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We apply a mixed-basis formulation of pseudopotential total-energy electronic structure calculations
in the context of iterative diagonalization techniques. The formulation combines a small set of auxiliary
functions to describe the localized part of the wave function with a plane-wave basis set. The method is
tested on low-symmetry configurations of interstitial oxygen in silicon. This method provides accuracy
comparable to plane-wave basis-set calculations and requires less computational efort. Therefore, it ap-
pears to be a promising tool for the description of the electronic structure of systems with localized
valence electrons.

I. INTRODUCTION

Over the past several years pseudopotential theory has
proven to be a powerful approach for the study of the
electronic properties' of polyatomic systems. An
efFective and powerful way of applying the pseudopoten-
tial method to real materials is to combine it with the su-
percell approximation and to expand the electronic wave
functions in a plane-wave basis set. However, this
method is seriously challenged when it is applied to ele-
ments which have strongly localized components of the
valence charge density. First-row elements and noble
metals are the most salient examples of these elements.
The valence pseudopotentials of these atoms are very
strong, making it difBcult to represent the pseudo-wave-
functions using the conventional plane-wave expansion.
The stronger the pseudopotential, the larger the plane-
wave basis set has to be. In spite of the introduction of
new iterative methods and pseudopotentials that
possess optimum convergence in plane waves, this pro-
cedure is computationally very demanding.

On the other hand, if one can view the solid-state wave

function as only a small perturbation from a periodic ar-
ray of overlapping atomic wave functions, then a basis set
consisting of a few atomic orbitals would be an efficient
spanning set for the solid-state wave function. Unfor-
tunately, this is often not the case. If a purely localized
orbital basis is used, one normally finds that several orbit-
als from excited atomic states are needed to give a
reasonable description of the charge density.

It is clear that an approach which combines localized
functions and plane waves in the basis set has the poten-
tial to overcome these diSculties. However, previous ap-
plications' " of mixed-basis methods have shown that
they possess challenging features of their own, which in-
clude manipulating more complicated forms for the basis
functions and overcompleteness of the basis set. Recent-
ly, Jansen, Sankey, and Klein (JSK) (Refs. 12 and 13)
have introduced a mixed-basis formalism designed to
combine some of the advantages of both pictures. The
new feature of their formulation is the use of linear com-
binations of plane waves as the localized components of
the basis set.

In the JSK scheme, the localized orbitals are generated
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from pseudoatomic wave functions and subsequently ex-
panded in a plane-wave set which spans a space orthogo-
nal to the space of the plane-wave part of the basis set.
Thus, both parts of the basis set (localized and delocal-
ized) are described by plane waves. This eliminates the
aforementioned problems of overcompleteness and the
basis functions are easy to manipulate. Moreover, the
basis set in this approach may be straightforwardly and
systematically improved. In this work, we apply the JSK
method to calculations performed with the modern itera-
tive ' diagonalization techniques and discuss its advan-
tages in those cases where some atoms present strongly
localized valence charge densities. As a test, we calculate
the migration barrier for interstitial oxygen in silicon
(Si:0;) using both the JSK method and the conventional
plane-wave pseudopotential method.

This paper is organized as follows. In the next section,
we briefly describe the JSK method and its computational
savings when compared to the all plane-wave formulation
in the context of iterative diagonalization. Section III
compares the electronic structures for low-symmetry
configurations of interstitial oxygen in silicon as obtained
by mixed-basis and all plane-wave calculations. Finally,
in Sec. IV we present our conclusions.

II. COMPUTATIONAL GAINS
OF THE MIXED-BASIS METHOD

loc

Ik+GI &E,

where

E, & Ik+GI &E&

e io.r (2)

The unification of traditional mixed-basis and plane-
wave pseudopotential methods is evident in this method.
The use of the localized basis functions can dramatically

The JSK method combines most advantages of the
conventional plane-wave and mixed-basis pseudopotential
approaches. Its first step is to generate N„,localized
pseudo-wave-function orbitals

~ f,'), for example, from a
real-space atomic pseudopotential calculation. A state
~f,") possessing the discrete translational symmetry of
the real-space lattice for the calculation is generated by
summing the

