respect to the crystal axes x

ll [100], y ll [010], z
ll [001]. The explicit expressions for the

tensor elements are given in the footnote of the table.

Defect symmetry 0&
Defect frame

Ci
Sg

*'
ll [»o]

y'
ll [0»]

z'
ll [001]

A(x', y', z'; R I, Rz~, R,I)
Az(R I, R„I,R,i)

(a, df
da2f

(f' f a, )

Raman active dynamical modes
Raman tensors

C2 [010]
Cgh (010)
C„[olo]

&'
ll [1oo]

y'
ll [»ol

z'
ll [oo1]

C2 [001]
Cyh (001)
C2P, [001]

A(y'; R„I)
A'(z', z'; R„I)

Az(R„I)

(a,
Q2

kf' aa)

A(y'; Rzi)
A'(x', z', R„I)

Az(R„I )

A"(y'; R I, R I )
Bg(R I, R,i)

d fkf)
A"(y';R, , R, )

Bz(R i, R,I)

z'
ll [100' ll [o»]

z'
ll [0Tol

f' aa—
Qg

C2 [110]
Cg h (110)
C2g [110]

*'
ll [1»]

y'
ll [110]

z'
ll [oo1]

( a

A(y'; Rz~)
A'(x', z', R„I)

Az(R„i)
A"(y';R, R, )

Bz(R I, R,I)

d ~f)

D, [100, 010, pp1]
C2» [001](100,010)
D2a[001, 100, 010]

A
Ag (z')

Ag

Bg(z'; R,I)
A2(R, I)
Bgg(R, i)

B2(y'; R„i)
Bz(s', Rz~)

B2g (R„I)

B3(x';R i)
B2(y';R i)
B3g(R I )

z'
ll [1oo]

y'
ll [01o]

z'
ll [oo1]

(ag
Q2

az)

( d)

D2[001, 110, 110]
C2» [001](110,110)
D2p, [001, 110, lip]

A
Ag (z')

Ag

Bg(z'; R,I)
A2(R, i)
B~.(R. )

B2(y', R„)
Bg (z', R„I)
B2z (R„,)

B,( Rz., )
B2(y'; R, )
Bag(R I )

&'
ll [110]

y'
ll [»0]

z'
ll [001]

( a —c
—c a

az)

( f
(ff )

C2, [110](110,001) Ay (z') Bg(x'; R„i) B2(y', R I) A2 (R,I )

*'
ll [110]

y'
ll [oo1]

z'
ll [11o]

( h —c'
—c' h

a, )
( f )f-
5f f )—
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Defect symmetry 0&
Defect frame

TABLE V. (Continued).

Raman active dynamical modes
Raman tensors

C, [oo1]
S4 [001]

C4h [001]

A(z'; R,))
A(R, ) )

Ag(R, ))

B
B(z')

Bg

E(x'; R ))
E(x'; R ))
E~g'~(R ))

E(y'; Rz))
E(y'; R„))

[1oo]
y'

ll [0101
z'

ll [OO1]

D4[001, 100, 010, 110, 110]
D4y, [001, 100, 010, 110, 110]
D2g[001, 100, 010] (110, 110)

(a

a.)
Ag

Ayg

Ag

(c d

d —c

Bg

Bgg
Bg

kf'f J
Bg

B2g
&2(z')

(
1 f)

&-f f'
E(x';R ))d" (R. )
E(x', R ))

E(y', R„))

E(y', R„))

x'
[[ [1OO]

[o1o]
z'

i[ [OO1]

C4„[001](100, 010, 110, 110)

(a
a

A1(z')

(c

l
—c

B2

(

E(y', R ))

(
E-f
E(z', R„))

[100]
y'

ll [0»1
z'

f) [OO1]

(a

a.)
(c

—c
&f' )

( f'
l

&f' )
'The explicit expressions for the symbols in the tensor elements: a1 ——x'x'; a2 —y'y', a3 —z'z'; a = 2(x'z' + y'y');
c = '(x'x' —-y'y'); d = 2(z'y'+ y'z'); f = 2(y'z'+ z'y'); f' = -'(x'z'+ z'z').

III. IDENTIFICATION OF DYNAMICAL MODES
IN TETRAGONAL CRYSTALS BY A

RAMAN BEHAVIOR- TYPE ANALYSIS

A. Representative dynamical modes in tetragonal
crystals

The Raman tensor of a dynamical mode is determined
by the symmetry of the mode and its group-theoretical
representation. The symmetry 01 of a defect mode in a
crystal must be a subgroup of the crystallographic point
group of the host lattice, 01 g D4 The set of. possible
local modes in tetragonal crystals are listed in Table V.
The corresponding Raman tensors are taken from the
tables in Ref. 8.

It is expected, that due to the lower symmetry in
tetragonal crystals as compared to cubic systems, less—(~) .
information on the Raman tensor T is lost in Raman
experiments. This is true, because the number of ener-
getically equivalent orientations, over which the Raman
signal has to be averaged, is reduced from h=24 to 8.

Additionally, the special role of the high symmetric
tetragonal axis is expected to prevent parts of the in-
formation from being "washed out. " This is rejected in
the explicit expressions of the IP given in Table II. As a

consequence, several independent initial orientations vq,
compatible with the local symmetry 01, must be taken
into account for defects with some special orientation of
the principal axis of 01. In particular, this was necessary
for the sets of modes with the following representative
symmetries:

jC2[010], C2[001], C2[110]), (D2[100], D2[110]),

see Tables V and VI. Especially, as a consequence of
the extraordinary role of the fourfold axis, 01——C2[010]
which is equivalent to C2[100] leads to difFerent results
compared to C2[001]. These cases could not be distin-
guished in cubic systems.

Similar to the case of defect modes in cubic crystals dif-
ferent possible modes of the same defect point group 01
cannot be distinguished at all by means of Raman exper-
iments, even if the complete set of the 21 IP is available,
see Ref. 1 and the footnote in Ref. 7. This results partly
from the explicit forms of the Raman tensors and partly
from an internal symmetry in the equations of Table II.
Referring to the more complete description of similar ob-
servations for the equivalent equations in cubic systems
(Appendix D in Ref. 1), this internal symmetry consists

in a permutation P~2 of the indices in the set

'[T11 ) T22 ) T33 ) T23 ) T13) Tl 2 ) Ml ) M2 ) M1 ) M2 ) M1

of unknowns in the equations of Table II, which leaves them invariant:

I I I I I I III III qP12X = (T22) Tl 1 ) T33) T13) T23) T12) M2) Ml ) M2) M1) M2 ) M1 ) M2 ) Ml I'
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The indices of P refer to the indices of the Raman tensor
elements to be permuted. As a consequence of this, the
following modes cannot be distinguished. (i) The B2 and

Bs modes of a defect with symmetry 01——D2[100]. We
point out& that the two similar permutation symmetries
P i3 and P~3 of the equivalent equations in cubic systems
in Ref. 1 are broken as a consequence of the anisotropy
induced by the tetragonal axis. This enables us to distin-
guish the D2[100]:B1from the B2 and Bs mode. (ii) The
Bq and Bs modes of a defect with symmetry Dz[110].
The B2 and Bs modes in (i) and (ii) possess in general
different frequencies and can be observed individually.

(iii) All twofold-degenerate E modes of a defect. They
possess the same frequency and yield exactly the same
contribution to the IP. This fact can be used for an iden-
tification of E modes, when the degeneracy is lifted by
some external perturbation, as, e.g. , uniaxial stress.

Dynamical modes of defects with different symmetry
properties, which can principally not be distinguished

by Raman experiments even if the full set of 21 IP is
available, are grouped to sets of so-called representative
modes. These sets are listed in Table VI. They are la-
beled with the representative symmetry 01 of one mode
contained in the set and an arbitrary chosen identifying
number for further reference in the first column of Table
VI.

In summarizing the results of Tables V and VI, it fol-
lows that from a total of 80 possible dynamical modes dif-
fering in their symmetry properties, 20 sets of represen-
tative modes can possibly be distinguished. This must be
compared with 124 possible and 24 representative modes
in cubic crystals. 1 Comparing with the equivalent Ta-
bles V and VI of Ref. 1, the six Cs[111], nine Ds[111],
and 30 modes, belonging to the cubic group T, which

TABLE VI. Classification of the 80 dynamical modes which can occur for defects in tetragonal crystals with point groups
01 & D4a[001] into 20 representative modes with point group 01 p D4[001] which can possibly be distinguished by Raman
scattering experiments. The representative modes are given an identifying number for later reference and are labeled with an
abbreviated sufBx for the comp ete description of their transformation properties. The meaning becomes obvious by comparison
with the preceding Table V.

