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Energetics of interplanar binding in graphite
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Results of an ab initio density-functional study of interlayer binding in graphite are presented.
We obtain good agreement with experimental results for the equilibrium c-axis lattice parameter,
exfoliation energy, and uniaxial compressibility for this highly anisotropic material. We also present
the calculated band structure of graphite.

Graphite is a material with numerous technological ap-
plications. It is also of scientific interest as the prototyp-
ical two-dimensional solid. Two polymorphic forms are
common: hexagonal (or n )an-d rhombohedral (or P-)
graphite. Hexagonal graphite crystallizes in the Bernal
structure (space group Ds4&),

i with alternating layers of
carbon atoms stacking in an AB arrangement while P-
graphite has ABC stacking of the layers.

An interesting characteristic of graphite is the di-
chotomy in bonding character within and between planes
of carbon atoms. Carbon atoms form spz hybridized or-
bitals in threefold coordination within layers, making a
hexagonal net of aromatically stabilized rings. In con-
trast, the layers themselves are held together by com-
paratively weak interactions arising from the overlap of
partially occupied p, orbitals perpendicular to the three
hybridized orbitals. The bond energies determined from
our calculations differ by more than two orders of mag-
nitude, ranging from 50 meV for the interplanar p, bond
to 5.9 eV for an intraplanar sp bond. While the in-
terplanar forces are commonly attributed to a van der
Waals type of dynamic interaction between the electrons
on adjacent sheets of carbon, a previous study of this
using an extended Thomas-Fermi approach showed poor
agreement between a fiuctuating dipole model and the
interlayer bonding in graphite. Calculations using the
local-density approximations (LDA) and the linearized
augmented-plane-wave (LAPW) method4 obtained an in-
terplanar bond energy of 0.2 eV, four times larger than
the experimental value. s The LDA cannot describe the
dynamical interactions leading to dispersion forces and
does not reproduce the long-range 1/rs van der Waals
potential for atoms. Thus, if the interplanar binding in
graphite was dominated by these interactions, the bind-
ing of layers would be poorly described by calculations
relying upon the LDA.

The band structure of graphite has been described
extensively since it is a prototypical example of a two-
dimensional solid. It is well known that an isolated
graphitic layer would be a zero-gap semiconductor, while
the three-dimensiona1 solid is a semimetal with small
electron and hole pockets because of the weak interlayer
interaction. There is, nevertheless, a discrepancy be-
tween recent self-consistent calculations in the position of
the top of the cr band with respect to the Fermi level, E~.
Pseudopotential calculations find that level ~3.0 eV

below Ep while LAPW calculations4 find it 4.6 eV be-
low E~.

The present results were obtained using the local-
density approximation to density-functional theory, s

within the pseudopotential formalism. All calculations
were made using a plane-wave basis. We used the hexag-
onal allotrope in our calculations because it has a smaller
primitive cell with fewer atoms than the rhombohedral
form, and the electronic structure and structural proper-
ties are not expected to depend significantly on the stack-
ing sequence. Soft, transferable pseudopotentials were
generated for C in the ground state, non-spin-polarized
(2s~2p~) atomic configuration using the method of Troul-
lier and Martinss and a core radius of 1.50 bohrs for
both the 2s and 2p wave functions. The procedure of
Kleinman and Bylander for generating separable, nonlo-
cal pseudopotentials was used. s The exchange-correlation
functional used was that of Ceperley and Alderio as
parametrized by Perdew and Zunger. ii The energy cutoff
for the plane-wave expansion was E«t ——64 Ry, corre-
sponding to approximately 2000 plane waves at the equi-
librium c-axis lattice spacing. Large Hamiltonian matri-
ces were diagonalized using an iterative scheme. i2 The
self-consistent screening potential was determined in the
calculations using both six special k pointsis in the irre-
ducible Brillouin zone (IBZ) (generated from a uniform
4 x 4 x 2 mesh in reciprocal space), and forty special
points in the IBZ (generated from a 8 x 8 x 4 mesh).
Comparison of the two calculations revealed a negligi-
ble ( 3 meV) shift in the band energies with respect to
EF, and a 30-meV shift in cohesive energy. These small
values clearly demonstrate convergence of the calculated
properties with respect to number of k points.