~f ) state over all unit cells. The pseudo-
wave-function orbitals

~
f;") are then expressed as linear

combinations of plane waves in a large set of N „1plane
waves bounded by a large cutoff E&. These linear com-
binations of plane waves are then orthonormalized to the
plane waves below a small plane-wave cutoff E, and to
each other, forming the set ~f; ). The resulting linear
combinations of plane waves are held fixed throughout
the electronic relaxation, and they form the localized part
of the basis set. To these basis functions is added a set of
N „,plane waves, all those below a small cutoff E, .
Therefore, a wave function ~g„k) in the new basis can be
written

reduce the number of plane waves required. But because
the localized functions are fixed finite summations of
plane waves, the operations on these functions are as
tractable as with plane waves, and orthonormalization of
the basis set is extremely simple. This provides a con-
venient algorithm for systematic improvement of the
basis set. As plane waves are added to the plane-wave set
by increasing E„they are removed from the plane-wave
linear combinations which comprise the localized func-
tions. Therefore, by construction, the conventional
plane-wave pseudopotential method is the limiting case of
this method where the energies E, and E& are set to be
equal.

The simplicity of the basis set also allows this method
to take advantage of iterative minimization schemes for
electronic and atomic degrees of freedom. In particular,
this method can be computationally more eScient than
the plane-wave pseudopotential method for a judicious
choice of localized functions. For example, the computer
memory requirement can be reduced to a large extent.
When calculating the electronic eigenstates of a system
using this method, it is not necessary to store all N „1
plane-wave coe5cients for each of the Nb bands, as is re-

quired by the plane-wave method. Here, we need only
store the N „,plane-wave coef6cients below E, for each
band, and one copy each of the N„,linear combinations
of (Nz„&-N~„,) plane waves. Thus, the total storage of
wave functions requires Nb'N „1in the plane-wave
method, while this method only requires
(Nb-N~„)*N&„,+N~*„N~„~.For the example in this pa-

per, N „,/N „,is about ten, and Nb/N„, is sixteen, so
the wave-function storage can be reduced by a factor of 6
by use of this method. When the number of localized
basis functions is nearly as large as the number of bands,
a modification of this storage procedure is required to
realize memory conservation. When a large number of
localized basis functions differ only by a spatial transla-
tion, only one member of this set of localized functions
need be stored, and the rest can be generated by multiply-
ing the stored function by a phase. With this
modification, the storage formulas and savings remain
the same, except that N1„represents the number of local-
ized orbitals which cannot be translated into one another.

The CPU requirements are also reduced by use of this
method. Two computationally intensive steps in an itera-
tive plane-wave minimization are the Fourier transform
and orthogonalization of the wave functions, and both of
these steps can be speeded up by the use of the mixed-
basis approach. In the conventional plane-wave ap-
proach, the wave function in Fourier space does not oc-
cupy the entire Fourier-transform grid, and so nearly half
of the Fourier-transform time can be eliminated. ' In
this approach, the Fourier transform of the localized part
of the basis set is done only once for a given atomic
configuration. The plane-wave part of the wave function
occupies a much smaller fraction of the Fourier-
transform grid than in the conventional method, reduc-
ing fast Fourier-transform (FFT) CPU time. In our case,
FFT time can be reduced by 25%%uo using the mixed-basis
approach. The orthogonalization of the wave functions
scales like Nb*N „1.Adoption of this procedure can
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speed up this step significantly. Because the mixed basis
is orthonormal, orthogonalization requires only Xb*X„,
steps, reducing orthogonalization time by 90%. In addi-
tion, use of this mixed-basis method can result in large
computational savings within the Kleinman-Bylander
nonlocal pseudopotential' portion of the calculation. If
the localized basis functions are chosen to be the same as
the reference states of the nonlocal potential (which is a
very natural choice for many pseudopotential calcula-
tions), then no spatial projections need be done in the
large plane-wave set.

III. INTERSTITIAL OXYGEN IN SILICON

A critical test of the method is its ability to provide ac-
curate results for systems which involve an atom with a
strong pseudopotential in very different environments.
The oxygen pseudopotential requires a large plane-wave
cutoff to achieve converged results, and oxygen can occu-
py sites with very different character in a lattice of sil-
icon. Accordingly, we have applied this method to study
the adiabatic migration barrier for interstitial oxygen in
silicon. This adiabatic barrier is the energy difference be-
tween the fully relaxed saddle-point geometry and the
equilibrium (bridging) configuration (see Fig. l).