Mode

Representative modes
Identifying

number
Number of

modes

Dynamical modes

10

12

13

14

15

16

17

18

19

Cy . A

Cg [001]:A

Cg[001]:B

Cg [010]:A

C2[010]:B

C2 [110]:A

Cg[110]:B

Ds [100]:A

Dg [100]:B1

D2 [100]:B2

D2 [110]:A

D2 [110]:B1

D2 [110]:Bs

C4[001):A

C4[001]:B

C4[001]:E

D4 [001]:Ag

D4 [001]:By

D4 [001]:Bg

Cy. A Sg. Ag

Cs [001]:A C1g(001):A' C2g [001]:Ay

Cg[001): B C1g(001):A" Csg[001]: Bg

C2[010]:A C1g(010): A C2g[010]: Ag

C2[010]:B Cry(010): A" Cgg[010]: Bg

C2[110]:A Cry(110): A' Cg|, [110]:Ag

Cg[110]:B Cry(110): A" Cgy, [110]:Bg

D2[100]:A C2„(001):Ar Dgg[001]: Ag

Dg[100]:B1 Cs„(001):As Dgg[001]: Brg

Dz[100] B iB2s C&y(001) B1 ) BQ Dpg[ 10]0B&gi Bsg

D2[110]:A Cs„(110):A1 Dsg[110]:Ag C2„[110]:A1

Dg[110]:B1 C2„(110):Ag D2g[110]:Br@ C2|,[110):B1

D2[110]:B2, Bs C2„(110):B1,B2 Dgg[110]:82', Bsg
Cgv[1 10] A&1 Bg

C4[001]:A S4[001]:A C4g[001]: Ag

C4 [001) ' B S4 [001] ' B Cgg [001] ' Bg

C4 [001):E(s;R I ), E(s'; R„I) S4[001]:E(s;R I ), E(y', R I )
C4p, [001]:E( ), E( )

D4 [001] Ay D4g [001] Ay g D2g [001] A& C4 [001] Ay

D4 [001] B& D4+ [001] B&g Dpp [001] B& C4 & [001] B&

D4 [001] Bp D4& [001] B2g D2& [001] B2 C& v [001]:B2

20 D4[oo1]:E

K=80

D4 [001) E(S ) R~i )1 E(p Ryl ) D4g [001] E E
D2g [001]E(x i R~l )E(S i Ryi )C4~ [001](iER~S)iE(jRyl )
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were classified into seven representative modes in a cubic
host, cannot occur in the lower symmetry of tetragonal
crystals. On the other hand, the existence of the tetrago-
nal C4 axis allows us to distinguish between orientations
of modes with respect to this axis, introducing six possi-
ble modes with Oi ——Cq[001] and the possible discrimina-
tion of the three D2[100]:Bi modes, forming three new
representative modes, which can be distinguished from
the others.

It may happen that, due to experimental difficulties,
discussed later in Sec. IV B, the analysis of the IP is
possible only for one mode of a defect. Then additional
limitations occur for the discrimination of the symmetry
of the defect. The modes within the following sets cannot
be distinguished on the basis of a single-mode analysis
even by solving the complete set of IP equations of Table
II:

(C4[001]: A, D4[001]: Aj,

(Dp[110]: Bi, D4[001]: Bi j)

(D2[100]: Bi) D4[001]: B2j,

(C4[001]: B, D4[001]: Ej.

(Ga)

(6b)

(6c)

B. Symmetry imposed properties of the Raman IP

Properties resulting from partial preferential
orientations of the defects

In cubic crystals, due to an averaging of the h=24 ran-
domly distributed defects only 7 sets out of 25 representa-
tive modes can possibly be distinguished, see Table VIII
of Ref. 1. Therefore, the distortion of that high symmetry
by means of partial preferential orientation is a necessary
experimental tool to decide between the transformation
properties of defect modes. In tetragonal crystals more
information on the Raman tensor of a mode induced by
the symmetry Oq can be extracted from the behavior of
the IP in general, even for a random distribution. To
achieve this, it is necessary to measure polarized Raman
scattering intensities for several orientations of the crys-
tal. There might be experimental difficulties to realize all
the necessary scattering configurations. In those cases it
may become advantageous to impose some preferential
orientation among the defects.

The introduction of the concept of the orientating op-
erator F (Ref. 1) into the BT theory was therefore essen-

This can be proved by an inspection of the explicit ex-
pressions of the IP, using the specific Raman tensors of
the modes and the Oi symmetry induced relations be-
tween the population numbers, see Sec. III B2.

In the above discussion of possible distinctions it was
not yet considered, whether the equations of Table II
can actually be solved, i.e. , whether there is a sufficient
number of independent IP compared with the number of
unknowns (X&"&, Tz j.

tial for a complete theoretical description in cubic sys-
tems, but there is no such compelling feature in tetrago-
nal systems.

As already stated the number 0 of independent popula-
tion numbers under the orient, ating action of F is simply
the number of right cosets of I"~. Formally, by apply-
ing the rules given in Eqs. (12) of Ref. 1 or alternatively
by explicit insertion of the constraints on the population
numbers N~"& prescribed by the right cosets of I"~ in Ta-
ble III(a) into the equations for the IP in Table II allows
one to find some explicit relations between the 21 IP.
If, for a given Fi, there are r such relations, the num-
ber ppp of independent IP is reduced to pyp —21 —7..
Using the short IP notations of Eq. (5), these explicit
relations induced purely by the symmetry I"i of the pref-
erential orientation, are given in Table IV. In addition
the numbers o of independent population numbers and
of independent IP, pip, are listed for each Fi.

%hen no information on the Raman tensor of the
mode is available, the number pz of independent ten-
sor elements T,&

equals six. Due to the fact that only
relative values of the variables (T&, N~"lj and of the
IP can be obtained in an experiment, the equations in
Table II reduce to a set of (pip —1) equations with
X, „= (pz —1) + (o —1) unknowns. From Table IV
we read, that always (pip —1) & N„~„, and the equality

only holds for Fi ——D4[001] and C4[001). This indicates,
that the remaining IP can still not be independent. There
must be further implicit constraints among these quan-
tities and it is not obvious, which are the really indepen-
dent IP.

One example of these implicit constraints can be found
by inspection of the explicit equations for the IP in Table
II, namely, the relation

(qi+ q2+ 2rs) ~ = (ri + r2)

(qs)'

which holds generally, if qs g 0.
Further relations may become obvious, if the symmetry

Oi of the mode is explicitly taken into account. This
generally simplifies the most general Raman tensor for
Oi ——Ci.

2. Properties resulting from the local defect symmetry

The symmetry of a local dynamical mode is reflected in
its Raman tensor, see Table V. When the defect symme-
try Oi is raised, the Raman tensor can simplify consider-
ably, i.e., the number of independent tensor elements Tz
decreases and more and more elements vanish or become
equal when compared with the Raman tensor for Oi ——Ci.
Additionally, the number of equivalent orientations v„of
the mode within the crystal increases.

Due to the homomorphic correspondence of the set of
transformations R„g O~ with the set of orientations v„
obtained from the initial orientation vq by v„= R„vi,
these orientations are essentially equivalent for the de-
fect. It was proved formally in Ref. 1, that the sets of
physically equivalent orientations for given defects with
symmetry Oq are obtained by constructing the left cosets
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of the subgroup Oi of the full crystal point group. The
left cosets for the representative symmetries Oi are sum-
marized in Table III(b). As a physically trivial result of
this, the population numbers N~"& of the orientations v„
belonging to the same coset are equal.

The simplifications of the IP expressions in Table II
due to the simplified Raman tensors combined with the
equalities among the population numbers for all represen-
tative modes are not worthwhile being tabulated explic-
itly. The are contained implicitly in Tables VII and IX
for the special case Fi Ci a——s discussed in the following
section.

8. Possible behavior types in tebegonul crystels

(8a)

x; & 0, (Sb)

The idea of the BT method is not the attempt to
solve the IP equations for the occurring unknowns (N~"~,

T~~ l}, because this will involve some practical problems.

(i) The identification of the really independent IP, as dis-
cussed in Sec. III B 1. (ii) The expressions in Table II are
cubic equations, with a high number of unknowns. (iii)
The measurement of polarized intensities in several inde-
pendent scattering configurations is generally a difficult
task in spectroscopy. In addition, (iv) Raman scattering
intensities of defects in crystals may become very small,
if the concentration of the defects is limited by their sol-
ubility in the crystal, reducing experimental precision.

Rather, the idea of the BT method is to try to identify
the representative modes on the basis of a direct inspec-
tion of simple algebraic relations among their IP induced
by the group-theoretical form of the Raman tensor of the
symmetry Oi and the relations among the population
numbers induced by the symmetry I"i. In other words,
the BT method avoids the cumbersome evaluation of the
basic physical quantities (N&" l, T; l) and focuses on the
related behavior of the IP, which can be more directly
obtained in the experiments, as is shown in Sec. IVA
below. The complete set of 21 IP together with the alge-
braic relations between them, is called the behavior type
of the mode.

