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Electron relaxation in a quantum dot: Significance of multiphonon processes
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Electron relaxation in a GaAs quantum dot is investigated to second order in electron-phonon in-

teractions. Calculation of relaxation rate, as a function of level separation, indicates the significant
contribution of LO~LA processes, which create a window of rapid (subnanosecond) relaxation
around the longitudinal-optical phonon energy. This result may provide a possible solution to the

problem of photoluminescence degradation in small quantum dots.

The physics of two-dimensional (2D) semiconductor
structures has been the subject of intense investigation for
over 20 years and has already become an essential part of
condensed matter physics. Thanks to the recent progress
in microfabrication technology, there is now growing in-

terest in systems with more confinement dimensions, i.e.,
1D (quantum wire) and OD (quantum dot) structures. A
wealth of new quantum effects has already been predicted
or discovered in such structures. '

Turning to the applications of these lower-dimensional
systems, a major stimulus came with the prediction that
lasers with high efficiency may be achieved by the use of
1D and, in particular, OD structures. (This is mainly
because of their b-function-like density of states. ) Exper-
imental efforts to confirm this prediction have been unsuc-
cessful so far. In fact, experiments have shown evidence
of photolurninescence degradation for dot size below
—1000 k The suspected reason was damage during the
fabrication process. Recently, Benisty, Sotomayor-
Torres, and Weisbuch ruled out this explanation and as-
cribed the degradation to the slowing down of carrier re-
laxation with decreasing dot size, and increasing level sep-
aration.

In the process of light emission, electrons and holes (1)
are first created in higher-energy continuum states, (2) re-
lax down to the ground sublevel (assuming no recombina-
tion at excited sublevels) in cascade via phonon emission,
and (3) finally recombine to emit light. Thus any realistic
discussion of light emission efficiency should entail a dis-
cussion of the relaxation process. In higher-dimensional
systems, e.g. , quantum wells, the dominant relaxation pro-
cess is longitudinal-optical (LO) phonon emission via

Frohlich interaction, with subpicosecond relaxation time.
In a dot, however, this process is forbidden due to the very
discrete nature of the levels, unless the level separation
equals the LO phonon energy htoLo. (We define fitoLQ to
be the energy of the q =0 LO phonon. ) Deformation po-
tential interaction with longitudinal-acoustic (LA) pho-
nons, which is already weak in the bulk compared to the
Frohlich interaction, becomes even weaker as the dot size
is reduced, due to decreasing form factor. (The form fac-
tor decreases rapidly with q and, therefore, with the ener-

gy of the LA phonon emitted. ) Thus relaxation via LA
phonon emission in a dot is slower than in the bulk by
many orders of magnitude. This slowing down is more

significant for electrons than holes, because the electron
effective mass is usually —,'0 of the hole mass, and the

energy separation is correspondingly larger.
This argument, though based on several simplifying as-

sumptions, seems reasonable and convincing. However, in

view of the importance of the subject, a more detailed

study of the relaxation process is called for. An important
element, which has so far been neglected or overlooked in

the discussion of carrier relaxation in low-dimensional sys-

tems, is the multiphonon processes. The primary aim of
the present paper is to investigate the electron relaxation
in a semiconductor quantum dot with particular emphasis
on the role of the two-phonon processes. Since hole relax-
ation is expected to be much faster than that of electrons,
for the reason stated above, we confine ourselves to elec-
tron relaxation.

We take a GaAs dot as a model system and the electron
confinement (barrier) potential is assumed to be isotropic
and parabolic cx:x +y +z . The latter assumption of
parabolic confinement is not essential, but it facilitates the
calculation of matrix elements. The electronic spectrum
is therefore of the harmonic-oscillator form Eo(l+m+n),
where l, m, n=0, 1,2, . . . . We consider transition be-

tween the lowest two electronic levels. Thus the initial

state ii) and the final state if) correspond to
(l,m, n) =(1,0,0) and (0,0,0), respectively. As for the

phonons, we take into account bulk LA and LO phonons
of GaAs. Their dispersion relations, assumed to be isotro-

pic, were chosen so as to fit the result of Ref. 9. Thus
dispersion is included not only for the LA but also for the

LO mode. Each of these modes was assumed to interact
with electrons through deformation potential and Frolich
interactions, respectively. The validity of this bulk pho-

non approximation will be brieAy discussed later.
The various one- and two-phonon processes that con-

tribute to relaxation are shown schematically in Fig. 1.
Due to energy conservation, each of these processes is pos-

sible in a certain limited range of level spacing Fo, which

is taken as the abscissa in the figure. The total relaxation

time r is obtained simply by the inverse summation law

I/r =QJ I/rj, where the summation is over the various

phonon processes. Of the eight possible (one-phonon and

two-phonon) processes shown in Fig. 1, the first five (LO,
LA, LO+ LA, and 2LA) are important and are taken

into account in our calculation.
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A first-order contribution (LO or LA emission) is given
simply by the golden rule as
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FIG. 1. Schematic diagram showing the possible phonon pro-
cesses, indicated by bars, against level spacing Eo. Here, Ez&
denotes the maximum LA phonon energy, and Ezz and
Et+.o hrot, o are the minimum (zone edge) and maximum (zone
center) LO phonon energy, respectively. Efficient carrier relax-
ation takes place only for energies indicated by thick solid lines.