In Fig. 1 we present the band structure for
a-graphite for the first twenty-four valence bands.
The main features agree well with previous band-
structure calculations, and with experimental
angle-resolved photoemissioni7 20 and inverse
photoemission ~ measurements. There is, however, a
notable discrepancy between experimental and theoreti-
cal results for the position of the top of the occupied o.

band with respect to the Fermi level. We find that the
top of this band lies 3.0 eV below E~, in agreement with
previous pseudopotential calculations. In contrast, all-
electron LAPW calculations4 find it 4.6 eV below the
Fermi level, in better agreement with the experimental
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FIG. 1. Electronic band structure of hexagonal graphite
calculated for the first 24 bands. The energy zero is at the
Fermi level EF.

value of 4.3 eV below EF.2O It would be surprising if
this 1.6-eV discrepancy between the pseudopotential
and all-electron calculations was due to the pseudopo-
tential approximation. Typically, energy differences in
the band structure between numerically converged pseu-
dopotential and LAPW calculations are of the order of a
tenth of an eV.zs The authors of the LAPW calculation
report that; the position of the o level is very sensitive
to the number of k points used for the Brillouin-zone
integration. In contrast, using the scheme of Monkhorst
and Pack, is we found rapid convergence of the calculated
energy with the number of k points in the IBZ. For ex-
ample, the position of the top of the o band only changes
by 3 meV with respect to the Fermi level when the num-
ber of k points in the irreducible wedge of the Brillouin
zone is increased from six to forty. Since our calculation
is fully converged with respect to size of the basis set and
the same should hold for the LAPW calculation, we sus-
pect that the difference in results is due to the different
k-point sampling scheme used in the LAPW calculation.

LDA calculations place the top of the 0 band 1.3 eV
closer to Ez than is experimentally observed. Since the
Fermi level is pinned at the half-filling of the 7r band, this
means that the relative energies of the o and vr bands are
incorrectly predicted. This error could be related to the
incomplete cancellation of the Hartree self-interaction in
the LDA. Because the o orbitals are more compact than
the vr orbitals, incomplete cancellation of this interaction
will raise the energy of the o bands with respect to the vr

bands. An example of this effect is seen in calculations of
the electronic structure of ZnS, where the localized d
electrons of zinc also appear higher in energy relative to
the extended s-p band than is experimentally observed.

Minimization of the total energy with respect to the
in-plane lattice constant a at constant volume provided

a value of ao = 2.451 A, which agrees well with the exper-
imental 0 K value of ao = 2.456 A. .2~ A similar procedure
for the axial lattice constant c gives co ——6.7 A as com-
pared to the empirical value of co = 6.674 A. z7 We found
that the determination of the dependence of the total en-
ergy on c to be signi6cantly more difBcult than for the in-
plane lattice parameter. This is due to the very small in-
terplanar binding energies ( 25 meV/atom) which lead
to sensitivity of the relative energies to numerical noise
in the calculation.

We have investigated possible sources of numerical
noise in our calculations, and find special precautions
necessary in order to obtain consistent results for the
interplanar binding energy curve. One source of error is
the variation in the dimension of the Hamiltonian matrix
with changes in the unit cell geometry. Clearly, when the
value of the c/a ratio for the graphite structure is varied
the cell geometry also changes. Small discontinuities in
the total-energy curves arise at points where the change
in cell size results in a corresponding change in the Hamil-
tonian matrix. This effect is minimized in our calcula-
tions by using a large cutoff energy, E,„q

——64 Ry, and
soft pseudopotentialss which exhibit rapid convergence
in Fourier space.