In a systematic calculation of the BT for all the possi-
ble dynamical modes with all possible preferential orien-
tations it is necessary in a first step to determine the sets
of independent population numbers N~"l of the equiva-
lent orientations v„under the combined influence of the
symmetry Oi of the mode and the preferential orienta-
tion with symmetry Fi by combining the left cosets of Oi
with the right cosets of F~ according to the rules given
in Eqs. (14) and (15) of Ref. 1. In a second step, the
explicit forms of the Raman tensors are introduced into
the IP expressions.

The occurrence of the following simple types of rela-
tions or combinations of them has systematically been
investigated:

Zg = CZg) (8c)

z; = c(z, + zp), (8d)

(z /») = c(»/») (8e)

(z /z, ) = c(zi/zt)'. (Sf)

(2ri)
(ei + rs) ' =

(~s)
(9)

For those modes, where the Raman tensor additionally
imposes T~q ——T2~, this relation simplifies further to the
third additional BT relation:

1» = (gi's) ' (10)

It should be noted, that the two BT pairs nos. (9)
and (10) and nos. (15) and (16) differ only within their
additional BT relations of the type of Eqs. (8e) and (Sf)
connecting four IP. All the other BT difFer by the more
characteristic IP relations of the type of Eqs. (8a) and
(8c).

The connection to each of the possible representative
modes under all possible symmetries of the orientating
operator F is given in Table IX. The entries of that ta-
ble are the BT numbers defined in Table VII, and the
identifying number in the first columm labels the repre-
sentative modes summarized in Table VI.

The first row of Table IX, which contains the occur-
ring BT for all the possible symmetries I"q of a prefer-
ential orientation for defect symmetry Oi ——Ci, contains
precisely the Ei-symmetry induced relations among the
IP listed explicitly in Table IV. These relations are char-
acteristic for the symmetry I"~ of the externally induced
preferential orientation of the defects described by the
orientating operator F. Because they are valid even for
the most general Raman tensor, they must be obeyed for
each mode, providing a possibility to check the symmetry
of I"~ in the experiment.

In contrast to this, the BT in the first column of Table

Here, the z;, zz, zy, z~ denote specific IP summarized in

Eq. (5), and c is a positive or negative integer of half
integer.

As a result of this long but straightforward calculation
it was found that 46 different BT are possible in tetrag-
onal crystals. All these possible BT are listed in Table
VII. They are given an individual BT number for later
reference. The most characteristic IP relations, namely,
Eqs. (Sa) and (8c) are directly represented in the table.
The other more complicated types of Eqs. (Sd)—(Sf) are
listed in the footnote and given an individual label which
is referenced in the last column of Table VII.

The first additional BT relation is simply the equiva-
lent of Eq. (7), which is generally valid if qs g 0:

(gi + gs + 2Ts) ~
(i'i + i's)

(~s)'
If furthermore qi

——qq and ri ——rq this simplifies to the
second additional BT relation:
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IX (Fr ——Cr) contain those relations among the IP men-
tioned in Sec. III 8'2, which are induced purely by the
defect symmetry Or and the related form of the Raman
tensor. They can be called the minimum BT for a given
defect mode, because all the IP relations which they con-
tain must also occur for higher symmetries of Fr.

In the last row at the bottom of Table IX, the number

Ng;, of representative modes is given, which can be dis-

tinguished for the indicated orientational symmetry I'q

on the basis of a BT analysis of a single mode of a de-

fect. These numbers are simply the numbers of different

BT, which can occur for that symmetry Fr It .turns
out, that if in an experiment the preferential symmetry
Fr can be reduced to Fr=Cz[001] or Fr Cr, a—single-
mode BT analysis provides precisely the same possible
discrimination among defect symmetries as it was possi-
ble for a complete solution of the IP equations in Table
II. Only for the representative modes (Dz[110]:B2 and

Bs} and those given already by Eqs. (6a)—(6d) the BT
become similar, leaving N~;, ——16 distinguishable modes.
Even when the random distribution of the defects on their
equivalent orientations cannot be inffuenced in an exper-
iment, i.e. , for Fr —D4[001], and as seen by inspection of
Table IX also for Fr ——C4[001], only for three further rep-
resentative modes the discrimination is hindered, namely,

(Cg[001]: B, Dz[100]: Bg, Dp[110): Bg}. (11)

The BT of these modes becomes identical to the BT
of the modes (C4[001]: E, D4[001]: E} given in Eq.
(6d), which cannot be distinguished at all. This results
in Nq;, =13 out of the total of 20 representative modes.
It is noted, that for Fr ——D4[001] all A modes of differ-

ent symmetry Or can be distinguished, except for the

high symmetric pair (C4[001]:A, D4[001]: A}, where

both modes yield BT 33. This special BT is unchanged,
even when a preferential orientation can be realized and

this pair belongs to those modes which cannot be distin-

guished by single-mode Raman experiments at all, Eq.
(«)

The weak affection of the principal discriminative
power for the case of statistical random distribution onto
all possible orientations in tetragonal crystals is the con-

sequence of the lower crystal symmetry and the smaller

loss of information due to the reduction of the number

of equivalent orientations to h=8, when compared to cu-

bic crystals with h=24. In cubic crystals from a total
of 25 representative modes only 15 can possibly be dis-
tinguished when Fr can be lowered to Fr C—r, Cq[100],
or Cz[110]. This is greatly reduced to N~;, 7,—when no
preferential orientation can be realized at all.

g. Wultimode BT analysis of a defect

The discriminative power of the BT method is en-

hanced, when more than one mode of the same de-

fect can be detected simultaneously. Except for the
(Dz[110]: Bz, Bs) pair, which was already discussed,
these modes possess diR'erent BT, but they must belong
to the same group Or. These groups of representative
modes with the same Or are separated by the horizontal
lines in Table IX. In favorable cases, all defect orienta-
tions with symmetries Or can be discriminated.

As an example, the Or symmetry of the pair (C4[001]:
A, D4[001]:A} can be distinguished even without pref-
erential orientation, if the B mode of the defect can also
be detected and identified.

When more than one mode of a defect can be detected,
Table VIII may become valuable. For some of the modes
there exist additional relations between the IP of differ-

ent modes of the same defect. These relations are of
the form of Eq. (Se), such that the Raman tensor ele-

ments cancel out, leaving ratios based on the population
numbers, which are equal for the different modes. These
relations may yield IP relations of other modes of the
defect, which are not directly available from experiment,
when the known IP relations of the easily observed mode

are substituted therein.

C. Accidental symmetry in a BT:
Observed and actual behavior types

A possible complication in the practical performance
of a BT analysis of experimental Raman intensity data
was already pointed out in Ref. 1. It is necessary to make
the following distinction. The IP relations, which are irn-

posed by the actual defect symmetry are called the actual

BT, in adaptation of the terminology of Ref. 1. These are
the ones presented in Tables VII and IX calculated and

TABLE VIII. Relations which exist between the IP of diR'erent representative modes of the same defect.

Defect
symmetry Oq

C2 [010]

Representative
modes

4, 5

4, 5

IP relations between difkrent modes

Ns+ N6

Cg [110] 6) 7

6, 7

~S ~8 N1+ Ng+ N3+ N4

D, [100]

D2 [110]

10, 10

13, 14 t3 B2 t3 B3 N1 -1'
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TABLE IX. Summary of the BT which belong to each of the representative modes with symmetry Oy under the action of
an orientating operator F for each possible symmetry Fy. The representative modes are listed in the first column with the
abbreviating notation and identifying number introduced in Table VI. The symmetry of F is given in the first rom. The entries
of the table are the BT numbers dered in Table VII.

Oy

Cy

C2[oo1]

C, [o1o]

C, [11o]

D&[100]

Dg [110]

C4 [001]

D4 [001]

Ndis

Identifying
number

8
9
10

11
12
13

14
15
16

17
18
19
20

Mode

A
B

A
By
Bg

A
By
Bg

A
B
E
A
By
Bg

Cy

14
40

6
34

2
17

29
46
44

16
43
41

33
31
45

33
43
46
45

16

C2 [001]

14
40

23
39

10
32

29
46
44

16
43
41

33
31
45

33
43
46
45

16

c2[1oo]

25
44

12
37

11
28

29
46
44

27
43
45

33
38
45

33
43
46
45

14

C2 [110]

15
41

7
35

4
18

30
46
45

16
43
41

33
38
45

33
43
46
45

14

D2 [100]

19

25
44

23
39

22
36

29
46
44

27
43
45

33
38
45

33
43
46
45

14

D2 [»ol

15
41

24
42

10
32

30
46
45

16
43
41

33
38
45

33
43
46
45

14

C4 [001]

13

20
45

24
42

22
36

30
46
45

27
43
45

33
31
45

33
43
46
45

13

D4 [001]

21

26
45

24
42

22
36

30
46
45

27
43
45

33
38
45

33
43
46
45

13

discussed so far.
The result of an analysis of experimental data is what

is called the observed BT. In general, taking into account
experimental uncertainty, the symmetry contained in the
observed BT may be higher than the symmetry in the
actual BT, because accidental additional IP relations can
be pretended.