taking about 40 lowest states.
If we look at the q dependence of the matrix elements

Mq~, their behavior as q 0 is governed by aq, whereas
their large q behavior is governed by the form factor
(s ~e'a'(s'), which rapidly decays to zero as q goes beyond

Q rr/L, L being the dot diameter. For a typical dot, L is
more than an order of magnitude larger than the lattice
constants, and therefore only phonons with very small q
(q (Q«10 ' times the zone edge wave vector) contrib-
ute to relaxation. Combining this with energy conserva-
tion (Arpq Ep or Arpq ~ hrpk Ep), we immediately see
that rapid electron relaxation is possible only in limited
ranges of Ep, which are indicated by thick solid lines in

Fig. 1. Thus, as far as a perturbation expansion works for
this system, efficient photoluminescence is possible only
when Ep is very small (less than a few millielectron volts),
or near integral multiples of t't rat.p.

Let us now discuss the result of calculations for
En=@rat.p 35.9 meV. Figure 2(a) shows the relaxation
rate I/r at T 0 K calculated as a function of Ep. The
LO (one-phonon) contribution has a sharp peak immedi-
ately below hrpt. p. This peak decreases exponentially on
the low-energy side, while it drops more steeply (but con-

g (MIt ( (N +1)b(Ep Arp ), (1)

where Nq is the Bose distribution function 1/(e—1). The matrix elements Mqf can be written as
15 (a)

with

Mqf -aq«'le"'I f&, (2) LO+LA

Cq
= Dv'hq/2pcQ (LA mode),

,M/q JQ (LO mode) .
(3)

Here, Q is the system volume, the deformation potential
D 6.8 eV, density p 5.36 g/cm3, and the sound velocity
c 5.15&10s cm/s. The Frohlich coupling constant M
was obtained from M [2tre tt rat,p(I/e —1/ep)] ' with

hrpt. p 35.9 meV, e 10.9, and ep 12.9. The mode in-
dices to Mzf, Nq, and rpq are suppressed to avoid unneces-
sary complication. By converting the summation into an

integral, Eq. (1) can be reduced to an analytic form.
The second-order contributions to r can be obtained

similarly. For the LO ~ LA processes [one LO phonon is
emitted and one LA phonon is emitted (+ ) or absorbed
( —)],
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where the upper (lower) sign corresponds to LO+LA
(LO —LA). In Eq. (4), quantities suffixed with q and k
refer to LO and LA modes, respectively; E, denotes ener-
gy of level s, where s represents a set of quantum numbers
(l,m, n); and the prime denotes that the summation ex-
cludes the initial and final states. After some algebra, Eq.
(4) can be reduced to a one-dimensional integral, which
was evaluated numerically. As for the summation over in-
termediate states s, good convergence was achieved by

33 34 35 36 37 38 39 40
E0 (mcV)

FIG. 2. Calculated electron relaxation rate l/r for Eo in the
vicinity of hast, p. (a) T-0 K; (b) T-300 K. The LO peak is
not shown in (b), since it is nearly the same as in (a), in this log-
arithmic sale. In (a), the scale in abscissa is diFerent above and
below Acopo, which is indicated by the vertical dashed line. Dot
diameter L corresponding to Eo is shown across the upper part.
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tinuously) in the high-energy side and vanishes for Eo
~ A. coLg. Although the peak value exceeds 10' s ', a
slight detuning of Eo from the peak dramatically reduces
1/z. (For instance, 1/z is only 10 s ' for detuning

BEo = —0.05 meV. ) This indicates that taking advantage
of the LO process requires extremely precise tuning of Eo
to A, coLO, far more precise than is possible with current
microfabrication technology. The inclusion of the
second-order LO+ LA process significantly alters the situ-
ation. It gives rise to a rather broad peak on the high-

energy side of hroLo with a peak value exceeding =10"
s '. (Note the change in the scale in the abscissa above
and below hroLo. ) This peak value (corresponding to

10 ps), of course, is much smaller than that of the
one-phonon peak, but it is still large enough for our pur-

pose of having efficient light emission. (The radiative
recombination lifetime z„d of electrons and holes in their
ground sublevels is —I ns. Thus efficient luminescence

may be achieved if z & 1 ns. ) Besides, the large width of
the peak significantly alleviates the tuning condition. For
an electron to relax within, for instance, 1 ns, the tolerable
range of Eo is a broad 36.1 & Eo & 38.8 meV.

