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Resonant tunneling in an interacting one-dimensional electron gas
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We study the resonant tunneling of a single-channel interacting electron gas through a double-

barrier structure. In striking contrast to the noninteracting electron gas, which exhibits resonances
with a temperature-independent Lorentzian line shape at low T, we find that with repulsive interac-
tions present the resonances have a width which vanishes as T 0. Moreover, at low T the resonance
line shapes are determined by a universal scaling function, with power law but non-Lorentzian tails.
These predictions should be accessible to experiments in single-channel wires in gated GaAs.

The recent observation' 3 of oscillations in the conduc-
tance through a quantum dot as a function of gate voltage
has been attributed to the Coulomb blockade. ' The
Coulomb barrier which impedes the electron from passing
through the dot vanishes when the chemical potential (i.e.,
gate voltage) on the dot is tuned to match precisely the
energy cost to add an extra electron to the dot. In this sit-
uation, there is a state on the dot at the Fermi energy
through which the electrons may resonantly tunnel. Re-
cent theories of this phenomenon6 have focused on the im-

portance of the electron interactions on the quantum dot
which give rise to the Coulomb barrier. A Landauer type
of theory was developed, in which the electrons in the
leads are treated as noninteracting. In a recent paper, it
was shown that when the leads are one dimensional (1D),
the electron interactions in the leads have a profound
eA'ect on the transport across a single barrier.

In this paper we study the more interesting case of a
single-channel ID wire with a double-barrier constriction.
In this case, a model of noninteracting electrons (or a Fer-
mi liquid) predicts resonances in the transmission with a
Lorentzian line shape as a function of incident energy. As
we show below, though, in the presence of electron in-

teractions, which destabilizes the Fermi liquid in one di-
mension leading to a Luttinger liquid, the resonance line

shapes and temperature dependence are modified qualita
ti vely. Specifically, we find resonances with non-Lo-
rentzian line shapes which have a width which vanishes as
T O. Differing qualitatively from the noninteracting
case, such resonances, if detected in gated GaAs wires,
would provide the first experimental evidence for non-

Fermi-liquid behavior in the lo interacting electron gas.
In practice, backscattering in the lD wire away from the
double barrier might cause complications. However, this
"spurious" backscattering can be minimized by applying a
strong magnetic field, which spatially separates right- and
left-moving electrons. Since such a field will also spin po-
larize the electrons, we focus below on the case of spinless
electrons.

A spinless, single-channel electron gas can be described
as a Luttinger liquid, ' characterized by a dirnensionless
two-terminal conductance g. The noninteracting electron
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FIG. 1. Phase diagram for resonances of a spinless 1D in-

teracting electron gas incident on a double-barrier structure.

Here G and G refer to the conductance at T=O on resonance

and off' resonance, respectively. Resonances occur in the shaded

region for repulsive interactions g & 1, and on the thick so1id line

at g 4 for small barriers, where G* varies continuously.

gas corresponds to g= 1, whereas g & 1 for attractive in-

teractions. For repulsive electron interactions, g is given

roughly by the expression, g2=(1+U/2EF) ', where U
is the (screened) Coulomb interaction between neighbor-

ing electrons and EF is the Fermi energy. The ratio U/EF
is proportional to r„ the electron spacing divided by the
Bohr radius, so that as the electron density is decreased, g
also decreases. In Ref. 8 it was argued that for repulsive
interactions (g (1) a Luttinger liquid at T=O is com-

pletely reflected by a single barrier, ' " i.e., the conduc-
tance across the barrier is zero. Despite this, we argue
below that such a Luttinger liquid incident upon a sym-

metric double-barrier structure can exhibit perfect reso-

nant transmission, provided the electron density is not too
low. Our central results for this case are summarized in

Fig. l. For very low electron densities, to the left of the
shaded region in the figure, the resonant tunneling is

suppressed at T=0, however, as in the case of a single

barrier there will be power-law corrections at T&0. For
higher electron densities, in the shaded region in the

figure, we find resonances with perfect transmission, so
that the conductance on resonance, denoted G*, is

G =ge /h. In this case, the resonances are predicted to
be inftnitely sharp at T=O, in striking contrast to the res-
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Xo =(I/2g)„(8„&)
Xz„—V(2nkr) cos[2n Jn8(x =0, r )) .

(la)

(lb)

The pure Luttinger liquid Lagrangian in (la) describes
a fixed point under a renormalization-group (RG) trans-
formation. As found in Ref. 8, 2k' scattering grows un-

der the RG for all g (1 and is thus a relevant perturba-
tion. However, on resonance, V(2k') 0. The behavior

I

onances for noninteracting electrons. At nonzero temper-
atures the resonances are broadened with a width which

varies as a nontrivial power of temperature: T' . More-
over, the resonance line shapes at finite temperature have
non Lo-renrzian tails, falling off with a power (2/g) larger
than 2. For g between —,

' and 2, as the strength of the
double barrier is increased, the resonance disappears at a
sharp T=0 transition, which is in the Kosterlitz-
Thouless' universality class.