To give an example, an actual BT shall not require
z; = zz or z; = O. But if the Raman tensor elements,
which enter the expressions for the IP z; or z& happen
to be very similar, or very small, respectively, these IP
relations might be observed accidentally. From the point
of view of the experimentalist, the IP z; and zz are equal
within experimental uncertainty in the first case and may
lie below the detection limit in the second case.

To facilitate a BT analysis concerning these complica-
tions, for each possible experimentally observed BT the
complete set of possible actual BT with lower symmetry
which may "degenerate" to the observed BT are listed in
Table X.

The reverse effect, however, is not possible. That is,
the symmetry-induced IP relations of a BT cannot be
broken. An example for this are the relations, which stem
solely from the symmetry of I"1, see Table IV. It shall
be noted, that in the sense of this hierarchy of increasing
symmetry contained in a BT, all the possible actual BT
of Table VII have been listed in consecutive order using
the following scheme of priority.

The order criterion of highest priority for the listing
in Table VII was simply the number of IP different from
zero. The next weaker criterion was the number of IP
which are independent in the sense of the simple BT re-
lation Eq. (8c). The weakest criterion was finally related
to the Raman tensor elements contributing to the IP. In

the short IP notation, the q; and r; are determined from

the diagonal tensor elements of T alone. They were
+~)

assigned a higher priority than the s, and t; determined
from off-diagonal tensor elements, which were assigned
in turn a higher priority than the u; and v;. As a conse-
quence of this ordering all possible actual BT for a given
observed BT possess a smaller BT number in Table X.

IV. PRACTICAL APPLICATION OF THE
METHOD TO TETRAGONAL CRYSTALS

A. Practical sets of optical polarization geometries
and limitations due to birefringence

For an application of the BT method it is necessary to
obtain as much of the IP as is possible from experimen-
tally measured Raman scattering intensities I &

under
the same condition, i.e., the same experimental detec-
tion eKciency k for suitably chosen polarization geome-
tries. From Eqs. (3) and (4) it is clear, that the polarized
Raman intensities I, b depend only on the polarization

vectors a and 6 of the incident and scattered light waves,

respectively, and not on their directions k;„and k „t of
propagation. Therefore, again in adaptation of the ter-
rninology of Ref. I, a pair (a, ti) shall be called an optical
geometry pair (OGP).

Generally the IP are the solutions of a linear system
of up to 21 linear independent equations of the type of
Eq. (3), where the experimental input data are the e 6
1, . . . , 21 intensities I& &, for the distinctly chosentI, b

( )
OGP a(,), b(, )
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To simplify the evaluation of the IP the following cri-
teria should be fulfilled for OGP's. (i) From the point of
view of Eq. (3), the expressions for the scattering inten-
sit;ies shall be as simple as possible. This can be achieved

by selecting the ai, l and bt, l parallel to the axes z II [100],
y II [010], and z II [001] of the crystal frame or simply 45'
diagonal to them. (ii) Changing to the experimental-
ist's point of view, only rectangular scattering geometries

k;„J k „t are considered. These are commonly preferred
to forward or backward scattering geometries (k;„ 1'1' k,„t;
or k;„ 1'f k,«), because the stray light, originating from
surface or Rayleigh scattering, is rejected most eKciently.
In addition the signal from the scattering volume can be
imaged most efficiently to the entrance slit of the spec-
trometer. (iii) Additionally, more independent OGP can
be realized for k;„3 ka«without rotating the sample,
i.e, , with the same efBciency k. The latter is critically
inQuenced by the orientation of the sample, the quality
of the polished sample surfaces and the position of the
laser beam. (iv) The sample surfaces shall be (100), or

(110)planes to simplify the preparation (cutting und pol-
ishing) of the crystal for the experiment. The following

three sets of OGP were already proposed in Ref. 1 for
cubic crystals. The first set is

k;„ II z J (001), k „t, II z J (100), (12a)

the second set is

k;„ II z J (001), k,„t II y I (010), (12b)

and the third set is

(12c)

These scattering geometries are represented schemati-
cally in Figs. 1(a)—1(c).

The orientation of the crystal axes must be carefully
adjusted within the orthogonal laboratory reference axes,
labeled (X, Y, Z). These axes are defined as follows. X
is the optical axis of the detection system, usually the
monochromator, i.e. , X II k«t. The incident laser beam
defines Z II k;„, which must be adjusted perpendicular
to X, The polarization vector a of the incident light can
then be varied in the X,Y plane, and the polarization b

of the scattered light in the Y,Z plane.

TABLE X. For each of the BT which may be observed the set of possible actual BT is given. When applying this table
to the evaluation of experimental data, only those BT must be considered, which can occur for the ~smmetry I"& employed.
Observed BT no. 43 can accidentally reduce to nearly all actual BT, therefore only those actual BT to which it can never
reduce are given between parentheses.

Observed
BT

13

15

19

21

25

29

31

33

37

39

41

43

Possible
actual BT

13
1 5

1367
1349
12511

1 8 13

1 8 9 15

1 17

15819
1 3 5 9 13 19 21

1 5 6 8 12 19 23

1 5 8 14 19 25

1 2 3 4 5 8 9 10 11 13 14
15 16 19 20 21 22 25 26 27

1 5 6 8 12 14 19 23 25 29

1 8 13 20 31

1 2345 678910
11 12 13 14 15 16 19 20 21
22 23 24 25 26 27 29 30 33

1 2343435

1 53437

1 5 8 19 34 37 39

12348910
17 18 32 40 41

(34 35 37 39 40 41 42 44 45 46)

1 2 3 4 5 6 7 8 9 10 ll 12 13
17 18 19 21 22 23 24 28 32
34 35 36 39 40 41 42 44 45

Observed
BT

10

12

14

16

18

20

24

26

30

32

36

38

40

42

44

46

Possible
actual BT

1 2

1234
1 6

1 234810
15612
1814

1 2 4 8 9 15 16

131718
1 8 13 14 20

1 2 3 4 5 9 10 11 13 19 21 22

1 3 5 6 7 8 9 12 13 19 21 22 23 24

1 3 8 9 13 14 15 19 20 21 25 26

1 3 5 6 7 12 17 18 28

1 3 5 6 7 8 9 12 13 14 15
19 20 21 23 24 25 26 29 30

1 2 3 4 8 9 10 17 18 32

1 34

1 2 3 4 5 6 7 8 9 10 11 12 13
17 18 19 21 22 23 24 28 32 36

1 2 3 4 5 8 9 10 11 13 14 15 16
19 20 21 22 25 26 27 31 38

1 840
1 2 3 4 5 8 9 10 11 13

19 21 22 34 35 37 39 42

1 5 6 8 12 19 23 34 37 39 40 44

1 2 3 4 5 8 9 10 11 13 14
15 16 19 20 21 22 25 26 27

31 34 35 37 38 39 42 46
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FIG. l. (a)—(f) Schematic representation of the scattering configurations for the OGP sets introduced in Eqs. (12a)—(12f).

Very often, the experimental set-ups limit the choice

of the polarization vectors a and b to rectangular or 45'
diagonal directions, i.e. , a ff (X, Y, XY, XY) and 5 ff

(Y, Z, 'YZ, YZ). This results in 4x4=16 independent
scattering intensities, which could be measured within
one OGP set, i.e. , for one orientation of a cubic crystal.
The complete list of these 16 possible OGP and the full

expressions of the Rarnan intensities as a function of the
IP for OGP sets 1, 2, and 3 are given in Table XI of
Ref. 1.

These three OGP sets are sufficient for use in cubic
crystals in the sense that the Raman intensities measured
in one of them or a combination of up to all these three
sets allows us to distinguish the maximum number Nd;,
of representative modes, see Table XIII of Ref. 1, which
can principally be discriminated for any of the possible
orientational symmetries I"~ in cubic crystals on the basis
of a single mode BT analysis, see Table VIII of Ref. 1.
For tetragonal crystals further and/or other OGP sets
are necessary to achieve the maximum discrimination,
because of two essentially different reasons related to the
existence of the unique tetragonal axis.

First, from elementary laws of crystal optics the tetrag-
onal axis destroys the optical isotropy and leads to the
effect of birefringence. Tetragonal crystals fall into the
category of optically uniaxial crystals, the tetragonal axis
being the optical axis of the crystal. In these systems,
for each direction k of light propagation, only two waves
with prescribed directions of polarization can propagate:
the ordinary (o) and extraordinary (e) wave. Their po-
larizations are related to the direction of the optical axis.
The plane spanned by the optical axis and the direction
k of propagation is called the main plane. Then the po-
larization of the (o) beam is perpendicular, and that of
the (e) beam parallel to that plane, in both cases per-

pendicular to k. For the special case, when k is parallel

to the optical axis, all directions perpendicular to k are
allowed for the polarization.