The tuning condition is further alleviated by elevating
the temperature. Figure 2(b) shows 1/z at T=300 K.
Now it is seen that the LO —LA process, which is absent
at T=O K, gives rise to another broad peak on the low-

energy side of hcoLo. The peak structure is nearly the
mirror image of the LO+LA peak with respect to hcoLp.

This is readily understood from Eq. (4) and the fact that
the Bose function Nq for the (low-energy) LA phonons

contributing here are so large (-10 ) that Nq+ I = Nq.

By comparing Figs. 2(a) and 2(b), it is seen that the
LO+ LA peak is enhanced by a factor of 102 by the tem-

perature increase. This, again, reflects the enhanced Bose
function of LA phonons. Thus, at 300 K, the large Bose
function and the emergence of the LO —LA peak act to
increase the tolerance in detuning. For z to satisfy z & 1

ns, the tolerable range of Eo is now 33 & Eo & 39.1 meV.
To be precise, there is a narrow dip in 1/z on the immedi-

ate high-energy side of hc0LO (which results from the de-

creasing LO+ LA peak and the absence of LO peak), and

Eo should avoid this dip to attain efficient relaxation. In

real systems, however, this dip, being so narrow, would be

easily smeared out by phonon broadening, which is

neglected in the present calculation. In Fig. 2(b), dot di-

ameter L is sho~n across the top. This L was obtained
from the relation L 2(g~x +y +z ~g)' where g
denotes the ground state (I,m, n =0). (Due to the para-

bolic confinement, the definition of L is rather arbitrary. )
Let us now turn to the discussion of the case of small

Eo. Figure 3 shows calculated 1/z at T=O and 300 K.
At T =0 K, the LA process gives rise to a peak, with peak

height of 4 & 10 s ' and peak position at Eo =0.07 meV

(corresponding to L = 3000 A). Its large width, which is

in marked contrast to the extremely narro~ LO peak, is

mainly a result of the larger dispersion of LA mode. Its
small peak value, more than 2 orders of magnitude small-

er than I/z„q=10 s ', indicates that this relaxation

path can induce only weak photoluminescence. The 2LA
process produces much broader but even weaker peak to-
wards higher energy, whose peak height is less than 10
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s '. The situation improves significantly as T is raised to
300 K. The LA peak is enhanced by more than 2 orders
of magnitude (through the Bose function), and its height
is over 10 s ', or i & r „.d 1 ns. More impressive is the
change in the 2LA peak, which is now enhanced by nearly
5 orders of magnitude and its peak reaches 10 s ', only
an order of magnitude smaller than 1/z„d. Figure 3 also

suggests that phonon processes of higher order ( ~ 3) may
be important for larger Eo (smaller dot size), but this situ-

ation may be more adequately treated by a different,

perhaps nonperturbative, method.
Throughout our calculation, phonons were treated as

bulk modes. This is known to be quite legitimate for
acoustic modes. ' However, optical modes tend to local-

ize in heterostructures and form confined modes and inter-

face modes. '0 The localization effect of LO phonons on

electron relaxation has been a matter of controversy for a
long time. A number of macroscopic theories, with

different assumptions about boundary conditions, have

been advanced with conflicting results. " This confusion

seems to have been resolved by a recent fully microscopic
theory by Rucker, Molinari, and Lugli' which concluded

that electron-LQ-phonon coupling in a quantum well does

not differ significantly from that obtained in the bulk pho-

non model. (To be precise, the above authors found that
in a GaAs/A1As quantum well, the total electron relaxa-
tion rate always falls between that for bulk GaAs LO
mode and that for bulk A1As LO mode. ) We believe that
this conclusion for 2D applies equally well to our OD situ-

ation.
To summarize, the electron relaxation time in a GaAs

quantum dot is calculated with emphasis on the role

played by two-phonon processes. For interlevel spacing
Eo) 0.2 meV (or dot diameter L )2000 A), multipho-

non processes are generally found to provide the dominant

relaxation path, with the exception of the narrow energy

range hroLo —0.03 meV & Eo & tzroLo, where LO (one-

phonon) emission dominates. This range is so narrow that
it would be hopelessly difficult to tune the interlevel spac-

ing to this energy. An alternative and more realistic way

0.5
Eo (meV)

FIG. 3. Calculated electron relaxation rate 1/z for small Eo.
The solid curves are for T 0 K, and the dashed curves are for

T 300 K.
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to achieve rapid relaxation is the use of the LO ~ LA pro-
cesses, which are effective in a wider range of En near
hMLp. To give a numerical example, relaxation time & 1

ns can be achieved for Eo within the window
(Eo—hroLo) & 3 meV (at T =300 K). This suggests that
efficient photoluminescence and lasing from a quantum
dot will be possible if a dot can be designed to have a near-

ly harmonic (equal-spaced) level structure, where the lev-
el spacings fall into the above window. The use of mixed
crystals of multi-LO-mode type, such as Al, Gai —,As,
will bring additional freedom into designing, since now the
level spacings are required to fall into any of the energy
windows centered at the (more than one) LO phonon fre-
quencies.
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