This difficult problem has been previously investigat-
ed' ' using the plane-wave pseudopotential method.
There, the cutoff energy of the plane-wave basis set was
chosen to be 40 Ry in order to ensure excellent conver-
gence of the pseudo-wave-functions of the oxygen atom.
Here we demonstrate that the application of the JSK pro-
cedure allows us to reduce the plane-wave part of our
basis set to only 9 Ry, which is the typical value used
with pure silicon in the conventional method.

The localized wave functions were generated as fol-
lows: (i) four oxygen pseudo-wave-functions (one s and
three p) were loaded onto the supercell lattice and ex-

TABLE I. Adiabatic migration barrier energy for Si:0;.

Method Plane wave This work

Cutoff (Ry)
Barrier {eV)

9
—1.7

40
1.89

E, =9 and EI =40
1.84

panded in plane waves up to EI =40 Ry; (ii) these func-
tions were projected out of the space spanned by plane
waves up to E, =9 Ry; (iii) finally, the projected functions
were orthonormalized and were stored as the local com-
ponents of our basis set.

This method was then applied to obtain the total ener-

gy of the system in both saddle and bridging geometries.
For comparison, two conventional plane-wave pseudopo-
tential calculations of the barrier were performed, with 9
and 40 Ry as cutoff energies. For all cases, a 32-atom bcc
supercell was used and the k-point summations were re-
stricted to the I' point.

Table I presents the results for the adiabatic migration
barrier of Si:0, as calculated by the mixed-basis pro-
cedure and the conventional plane-wave pseudopotential
method. We note that there is excellent agreement be-
tween the mixed-basis calculation and the conventional
plane-wave calculation with the larger cutoff. Moreover,
the 9-Ry plane-wave result for the migration barrier
differs from the aforementioned results by more than 3.5
eV, and predicts incorrectly that the saddle configuration
is more stable than the bridging geometry. Thus, these
results demonstrate the ability of the JSK method to
reproduce the effect of all plane waves between 9 and 40
Ry at a fraction of the computational cost.

In order to examine in more detail how the mixed-basis
and conventional plane-wave calculation compare, we
have computed the charge densities of the highest occu-
pied (HO) and lowest unoccupied (LU) states for both
geometries. In all cases, the charge densities calculated
by the plane-wave method with a 40-Ry cutoff and the
mixed-basis method are strikingly similar (see Fig. 2).
The charge densities obtained from the 9-Ry plane-wave
calculation are very different from the other two calcula-
tions for the case of the saddle configuration. This is be-
cause the HO and LU states for this geometry have a
large amount of oxygen character. On the other hand,
the LU and HO states for the bridging configuration are
almost entirely siliconlike and are described adequately
even with the 9-Ry plane-wave calculation.

IV. CONCLUSIONS

FIG. 1. Atomic configurations of Si:0;. The open circle
represents the oxygen atom and all others correspond to silicon
atoms. (a) Stable or bridging configuration. (b) Saddle-point
configuration. The dashed lines represent weakened silicon-
silicon bonds.

We have applied the JSK mixed-basis pseudopotential
approach which uses linear combinations of plane waves
as the localized basis functions. The computational sav-
ings that can be obtained by this approach were discussed
in the context of the new iterative diagonalization tech-
niques. The method was applied to a challenging prob-
lern and provided results of similar quality to a well-

converged conventional plane-wave pseudopotential cal-
culation, with a considerable reduction of the computa-
tional costs. The use of plane waves allows straightfor-
ward implementation of iterative minimization schemes.
Therefore, we consider this procedure is a very promising
tool to study the electronic structure of condensed-matter
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FIG. 2. Contour plot of band charge densities for the Si:0; system in the planes defined by the black atoms in Fig. 1. The oxygen
atom is represented by a diamond, and the silicon atoms are represented by + signs. Left column: results calculated using 40-Ry
plane-wave basis set. Center column: results calculated using 9-Ry plane-wave basis set. Right column: results calculated using 9-
Ry/40-Ry mixed-basis set. First row: highest occupied (HO) state in the bridge configuration. Second row: lowest unoccupied (LU)
state in the bridge configuration. Third row: HO state in the saddle configuration. Fourth row: LU state in the saddle
configuration.
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systems with strongly localized components of the charge
density.
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