Generally the birefringence reduces the number of pos-
sible OGP which can be measured within one OGP set.
The constraints apply for both, the incident and scat-

tered light waves with k;„and k,„t, respectively, generally

leaving only two possible directions for a and b. This al-

lows only 2 x 2=4 possible OGP within one OGP set. For

the special cases, that either k;„or k,„t, is chosen parallel
to the optical axis, the experimental set-up limitations
mentioned above become important again.

The second demand for further OGP sets arises within
the BT method. The lower symmetry of tetragonal crys-
tals compared to cubic systems leads to a higher number
of independent IP, which are characteristic for the BT of
the representative defect modes.

As an example, consider the case of random distribu-
tion of the defects on the equivalent orientations. For
cubic systems, at maximum the gyp

——3 independent IP
q, 1, s are left, which for the most general Raman tensor
01——C1 yield BT(cubic) no. 60 (qr

——q2
——qs = q, 11 ——

pQ —p3 p sg sQ s3 s), see Tables II, VII, and

VIII of Ref. 1 for F1 Tor O. For te——tragonal crystals, in-

spection of the equivalent Tables IV, VII, and IX of this
work for F1 ——04[001j yield prp=6 and BT(tetragonal)
no. 21 (qr ——q2 g q3 7$ —1.2 g P3 S1 —S2 g S3).
The IP, which carry the index 3 in this short IP no-
tation, will generally be different from those with in-
dices 1 and 2. Inspection of Tables VII and IX of
this work reveals that the most direct discrimination be-
tween the representative modes via a BT analysis in-
volves testing the validity of the following IP relations:
q3 —0, r3 ——0, r 3 ———qp, s3 ——0 and the other rela-
tions among the quantities sq, s2, and s3. This empha-
sizes the need of OGP sets with the most direct access to
these specific IP in the sense that the Rarnan intensities
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TABLE XI. Raman scattering intensities I& b, which can be measured together in the six essen-
1

tially independent OGP sets for uniaxial crystals, given as function of the IP. The scattering con-
figuration is expressed with respect to the laboratory frame (X, Y, Z) defined by k;„ II Z, k,« II

X
and the crystal frame (x, y, z) according to the Porto notation k;„u, b k,„i.

Laboratory frame Crystal frame

Z(Y, Y')X
(Y, Z)
(X, Z)
(X, Y')

(XY, Y)
(XY, Y')

(XY, Z)
(XY, Z)

(a) oGP set 1: k;„ II z, k, 1 II z

z(y, y)x
(y z)
(* z)
(*, y)

(xy y)
(*y y)

(xy, z)
(xy, z)

g2

8]
S2

83

-', (qz+ 33+ 2vs)

3 (q2 + s3 —2vs)

3 (sl + sz + 2t3)
(Sl + 33 —2t3)

Z(Y, Y)X
(» Z)
(X, Z)
(X, Y)

(XY, Y)
(XY', Y)

(XY, Z)
(XY, Z)

(b) oGP set 2: k;~ II z, k, 1 II y

z(x, x)y
(* z)
(» z)
(y *)

(zy, x)
(xy, z)

(xy, z)
(xy, z)

gl
S2

8]
83

3 (ql + s3 —2vs)

3 (ql + S3 + 2VS)

3 (Sl + Sz —2t3)

3 (Sl + 32 + 2t3)

Z(Y, Y'Z)X
(Y, YZ)

(X, YZ)
(X, YZ)

(c) oGP set 3: k;, II yz, ko 1 II z

yz(yz, z)z
(yz, y)

(z, z)
(* y)

(q3 + Sl 2vz)

3 (q2 + sl 2vl)

S2

S3

Z(Y; Y)X
(Y, Z)

(Y, Y'Z)

(Y, YZ)

Z(X, Y)X
(X, Z)

(X, YZ)
(X, YZ)

(d) oGP set 4: k; II *y, k. 1 II
z

zy(*y *y)z
(zy, xy)

(zy, y)
(xy, x)

(z, xy)
(z, zy)

(z y)
(z, x)

—(ql + q2) + —T3 + S3 + (VS + V6)

—,(ql + qz) —-T3

3 (qz + s3 + 2vs)
-', (q, + S3+ 2VS)

—(Sl + 33 + 2t3)
—,(sl + S3 —2t3)

Sy

82

Z(Y, Y)X
(Y, Z)

(X, Y)
(X, Z)

(e) oGP set 5: k; II y, ko 1 II
z

y(z, z)x
(z, y)

(x, z)
(x, y)

gs

sy

S2

Z(XY, Y)X
(XY, Z)

(XY, Y)
(XY, Z)

(f) OGP set 6: kl~ II x~4« II yz

x(z, yz)yz
(z, x)

(y, yz)
(y, *)

—(q3 + sl + 2vz)
S2

—,'(q3 + sl —2vl)
S3
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k;„ ii zy J (110), k,„g ii z J (001),

OGP set 5:

k;„[]y J (010), k,„f, ([ z J (100),

and OGP set 6:

z 2 (100), ko t II &z 2 (011),

(12d)

(12e)

(12f)

of Eq. (3) are most simple linear combinations of these
characteristic IP.

Apart from the OGP sets 1, 2, and 3 of Ref. 1, three
additional OGP sets, 4, 5, and 6, are considered in view
of both, the problem of birefringence, and the need to
obtain these special IP directly. OGP set 4:

more of the IP. In this case it is necessary to have at least
one OGP, which can be realized in the OGP sets to be
combined, in order to evaluate the relative experimental
efficiency k. Fortunately, I, = s2 can be measured in
all of the six proposed OGP sets. By pairwise compar-
ison, at least the two OGP I, = s2 and I y

——s3 orI, = s2 and Iy, ——si are available in all pairs of OGP
sets to be combined. When the symmetry of F requires

qq ——qq, then I = qq and I& &
——qq can also be used

to link OGP sets.
We have checked, that under the constraints of bire-

fringence no other rectangular scattering OGP sets are
possible at all, which allow to extract additional IP to
the set of these 12 IP:

(13)(ql, g2, g3, P3, Sl, S2, Ss, ts, Vi, 'V2, Vs, VS).

In Table XII, an overview is given of the individual

IP, which can be obtained from measurements within
the 6 selected OGP sets or combinations of several of
them, for all possible representative symmetries Fi. The
Fi-symmetry imposed conditions of Table IV for the IP
have explicitly been taken into account. In the second
row of Table XII the number p'„'„';"„";siof IP, which can be
obtained at maximum for the OGP sets with rectangu-
lar scattering geometry under the constraints of birefrin-
gence is compared with the number yip of independent
IP for each symmetry Fi Furth. ermore, these p'„'„';"„";si

IP are explicitly listed. In the following rows the number
of IP and the list of the IP, which can be obtained from
measurements within the indicated combination of OGP
sets, are tabulated.

It is seen, that in the favorable cases Fi ——D2[100],
C4[001], or D4[001] only two OGP sets (namely, OGP
sets 4 and 5) must be combined to obtain all the p'„'„'; '„";si

IP. Three OGP sets, namely, sets (3, 4, 5) or (I, 4,
6) or (I, 4, 5) must be combined for experiments with
I"i ——C2[100] or C2[110] or D2[110], respectively, while
four OGP sets (I, 2, 4, 6) are necessary for Fi ——C2[001]
and even five sets (I, 2, 3, 4, 5) in the case of Ei——Ci.

It is questionable whether sufficient experimental accu-
racy can be obtained in an experiment in order to obtain
the complete BT. Fortunately this is not necessary. The
BT method can be most advantageously employed, when
for speci6c preferential orientation symmetries I"~ those
OGP sets are selected, which allow us to extract the IP
relations, which are characteristic for the BT belonging
to the symmetry Oi of the defect. This is outlined in
more detail in Sec. IV B.

We have also considered backscattering configurations
k;„1'J, k«t, . These geometries are more difficult to per-
form. However, some additional IP to those in Eq. (13)
can be obtained in principle. The relevant OGP sets and
the according Raman intensities are

+ (vi + v2),
(14a)pz&

2 (V3 + V4),

(14b)Iy, ZZ)

are sketched in Figs. 1(d)—1(f). Equivalent OGP sets
can be obtained by an exchange of k;„and k«t, , which
can directly be seen from Eq. (3) using of the fact that
Pijkl = Pklij

The refractive index of the (e) wave depends on the
direction k as given by the index ellipsoid. s Additional
obstacles due to the birefringence occur, when the in-
cident beam is refracted to two directions at the crystal
surface. This is suppressed, when geometries are selected
with k;„, k,„& either parallel or perpendicular to the op-
tical axis. In this respect, OGP set nos. 3 and 6 of Fig. 1
and Table XI, see below, are only recommended, when
the birefringence An = n, —n, is very small.