Employing a bosonized representation for the Luttinger
liquid, we analyze the transport through a double-barrier
structure perturbatively in the limits of very weak scatter-
ing and very strong barriers. We assume the separation
between the two barriers, d, is small and focus on temper-
atures low compared to Ave/d, where vr is the Fermi ve-

locity. At larger temperatures, backscattering from the
two barriers will not add coherently, so they will behave
essentially as two single barriers in series. In the small
barrier limit, we consider scattering from a weak potential
V(x). For noninteracting electrons, the Born approxima-
tion can be used in this limit, and the condition for perfect
resonant transmission is simply that the Fourier transform
of the potential at 2kr vanishes: V(2kr) =0. For a sym-
metric potential [V(x) = V( —x)j, V(2k') is real, so that
the resonance condition may be reached by tuning one pa-
rameter, e.g. , the wave vector kr via a gate voltage Vo.
For an asymmetric potential, two parameters must be
tuned to achieve a "true" resonance, that is, a resonance
which has perfect transmission. In the presence of in-

teractions, a similar analysis may be performed, however,
it is necessary also to account for scattering at 4k', 6k',
etc. An effective Lagrangian X =Xo+P„-~ Xz„may be
derived along the lines of Ref. 8, perturbative in V(x),
with

will then be determined by the next most relevant parame-
ter, namely, V(4k'). The leading order renormalization-
group flow equation for v —=V(4k') is dv/dl (1 —4g)v.
Thus, for g & 4, 4k' scattering is relevant and grows
stronger at low energies. For g & 4, weak 4k' scattering
is irrelevant, and the conductance may be calculated per-
turbatively. To leading order we find a two-terminal
conductance

G ge /h —c[V(4k ))2P (2)

so that for g & & and at zero temperature perfect
transmission is predicted on resonance, as shown in the
figure. For g 4, there is a fixed line, and the conduc-
tance on resonance, G, may take on any value between
zero and one. This is reminiscent of the behavior of the
single-barrier problem for the noninteracting case, g 1.

In the opposite limit, of very strong barriers, we consid-
er two semi-infinite leads which are very weakly connected
to an island (or "dot"). We model the island by supposing
that the Coulomb energy on the island is very large, so
that away from resonance, the charge on the island is
fixed, and transmission is only possible by virtual tunnel-
ing through the Coulomb barrier. As the chemical poten-
tial is tuned through resonance, there will be two charge
states on the island, differing by one electron, which be-
come degenerate. The island is thus modeled as a two-
level system in which hopping on and off the island corre-
sponds to switching back and forth between the two levels.
The partition function may be expanded perturbatively in
powers of a weak hopping matrix element, t, which con-
nects the island to the leads. The bosonic fields describing
the leads [i.e., 8(x, r) in Eq. (I)] may be integrated out,
and we are left with a one-dimensional statistical-
mechanics problem of interacting charges, which repre-
sent hopping events across one of the two barriers. The
hopping matrix element t plays the role of the fugacity of
these "charges, " and the Luttinger liquid leads mediate a
logarithmic interaction between them. If q; ~ I denotes
the charge transferred to the right in a hopping event and
r; = ~ 1 denotes the change in the charge on the island,
the partition function in this Coulomb gas representation
can be written as

+p lZ=P g t "J drz„dr~exp g (Kr;rj+q;qj)ln(r; —zj)/r,
n (q, ,;) 2g o ( e

(3)

dKldl = —8Kt z,

dt/dl =t[1 —(1+K)/4gI .

(4a)

(4b)

The consequences of these flow equations are depicted
in the lower part of the figure. For g& —,', (4b) shows
that t is a relevant perturbation. This is consistent with

where z, =Eq ' is a short-time cutoff. The parameter EC

is initially equal to 1, however, its value is renormalized.
We analyze the above model as a perturbative RG in t,
following closely the treatment of the Kondo problem by
Anderson, Yuval, and Hamann. ' The leading order flow
equations are

I

our analysis in the small V(x) regime, and it is highly
plausible that the flows join together, giving us perfect res-
onant transmission for g & —,

' (shaded region in the
figure). For g & 4, on the other hand, t is irrelevant, and

flows to zero, implying perfect reflection at zero tempera-
ture (see Fig. 1). For 4 (g& 2, as t is increased, a
separatrix at t* is crossed which separates flows to t 0
from flows to large t. The separatrix flows into a
Kosterlitz-Thouless fixed point' on the t 0 line, with a
critical value K, =4g —1. Thus in this range of g's, as t is
decreased the resonance will disappear at a sharp
Kosterlitz-Thouless transition. ' Right at this transition,
when t =t*, the conductance is zero. For the special case
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G (T,b) =Gs (ch/T ' s), (5)

where c is a nonuniversal dimensionful constant. For
larger 8 or T, the irrelevant parameters will provide
corrections to this scaling form. For instance, there will

also be a dependence in Eq. (5) on V(4kF)T s ', which,
however, vanishes in the zero-temperature limit.