The large matrices obtained when the Hamiltonian is
expanded in a plane-wave basis are efficiently diagonal-
ized by iterative methods that require only the calcu-
lation of the product of the Hamiltonian with a trial
wave vector. Explicit calculation of the Hamiltonian
matrix can be avoided by observing that the kinetic en-

ergy is diagonal, the nonlocal pseudopotential operator
may be expressed as a sum of projection operators, and
the local potential operator is a convolution which can
be calculated with a fast Fourier transform (FFT). If
the spatial frequency of the FFT used in the convolu-
tion, G~~, is twice the maximum spatial frequency in-
cluded in the plane-wave expansion of the wave functions
(G~,„=16 a.u. for E«q ——64 Ry) the procedure is only
limited in accuracy by the computer precision. In the
intermediate step of the FFT convolution, both the wave
function and the potential are calculated on a uniform
grid in the unit cell. In the "dual" space formalismi the
values taken by the wave function on a grid in the crys-
tal unit cell (position representation) and the values of
the Fourier components (momentum representation) are
considered to be two equivalent representations of the
same function. In that case one can argue that the spa-
tial frequency for the FFT convolution may be chosen as
small as the spatial frequency of the wave-function sam-
pling (G „=8 a.u. for E 0„=64 Ry). This physical
approximation introduces a numerical dependency of the
calculations on the size of the FFT grid in the crystal
unit cell, which is usually small and can be neglected.
However, for graphite the small energy scale of the inter-
planar binding energy means that numerical fluctuations
in the total energy of a few meV cannot be tolerated. As
the c lattice constant of graphite increases, the density
of grid points in the unit cell decreases until there is a
jump in the number of grid points of the FFT, which
discontinuously increases the density of grid points. At
each step in the grid density there is also a correspond-
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TABLE I. Morse potential parameters and corresponding
Thomas-Fermi calculations (Ref. 2), and experimental results.
E and ao and co are the lattice constants.

physical quantities for our calculations are compared to
Interplanar binding energy is given by the Brst parameter

Morse parameters

E (meV/stom)
b (A-')
cp (A)
E, (eV/atom)
k, (10 cm /dyn)

ap (A)

6 k points

26
0.828
6.55
8.77
3.45

2.451

40 k points

24
0.783
6.72
8.80
4.11

6 k points
dual space

24
0.771
6.66
8.79
4.24

Thomas-Fermi

110
0.837
5.58

1.0

Expt.

22.8 (Ref. 5)
0.971 (Refs. 29 snd 30)
6.67 (Refs. 29 snd 30)

7.41 (Ref. 32)
2.7 (Ref. 31)

2.456 (Ref. 27)

ing discontinuity in the calculated total energy. We can
eliminate this effect by performing calculations with a
fixed number of the FFT grid points, but this would lead
to effects arising from differences in the grid point den-
sity when we calculate binding energy as a function of
the c/a ratio. In our calculation of the interplanar bind-
ing energy of graphite, we can minimize all these effects
by performing calculations with selected values of the c
lattice constant which preserve the sampling density of
FFT grid points. We have thus performed two types of
calculations to obtain the total energy of graphite as a
function of the c lattice constant: (i) without the "dual"
space and with unconstrained values of the c/a ratio; (ii)
with the "dual" space formalism and c/a ratios imposed
by the constraint of constant density of FFT grid points.

The total energy of graphite as a function of the c lat-
tice constant is shown in Fig. 2 for values of c/cp in the
range of 0.80—2.00. The curves calculated using six k
points, forty k points, and six k points with the dual
space formalism are parallel, with the principal differ-

-8.69

-8.71

-8.73
E

~+ -8.75

g -8.77

I
I

lI
)~

I
a

(
~
I
II

0

.c~

-8.79-

-8.81
5.0

I I I I I

6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
c (A}

FIG. 2. Calculated total energy plotted vs the c-axis lat-
tice parameter. Three curves are shown corresponding to cal-
culations performed with six special k points in the irreducible
wedge of the Brillouin zone to calculate the self-consistent po-
tential (squsres), forty k points (triangles), snd six k points
in combination with the "dual space" method (circles). The
energy zero is set at the atomic total energy for carbon, so
the minimum represents the cohesive energy E, for hexago-
nal graphite. The lines are Morse potential fits to the data
points.

ence arising from the 30-meV range (out of 8.8 eV) in
the value of the cohesive energy of the isolated graphite
plane. The curve with forty k points without the dual
space formalism (G~s„= 16 a.u. ) has the highest nu-
merical accuracy. Reducing the number of k points to
six shifts the curve upwards by 30 meV. In the curve
obtained using the dual space approach with a constant
density of FFT grid points in the crystal unit cell one can
still see some residual numerical noise at the meV level
which is absent from the other two curves. One can also
see that the energy of the isolated layer is lowered by 25
meV between the standard and dual space methods for
identical k-point sampling. This compensates the shift
due to the smaller Brillouin-zone sampling, and it is only
by that fortuitous cancelation of errors that the curve
appears closer to the most accurate result.