The Raman intensities, which can be measured in these
six OGP sets under the constraints of birefringence, are
given as a function of the IP in Table XI(a)—(f). The
expressions are calculated from Eqs. (3) and (4) for the
general symmetry Fi Ci. The pe—rmutation symmetries
P&. yi = Pgi;&

——P&, ki of the IP, which result from the
symmetry T&

—
T&, of the Raman tensor and the bilin-

ear form of Eq. (4) with respect to the T~y, were used in
the derivation. Finally the short IP notation according to
Eq. (5) was substituted. The notation of the directions

k;„, k«q, a, 6 is the same as that used to label the ro-
tation axes of the transformation matrices R„ in Sec. II.
For a specific higher symmetry of Fi, the IP must at least
follow the minimum BT for a defect symmetry Oi ——Ci.
The corresponding IP relations are those explicitly given
in the last column of Table IV. They can be used to
simplify the expressions of Table XI. In favorable cases,
more IP can be solved from the expressions of Table XI.

As an example, the only access to any of the r; IP,
namely, r3, is possible in OGP set 4. It is much simplified,
when n5 ——v6 ——0, because then simply I & &

—I z, &
——

P3+ s3. The s3 IP is directly available in any of the OGP
sets 1, 2, 5, or 6.

It is in principle possible to perform intensity mea-
surements in several OGP sets with the aim to determine

I

1
Iyg, yg = ~(g2 + g3) + 2 &1 + sl

kin ff Vz, kout f[ Vz: 0 Iyg, g —2(S2 + S3 + 211):Ig
=qi,

I , —,= -(qi + qs) + -i2 +S-1

ZZ, kong II (ZZ): & Irg, y
—2(Si + S3 —2t2) =

Iy y
——qp.
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The intensities I~ and I& &
can be used to obtain the

relative experimental eKciencies for these OGP sets. No
further IP can be obtained in backscattering geometries
with uniaxial crystals.

The main systematic experimental errors in polarized
Raman intensity measurements result from a deviation
of the crystal orientation with respect to the polarization

directions. For a complete discussion of this problem we
refer to Sec. III E of Ref. 1. Let Pr, P2, and P3 denote
the small angle misalignment of the crystal with respect
to the axes of the laboratory frame of reference obtained
by a rotation around the crystals z, y, and z axes. Then
a distinction can be made between the cases, when the
related error AI of the polarized Raman intensity varies

TABLE XII. Independent Raman IP, which can be determined from measurements in one OGP set or from a combined experiment in several
OGP sets, for each symmetry Fl of the orientating operator O'. The number gyp of independent IP, the number p . ".

~& of IP, which can be. QJtlaxlalobtained in rectangular scattering geometries, and the explicit list of the nonzero IP are given in the second and third rows of the table for each
Fi. The entries of the table are the lists of the specific IP and their number, which can be obtained in the indicated OGP set or combination of
sets.

OGP sets

Prp
rectang

~uniaxial

20
12

C2[oo1]

12
10

C2 [100]
12
9

Fl symmetry

C2 [110] D2 [100]
11 8
8 7

D2 [110]
7
7

C4 [001]

6

D4 [001]

5

Iprectang
access

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Sets
1+2

Sets
1+ 2+3

Sets
1+ 2+ 5

Sets
1+4

Sets
1+5

ql q2 q3) 13)
$1, $2, s3, t3,
vl) V2) V5& v6

6
q2)81) 82)83)

t3, V6

6
ql & 81& 82) 83)

t3, V5

2
82) $3

3
Sl) S2) t3

q3) Sl ) S2) 83

2
$2) 83

ql, q2, sl, s2,
s3) t3) V5) V6

ql) q2)
Sl) 82) S3)
t3) V5) V6

ql ) q2) q3)
Sl) S2)S3
t3, v5, V6

6
2) $1) $2) $3)

t3, V6

q2, q3, $1, $2,
s3, t3, v6

ql » q2 ) q3 ) r3 )

$1) 82) S3)
t3 V5 V6

6
q2 81 82 83

t3, V6

6
ql)$1&82)83)

t3, V5

2
82) S3

3
81) S2) t3

4
q3) $1) 82) S3

2
$2) s3

ql q2 81 $2
83 t3 V5 V6

q1) q2) q3)
1) 2& 83)

t3, V5, v6

ql) q2) q3)
81) 82) S3
t3, V5, V6

6
q2 sl s2, 83

t3, v6

q2 q3 81 82
83, t3, V6

ql) q2) q3& ~3 &

Sl) 82) S3)
vl) V2

4
q2 81 82 83

4
ql)$1&82)83

2
$2) 83

Sl) S2

4
q3) 81) $2) 83

2
$2) $3

ql) q2)
81) S2) $3

ql ) q2)
Sl)S2)83)

Vl

6
ql) q2) q3)
$1) $2) 83

6
ql) q2) "3
Si) S2) 83

q2 q3 $1
S3

ql ) q3) ~3
&

Sl& S3
t3, vi, V5

5
ql) 81) 83)

t3, v5

5
ql) 81) 83)

t3, v5

2
$1) 83

2
sl, t3

3
q3) Sl ) S3

2
Sl) S3

ql ) 81) 83)
t3, V5

ql &

Sl)83)
t3, V5

ql r q3)
Sir S3
t3, v5

6
ql) ~3&

1& 3& 3) 5

ql & q3&

1& 3& 3) 5

ql ) q2) q3) ~3)
Si) S2, S3

4
ql) 81) 82) $3

q2) 81& s2) s3

2
82) $3

Sl) S2

4
3) Sl) S2) 83

2

2) s3

ql ) q2&

81) S2) S3

6
qi) q2& q3)
sl, s2) s3

6
ql ) q2) q3
$1) 82) $3

6
ql) q2) ~3
81)S2, 83

q2) q3)
81) S2) S3

ql ) q3) r3)
Si) $3
t3 V5

5
ql ) 81) 83)

t3, V5

5
ql ) 81) 83)

t3, V5

2
$1) 83

2
sl, t3

3
q3) 81) $3

2

1) S3

5
ql)81) 83)

t3) V5

6
q1) q3)
81) 83)
t3, v5

6
q1) q3)
$1) 83)
t3, v5

6
q1) ~3)

1) 3) 3) 5

6
ql ) q3)

sl) s3) t3) V5

ql ) q3) ~3)
sl&s3)

V5

4
ql ) 81) 83)

V5

4
ql ) Sl) S3)

V5

2
Sl) S3

1
81

3
q3) 81) 83

4
ql) q3) $1) $3

4
ql ) $1) s3)

V5

5
ql ) q3)
81)$3)

V5

5
ql ) q3)
$1) 83)

V5

5
ql ) "3)

$1) S3) V5

ql ) q3)
Sl) S3) V5

ql ) q3) ~3)
$1) $3

3
ql)81) $3

3
ql)81)83

2
$1) $3

3
q3) $1) 83

4
ql ) q3) 81) 83

q1) 81) 83&

ql) q3&

$1) $3

4
ql& q3)
81& $3

4
ql) ~3)
$1) 83

ql ) q3)
Sl) S3

Sets
1+6

Sets
4+ 5

Sets
1+ 2+4

Sets

q2 $1 82 $3
3) vl) v6

q3) 1& 2) 3)
t3

q1) q2) ~3)
81, S2)S3)
t3, V5, v6

1+ 2+3
+4+ 5

9
ql) q2) q3) ~3)
81)82&$3& t3

1) V2) V5) V6

q2 q3 81 82
s3) t3) V6

5
q3& 1& 2) 3&

t3

q1& q2) "3)
$1) 82)83)
t3, V5, v6

1+2+ 4+ 5

10
qi ) q2 r q3) ~3)

Si) S2) S3,
t3 V5)v6

q2, Sl, S2,
S3) Vi

7
qi) q2) q3) "3

Sl) S2) 83

6
q1) q2) "3)
Sl) S2& S3

3+4+ 5
or 4+5+6

9
qi& q2) q3) ~3&

Sl) S2) S3
Vl) V2

q1) q3& 81) 83)
t3, vi, V5

4
q3 1 3

t3

q1 & ~3)
$1 & S2) S3)

V5

1+4+6
8

ql & q3) ~3)
$1) $3)

t3, vl, v5
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$1) $3&
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ql) q3) $1& 3&
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qi) q3) ~3&

$1) $3) V5

5
ql ) "3)
81) 83&

V5

1+ 4
+(5 or 6)

6
ql ) q3) ~3 r

$1) 83)
V5

qi) q3)
81) 83

5
qi) q3) ~3

$1) $3

qi & "3)
$1& 83

1+4
+(5 or 6)

5
q1) q3) 13)

$1) $3
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(i) to first order in the P;, i.e. , AI P; or (ii) to second
order, i e ., b. ,I P; or b.I P;Pz. The second-order case
is of course less critical. In Table XI of Ref. 1 the linear
error order (first or second) is indicated for all OGP in
sets 1, 2, and 3 for all symmetries of I"q. The results for
I"~ ——D4, which in tetragonal crystals means no prefer-
ential orientation, can be carried over to OGP sets 4—6
introduced in Eqs. (12d)—(12f).