The scaling function Gs(X), which is a symmetric func-
tion of its argument, X=cb/T' s, can be calculated per-
turbatively in two limits. An expansion for the conduc-
tance to second order in V(2kF) —b at finite temperature
gives

Gs(X) =G*[1—X +O(X )1, (6a)

where the conductance on resonance is G =ge /h. The
behavior of G~ for large L, can be obtained by matching

g = 4, K, =0, and the flows for t & t* terminate on a
K=O fixed line along which the conductance will vary
continuously. Thus for g= &, the conductance on reso-
nance, G *, will increase continuously from zero for
t & t (.The precise value of t* for g 4 is not perturba-
tively accessible. ) The fixed line for g- —, , which is en-
tirely consistent with the fixed line that we found in the
small V(x) limit, is shown as a thick line in the figure.

The above analysis can be generalized to allow for
asymmetric barriers, with t ~ etz. We find that this asym-
metry is a relevant perturbation, which destroys the reso-
nance for all g & 1. Thus the only resonances which sur-
vive repulsive electron interactions are the "true" reso-
nances which have perfect transmission in the nonin-
teracting case.

The above discussion has focused on the conductance
through a double barrier when precisely on resonance and
at T=0. A more crucial issue experimentally is the width
of the resonances and the line shapes of the resonance
peaks. Consider then the shaded region in the figure,
where resonances with perfect transmission are present.
Precisely on resonance, the RG flows are toward the fixed
point described by Eq. (1) in which V(2nkF) 0 for all

positive integers n Sinc. e all scattering except the 2kF
scattering is irrelevant, the resonance condition is that the
renormalized value of V(2kF) 0. As the chemical po-
tential of the dot (or the gate voltage, Va) is moved slight-
ly ofl' resonance, the conductance will be determined by
the behavior of this single relevant parameter as it flows

away from that unstable fixed point. Near resonance, the
initial value of this parameter will be proportional to the
distance from resonance, V(2kF, l 0)—b= Va —Va.
Under renormalization the 2kF scattering grows as
d V(2kF)/dl = (1 —g) V(2kF). Associated with this rele-
vant direction there is a single critical time scale which

diverges as b 0 as b 't ' s1. From this we deduce a
characteristic frequency scale, denoted 0, which vanishes
as Q-B' ' . Near the resonance for small 8 the con-
ductance at finite temperatures should depend only on the
ratio T/A. More specifically, one expects the conduc-
tance for small T and b to be described by a universal
scaling function:

onto the flows into the stable fixed point which describes
reflection from a single large barrier. As shown in
Ref. 8, off resonance the conductance vanishes as G
=tzttTzt'ttt '1. Requiring that the form in (5) matches
onto this implies that as X co,

G, (X)-X-'«.
For intermediate values of X, although Gs(X) is not per-
turbatively accessible, it should be a universal function,
depending only on the dimensionless lead conductance g.

The above considerations show that at low temperatures
the resonance peaks should have a temperature-dependent
width which scales as T' s. Moreover, rescaled data
from different temperatures should collapse onto the same
universal curve. The line shapes of the peaks are predict-
ed to be non Lor-entzian, with tails which fall off as b
Since the resonance peaks are only present for 4i & g & 1,
this exponent will be between 2 and 8. Note that in the
limit of noninteracting electrons, g 1, the line shape is
Lorentzian and temperature independent, as expected.
All of these features can, in fact, be confirmed explicitly'
in an exact solution of Eq. (I) which is possible when

g —, , and is also consistent with recent numerical' work
on the spin- T Heisenburg chain with a single impurity.

For a ID channel with a finite length L which is joined
at the ends to metallic (Fermi-liquid) leads, the predicted
power-law behavior will be cut off below a temperature
TL hvF/kttL. Specifically, the resonance line shapes will

cease to sharpen up below this crossover temperature. In
addition, at low temperatures a finite applied voltage will

serve as a cutoff'. Thus, at T 0, the I-V curves near reso-
nance (for V& kttTt. /e) should satisfy a scaling form,
I/V Gs(b/V' s). Although Gs(X) should be a univer
sal function with the same small and large X dependences
as Gs(X) in (5), the two functions will in general be
different.

For asymmetric barriers, since two parameters must be
tuned to achieve resonance, it is likely that as Va is varied,
V(2kF) does not go through zero, but exhibits a minimum

bm;„min( V(2kF) ~, at some value Va. In this situation,
b in Eq. (5) should be replaced by b, proportional to 8 for
large b, but approaching a constant, bm;„, as b 0. The
"resonance" peak will then ultimately vanish at zero tem-
perature, but at finite temperatures, it will have a temper-
ature dePendence determined by G~,k Gs(cbm;„/T ' s).

Finally we note that in addition to having the resonance
condition V(2kF) 0 satisfied, one could in principle
simultaneously have V(4kF) =0, though generically this
would require careful tuning of four parameters.
Nonetheless, this would correspond to a "higher-order res-
onance, "

in which perfect transmission would occur for all

g & 9 . Determining the phase diagram for these higher-
order resonances is left for future work.
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