The calculated atomization energy per atom was fit-
ted with a four parameter Morse potential having the
functional form E(c) = E,(e px[

—b(c —cp)i —1)2 —E„
where E, is the binding energy of graphite with respect
to isolated atoms, and E is the binding energy between
layers, also called exfoliation energy. The parameters ob-
tained from our data are compared in Table I with both
experimental valuess' s s and those from the Thomas-
Fermi calculation of DiVincenzo, Mele, and Holzwarth. z

It is clear that our data are in very good agreement with
experiment, particularly for exfoliation energy, E~, and c-
axis equilibrium lattice constant, cp, which are both sen-
sitive to very small energy differences. The uniaxial com-
pressibility is defined by k, = (V/cps)(8 E/8 )c2, where
V is the volume. In terms of the Morse parameters the
uniaxial compressibility is given by k, = aps v 3/16E b2cp.
The calculated compressibility of 4.11x10 ~2 cm /dyn is
about 50Fo in error compared to the experimental value
of 2.7 x 10 cm /dyn.

In their extended Thomas-Fermi calculation of inter-
planar binding, which included a gradient correction to
the kinetic energy and used the exchange-correlation
functional of Hedin and Lundqvist, DiVincenzo, Mele,
and Holzwarth2 found difficulty in obtaining quantita-
tive agreement with experimental data. They attributed
this to a breakdown of the local-density approximation
itself in the regime of low electron density and suggested
the necessity of corrections to the correlation energy for
accurate prediction of interlayer properties of graphite.
LAPW calculations found a value of 0.14 eV/atom for
the interplanar binding energy of graphite. This value
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was obtained from the difIerence in total energy between
a slab and a bulk LAPW calculation. The authors men-
tion that adjusting for the systematic differences between
the two programs reduces the interplanar binding energy
to 0.10 eV/atom, which is still four times larger than the
experimental value. In our calculations of the interpla-
nar binding energy of graphite we obtain a very good
agreement with the empirical data (Table I), better than
should be expected from local-density calculations. The
total energy is converged to within ll meV per atom with
respect to basis set size and to within 30 meV per atom
with respect to number of special k points. The interpla-
nar binding energy, which is determined by total energy
difFerences, is converged to within 3 meV overall, indi-
cating that our value of 25 meV per atom is numerically
sound.

The local-density theory does not include the dynam-
ical effects of dispersive van der Waals interactions. As
a consequence, fitting of our total energy data with a
four-parameter Lennard-Jones (6-12) potential results in
a Gt of markedly poorer statistical quality than the Morse
potential. Interplanar binding in graphite is often inter-
preted as arising from a van der Waals type of dipole-
induced dipole attraction. However the fact that van
der Waals forces are strictly attractive (1/rs for neutral
atoms), implies that, at equilibrium, the repulsive forces
must be at least as strong. In graphite the dispersion
of the vr bands parallel to the c axis, for example, along
the A-I' or the K Hdirectio-ns, is of the order of 1 eV

(Fig. 1), indicating that the interplanar chemical interac-
tions are not negligible in this system. The fact that our
calculations within the framework of local-density the-
ory successfully predict the interplanar binding energy
of graphite and reproduce the curvature of the poten-
tial well indicates that the contribution of van der Waals
forces to the binding of graphite layers is likely a small
effect.

In summary, we have calculated the electronic band
structure of graphite and have examined the energetics
of interplanar binding in this material. We find good
agreement between our calculated values for equilibrium
c-axis lattice constant, exfoliation energy, and uniaxial
compressibility and experimentally determined quanti-
ties. We found that special computational precautions
become necessary in calculations which require accurate
resolution of meV energy differences. With these pre-
cautions in mind, we have verified the utility of the
local-density approximation for calculating the proper-
ties of lamellar materials such as graphite which have
pronounced anisotropy in their charge distribution. In
addition, our calculations suggest that the binding be-
tween planes in graphite is not dominated by van der
Waals dispersive interactions.
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