It was discussed already in Sec. III B 3, that in tetrag-
onal crystals a high discriminative power can be obtained
even without preferential orientation, Fr ——D4 [001].For-
tunately, all the IP which determine the BT for that case,
namely, the q;, s;, and rs, see Table IX, can be obtained
with a second-order accuracy. The q; and s; are directly
available from OGP sets 1, 2, and 5, while rs can be
derived from set 4. Those OGP, where the Raman inten-
sity varies to first order with the P; can be advantageously
used to correct the alignment of the crystal, when the Ra-
man intensity of the defect mode is monitored without
preferential orientation. The details of this procedure are
discussed in Ref. 1 in connection with Table XIV of that
paper. Carrying over their considerations to tetragonal
crystals, the results for the OGP sets 1—6 can most eas-
ily be summarized by referring to the laboratory frame
of reference X, Y, Z. For those OGP sets, which allow
the diagonal pairs of polarization directions under 45' to
the laboratory axes, a = XY and XY or b = YZ and
YZ, the crystal must be adjusted so to obtain pairwise
equalities of the Raman intensities of the defects without
preferential orientations applied. In particular it is nec-
essary, that Ixi i ——Ixz i, in OGP sets 1 and 2, and
that Ii ~z ——I& &z in OGP set 4.

Instead of monitoring the Raman signal of the defect,
it might be possible to test these 45' equalities for some
phonon or two-phonon excitation lines with appropriate
symmetry, e.g. , an A-type symmetry. Whether this is
possible or not depends on the crystal structure of t,he
host lattice and must be considered individually. This
method becomes useful in cases of small Raman signals
either due to low defect concentrations or small Raman
scattering cross sections Tz of the defect under study. i

B. Discriminative povrer of the BT method
in tetragonal crystals

It was discussed already in Sec. IIIB3, that the dis-
criminative power of the BT method for defects in tetrag-
onal crystals is higher compared to cubic systems. In or-
der to obtain the maximum discrimination between rep-
resentative modes indicated by the numbers Nd;, in Table
IX it is in principle required to determine the complete
set of IP which define the BT. This number decreases in
general, when experiments can only yield part of the IP,
e.g. , when only one OGP set can be realized. Then it
is possible to check only parts of the IP relations. As a
result different BT which can occur for a given I'y can
possibly not be distinguished.

By a systematic inspection of the IP, which can be

obtained for a specific symmetry of Fi in each of the
OGP sets 1—6, and combinations of them (Table XII),
the full set of IP relations, which define the 46 BT possi-
ble in tetragonal crystals (Table VII) and the BT, which
can principally occur for the 20 possible different repre-
sentative modes (Table VI), we have determined those
representative modes, which cannot be discriminated on
the basis of this limited BT analysis. These undistin-
guishable modes differ in BT relations which cannot be
checked within the OGP sets to be combined. On the
other hand, in some cases two BT's can be discriminated
even though the IP relations by which they differ can-
not directly be checked in the experiment. However, the
relatively simple form of the expressions for the Raman
intensities I

&
in terms of the IP, listed in Table XI,a, b

allows us to check characteristic simple, algebraic rela-
tions among the Is &

imposed by the BT. In other words

discrimination is achieved by checking the behavior of
the Is ~, which are the directly measurable quantities,
induced by the BT of the IP.

The result of this long but straightforward considera-
tion is presented in Table XIII. The sets of undistinguish-
able representative modes are given between parentheses
for all OGP sets and useful combination of several sets.
The representative modes are labeled with their identi-
fying number given in Table VI.

Although OGP sets 1 and 2 yield higher numbers of
IP for each symmetry I"r, the other sets offer a compara-
ble, in special cases even higher number of sets of distin-
guishable modes. This is possible, because in many cases
the BT relations among the IP imply certain relations
among the Raman intensities I

b
of Table XI, which can

be checked in the experiment. This allows characteristic
distinctions without solving the expressions of Table XI
for the IP, which is not possible, when some of the IP
occurring in the intensity expressions are not known.

A good example for this is a case appearing in OGP
set 6 for Fr —Ci or Er ——Cz[001]. For that case, the set
of modes (3, 10)=(Cz[001]:B, Dz[100]: B2), see Ta-
ble VI, which possess (BT 40, BT 44), respectively,
can be distinguished from the set of modes (13, 16,
20)=(Dz[110]: Bz, C4[001]: E, D4[001]: E), which
possess (BT 41, BT 45, BT 45), respectively. The char-
acteristic difference between the sets (BT 40, BT 44)
and (BT 41, BT 45) is the relation si ——sz, which must
be obeyed in the BT within the first set but not in the
second set. These two IP cannot be obtained in OGP set
6. However, the characteristic equality can principally be
tested when the ratios I, „,/I, = z(qs+sr-+2v2)/(s2)
or alternatively I& z, /I, = 2(q2+ s—i —2vr)/(sq) are
equal to 2, or not. Note, that for the given symmetry
I"~ v~ ——v~ ——0 and that q2

——q3
——0 for the BT of the

modes to be distinguished.
Having established Table XIII, it turns out further-

more, that at most two OGP sets need to be com-
bined in order to obtain the maximum possible distinc-
tion. Namely, OGP sets 1 and 4, when combined for
Er ——C2[001], Dq[001], and D4[001], or OGP sets 4 and
6, when combined for Fi Ci, C2[001], C2——[100], D2[001],
C4[001], or Dq [001],allow the maximum distinction sug-
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gested by Table IX. The sets of modes (1, 6)=(C1 . A,
C2[110]:A) and (2, 11)=(C2[001]:A, D2[110]:A) can-
not be distinguished at all for F1—C2 [110]or F1——D2 [110],
because according to Tables VII and IX the diR'erence in
the related BT necessitates a determination of the u; and
r1 IP, which cannot be determined from rectangular scat-
tering geometries.

When the additional discrimination, which can be ob-
tained for a combination of two OGP sets, shall be estab-
lished, it is not sufhcient to look simply whether modes,
which belong to a set of nondistinguishable modes for one
OGP set, belong to different sets of the other OGP set,
although such observations facilitate the establishment
enormously. It may happen, that two modes cannot be
distinguished in both OGP sets either, when regarded
individually. But by a determination of the relative ef-
ficiencies k and certain IP relations obtainable in one
OGP set it may become possible to discriminate the two
modes, when the obtained IP relations are used to check
characteristic relations for the Raman intensities in the
other OGP set.

An example for this appears for the case of a combi-
nation of OGP sets 1 and 4. For F1——D4[001] the modes

(2, 15)=(C2[001]:A, C4[001]:B), which possess {BT
26, BT 38) cannot be distinguished in either of the OGP

sets 1 and 4 alone. The characteristic difference in the IP
relations of these two competing modes is that r3 ——q1
is additionally implied by BT 38 compared to BT 26.
When this is inserted into the expressions for the Ra-
man intensities for OGP set 4 in Table XI, one obtains
Izy zy: s3 and I» ~y

—
q1 . Thus for BT 38 the exPeri-

mental ratio I
& &/I & z measured in OGP set 4 must

be the same as s3/q1 ——I 9/I measured in OGP set 1.
If this relation is not verified in the experiment, BT 38
can be ruled out.

We want to point out, that the problems of acciden-
tal additional IP relations, which was discussed in Sec.
III C, has not been taken into account when establish-
ing Table XIII. As shown in the example given above,
accidental additional relations may also arise among the
Raman intensities I &

of Table XI.
7

C. Realization of partially orientated defect
ensembles in tetragonal systems

Finally we want to discuss possible useful applications
of the complete formalism of preferential orientation for
defects in tetragonal systems. In contrast to cubic crys-
tals, where the concept of partial preferential orienta-

TABLE XIII. The sets of representative modes, which cannot be distinguished from each other on the basis of a single mode
BT analysis for selected suitabIe OGP sets or combinations of them, for aJl possible symmetries Eq of the orientating operator
F. The number 1Vd,

' of sets of modes, which actually can be discriminated, is compared with the number Ed;,- of modes, see
Table IX, which can principally be distinguished for each I"&.

OGP
sets

Set 1or2

Set 3

Set 4

Set 5

Set 6

Set 1+4

Set 1+ 5

Set 4+ 5

symmetry

Cy, or Cg[001]
C2[100], or Dg[100]
C2[110], or D2[110]

C4 [001]
D4 [001]

all Fy

Cy
C2 [001]
C, [1oo]

C2[110],or D2[110]
D2[1oo]
C4 001]
D4 [001]

Cy or C2[001)
Cg [100]or D2[100]
C2 [110]or D~[110]
C4[001] or D4[001]

Cy or C2[001)
C2 [100] or D2[100]
C2[110]or D2[110]
C4 [001] or D4[001]

Cg
C2[oo1]

C2[100] or D2[100]
C2 [110]or D2[110]

C4[oo1]
D4 [001]

C~ or C2[001]
C2 [100] or D~ [100]
C~ [110]or D2[110]

C4 [001]
D4 [001]

Cy or Cg[001]
C2[100] or D2[100]
Cg [110]or D~[110]
C4 [001] or D4[001]

~act
dis

12
10
10
9
7

13
15
10
9
9
8
9

10
10
8
8

11
11
10
10

15
16
14
12
12
13

14
12
11
12
10

16
14
12
13

Nd;,.

16
14
14
13
13

16
16
14
14
14
13
13

16
14
14
13

16
14
14
13

16
16
14
14
13
13

16
14
14
13
13

16
14
14
13

Distinguishable sets of representative modes

(1)(2t 11
& 15)(3)(4)(5)(6)(7)(8j12& 14~ 17& 18)(9~ 19)(10)(13)(16&20)

(1)(2 11 15)(3 10)(4)(5)(6)(7)(8 12 14 17 18)(9 19)(13 16 20)
(1,6)(2, 11)(3,13)(4)(5)(7)(8,12, 14, 17, 18)(9,19)(10,16, 20)(15)
(1)(2, 15)(3,10, 13, 16, 20)(4, 7)(5)(6)(8,12, 14, 17, 18)(9,19)(11)
(1, 6)(2, 11, 15)(3,10, 13, 16, 20)(4, 7)(5)(8, 12, 14, 17, 18)(9,19)

(1, 5, 6) (2, 9, 11, 15, 19) (3, 4, 7, 10, 13, 16, 20) (8, 12, 14, 17, 18)

(1)(2,8, 15)(3)(4)(5,10)(6)(7)(9,19)(11)(12,18)(13)(14,17)(16,20)
(1)(2,8)(3)(4)(5)(6)(7)(9,19)(10)(11)(12,18)(13)(14,17)(15)(16,20)
(1,4)(2, 8)(3, 10){5)(6)(7)(9,11,14, 17, 19)(12,18){13,16, 20)(15)
(1,6)(2, 8, 11,15)(3,13)(4)(5)(7)(9,14, 17, 19)(10,16, 20)(12, 18)(16,20
(1,4)(2, 8)(3, 10)(5)(6)(7,12, 18)(9, 11,14, 17, 19)(13,16, 20)(15)
(1, 4)(2, 8, 15)(3,10, 13, 16, 20)(5)(6)(7)(9,11,14, 17, 19)(12,18)
(1,4)(2, 8, 15)(3,5, 10, 13, 16, 20)(6)(7)(9,19)(11)(12,18)(14,17)

(1)(2,11)(3,10)(4)(5)(6)(7,13, 16, 20)(8, 14, 17)(9,15, 19)(12,18)

(1, 6)(2, 11)(3,7, 10, 13, 16,20)(4)(5)(8,14, 17)(9,15, 19)(12,18)

(1,6)(2, 11)(3,10)(4)(5)(7)(8,14, 17)(9, 19)(12,18)(13,16, 20)(15)

(1 6)(2 11)(3 10 13 16 20)(4)(5)( )(8 14 1 )(9 19)(12 18)(15)

(1)(2,15)(3)(4)(5)(6)(7)(8)(9,19)(10)(11)(12,18)(13)(14,17)(16,20)
(1)(2)(3)(4)(5)(6)(7)(8)(9,19)(10)(11)(12,18)(13)(14,17)(15)(16,20)
(1)(2)(3,10)(4)(5)(6)(7)(8)(9,19)(11)(12,18)(13,16, 20)(14, 17)(15)
(1,6)(2, 11)(3,13)(4)(5)(7){8)(9,19)(10,16, 20){12,18){14,17){15)
(1)(2,15)(3,10, 13, 16, 20)(4)(5)(6)(7)(8)(9,19)(11)(12,18)(14,17)
(1)(2)(3 10 13 16 20)(4)(5)(6)(7)(8)(9 19)(11)(1218)(14 1 )(15)

(1)(2,11)(3)(4)(5)(6)(7)(8,14, 17)(9,19)(10)(12,18)(13)(15)(16,20)
(1)(2,11)(3,10)(4)(5)(6)(7)(8,14, 17)(9,19)(12,18)(13,16, 20)(15)
(1,6)(2, 11)(3,13)(4)(5)(7)(8,14, 17)(9,19)(10,16, 20)(12, 18)(15)
(1)(2)(3,10, 13, 16, 20)(4)(5)(6)(7)(8,14, 17)(9,19)(11)(12,18)(15)
(1, 6)(2, 11)(3,10, 13, 16, 20)(4)(5)(7)(8,14, 17)(9,19)(12,18){15)

(1)(2)(3)(4)(5)(6)(7)(8)(9,19)(10)(11)(12,18)(13)(14,17)(15)(16,20)
(1)(2)(3,10)(4)(5)(6)(7)(8)(9,19)(11)(12,18)(13,16, 20)(14, 17)(15)
(1,6)(2, 11)(3,13)(4)(5)(7)(8)(9,19)(10,16, 20)(12,18)(14,17)(15)
(1)(2){3,10, 13, 16, 20)(4)(5)(6)(7)(8)(9,19)(11)(12,18)(14,17)(15)
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tion is essential in order to increase the relatively small
number Nd;, ——7, for random orientation of the defects,
compared to 25 distinguishable modes, very much in-
formation of the symmetry Oi of the defect inherent in
the Raman tensor is preserved and reflected in character-
istic IP relations even for random orientation of defects
in tetragonal crystals, see Sec. III B3.

According to the recent review the only physical effect
inducing a preferential orientation of the defects among
the possible orientations, which was investigated so far
using the complete formalism of the BT method for cu-
bic crystals, is polarized optical (uv) bleaching, applied
to the Ho(I ) center in RbCl, z which gave the initiative
for the development of the BT theory. The formalism of
treating preferential orientations is applied in a straight-
forward way to tetragonal systems in this paper. The
considerations for I"i lower than D4[001] in the tables of
this work become relevant for application, when preferen-
tially orientated defects in cubic crystals are investigated
under the additional influence of a strong externally sus-
tained field with vector character, e.g. , a static electric
field or uniaxial stress, which might affect the cubic sym-
metry of the crystal to become tetragonal. Another ap-
plication occurs, when anisotropic defects in tetragonal
systems, which are able to continually reorient, either
by thermal activation or tunneling process, can be in-
fluenced by a weak external field, which infiuences the
population numbers N("l of the individual orientations,
but not the crystal symmetry. However, to our knowl-
edge such systems have not yet been investigated.

V. CONCLUDING REMARKS

In this work we have systematically extended the
behavior-type method for the interpretation of polarized
Raman scattering intensities to point defect modes in
tetragonal crystals. Although the number of possible in-
dependent polarized scattering geometries is strongly re-
duced by the effect of birefringence as a consequence of
the loss of optical isotropy, this does not affect the dis-
criminative power of the method for the proposed scat-
tering geometries, making the method a powerful tool for
investigations also in tetragonal systems.

We were stimulated to extend the method to tetragonal
crystals from Raman investigations of hydrogen impuri-
ties in oxidic crystals. The hydrogen performs the well-
known OH-stretching vibration when bound to the oxy-
gen atoms of the lattice. For example in the perovskites

SrTiOs and KTaOs, three competing atomistic models,
which differ in the local symmetry 01, were proposed
for the incorporation of hydrogen. rt Namely, these are
the cube axis (CA) model, where the hydrogen is vibrat-
ing toward the next-nearest-neighbor oxygen atoms along
the cubic (100) axes, the octahedron edge (OE) model,
where the hydrogen vibrates along the 0—0 bonds along
the edges of the oxygen octahedra, and the cube face
(CF) model, where the hydrogen is placed on the (100)
faces between the 0 and the Sr + or K+ ion. In the
cubic phase the 0-H dipoles are isotropically distributed
and thus the three models cannot be distinguished by po-
larized ir absorption measurements. However, polarized
Raman measurements analyzed with the BT method for
cubic crystals allow us to exclude the CA model, while
the OE and CF models cannot be distinguished because
of an accidental degeneracy of the related BT for ran-
dom distribution. The degeneracy of the BT could be
lifted, if a preferential orientation with a symmetry Iii
lower than D4[001] could be realized. However, a reori-
entational behavior of the QH dipoles, which is known
to occur in the alkali halides, has never been observed in
oxidic materials under study. Below T, = 108 K, SrTiOs
becomes a tetragonal crystal. For each site proposed by
the OE model, there is one corresponding site in the CF
model with the same direction of the OH dipole. Hence,
these two models are undistinguishable by polarized ir
absorption, but the application of the BT method for
tetragonal systems to this problem shows, that the re-
maining competing OE and CF models can principally
be distinguished even for random distribution of the hy-
drogen impurities by polarized Raman experiments, and
helped to find the suitable QGP set for an experimental
decision. t2 Recent results from the tetragonal phase of
SrTiOs exclude the CF model. 1s

An extension of the BT method to trigonal systems,
like LiTaOs or LiNbOs crystals, which are of importance
in many applications like electrooptical devices or wave
guides is also in progress, again for the investigation of
OH modes. The tables to be compiled will show, whether
polarized Raman scattering can yield additional informa-
tion to that obtained so far from ir absorption studies also
for these systems.
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