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The quasiparticle energy spectra associated with some members of fullerene (curved graphitic
geometries, e.g. , CM, CM, Cro, and helical graphitic microtubules) are obtained analytically within
the Hartree-Fock mean-field approximation. The magnetization and magnetic susceptibility are
calculated in the presence of a strong external magnetic field at zero temperature. Interesting
theoretical predictions such as the single quasiparticle excitation energies for C50, C50+; C60, C60+;
Cyo and Cyo+ as well as the presence of an extra peak in de H~—van Alphen oscillations for a
helical graphitic microtubule are discussed in terms of accessible experimental measurements.

Ever since the discoveryi and mass synthesis~ of
fullerenes and coaxial helical graphitic microtubuless the
focus has been to study a variety of their physical and
chemical properties. One particularly interesting aspect
is the effect of their curved geometry on the physical
properties. Recent theoretical studies of magnetic ground
states have already pointed to nontrivial topology of
spin configuration on a Cso fullerene molecule and the
presence of "Landau fans" in the variation of quasipar-
ticle spectrum with magnetic field for an electron gas
on a sphere. s Here we intend to explore further conse-
quences of a two-dimensional (2D) degenerate electron
gas confined to curved geometries (fullerenes and heli-
cal graphitic microtubules). An additional motivation is
to identify important physical attributes of these meso-
scopic structures for potential applications in nanotech-
nology.

We have studied spherical fullerenes ranging from Cs;
to Css but here we limit our discussion to Cso, Cso, and
Cqo for illustrative purposes. Within the Hartree-Fock
(HF) formalism at zero temperatures we find that (i) at
strong (& 1 T) magnetic field all fullerenes except Csz,
C5Q) C72) and C&s have a finite magnetic moment; (ii) all
are diamagnetic (i.e. , the slope of the magnetization vs
magnetic field is negative); (iii) akin to a 2D (or 3D) elec-
tron gas the magnetization (and susceptibility) exhibit de
Haas —van Alphen (dHvA) oscillations, ~ however, the os-
cillations occur at very high fields that are beyond the
experimentally accessible range; (iv) the estimated value
of the photoionization energy for C60 is in good agree-
ment with the experimental measurements and previous
estimates, s and the single quasiparticle excitation energy
for C60+ possibly explains the peak at 7.8 eV observed
in recent photoionization efficiency spectra. s In addition,
we calculated photoionization energies for C50 and C70
and the single quasiparticle excitation energies for CM+
and C70+. For the smallest helical graphitic microtubule
the dHvA oscillations (in magnetization, susceptibility)
are found to exhibit an extra peak at 169 T superim-
posed on the primary dHvA oscillation. All higher oscil-

lations, which occur at extremely high values of magnetic
field, have a twin-peak structure superimposed on them.
We also briefly discuss results on a toroidal graphitic mi-
crotubule with the hope that they will be fabricated in
the near future. Finally, we point to important potential
technological applications of these carbon-based geome-
tries, especially in the case of coaxial helical graphitic
microtubules.

We consider a 2D degenerate electron gss on a spher-
ical (Cso), a quasispherical (CM, Cyo) and a cylindri-
cal (helical graphitic microtubule) surface. All spin-
dependent interactions are neglected since they are neg-
ligible compared to the Coulomb interactions in the HF
formalism. s We obtain analytically the following quasi-
particle energy spectrum for closed-shell fullerenes at zero
temperature:
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where rn, denotes the mass of an electron, a is the ra-
dius of the fullerene, and (l'/00~ LO) are Clebsch-Gordan
coefficients. The sum over l' is restricted to the high-
est occupied shell. In the above equation, closed-shell
clusters can be found, e.g. , /=3 corresponds to Csg /=4
corresponds to Ceo, /=5 corresponds to C7z, l=6 corre-
sponds to CM, and so on. Therefore, these closed-shell
fullerenes have zero magnetic moment (within the shell
model). Other C„clusters correspond to partially filled
shells. For instance, the Cso fullerene molecule has a
partially filled /=5 shell (with 12 electrons removed). We
assume that the mean field remains spherical for a par-
tially filled shell; the quasiparticle energy spectrum of a
partially filled cluster can then be obtained analytically.

When the magnetic field is applied the energy levels
are split. The quasiparticle energy spectrum is calculated
perturb atively:
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where epe~~ = el + z' " (m+ o) with ei given by Eq. (1),
and o = +1. The magnitude of the second term is of the
order of meV while the third term is of the order of peV.
Thus, the above results obtained by perturbation theory
are quite accurate.

In Fig. 1 we show the discrete quasiparticle spectrum
for Csp, Csp, and C7p ~ The energy gap between the high-
est (partially or fully) occupied level (t=5) and the first
empty level (l=6) is 7.33, 8.58, and 8.0 eV, respectively.
The gap for Csp+, CM+, and Crp+ is 7.07, 8.23, and
7.74 eV, respectively. Note that a closed-shell cluster is
the most stable; so the energy gap for C50 is the largest,
and C7p is the next largest in magnitude. The exper-
imental photoionization eKciency spectra show a peak
for Csp + at about 7.8 eV; it is possibly the single particle
excitation energy 7.07 eV we calculated. The ionization
potential consists of two terms. The first can be found
by using the Koopmans theorem, iP i.e., the negative of
the highest quasiparticle energy level. This is the energy
required for an electron to be free on the surface. The
second term is the energy cost of removing the free elec-
tron from the surface to infinity; it is estimated electroni-
cally to be equal to e /a, with a being the Csp fullerence
molecule radius. This estimate gives us the ionization
potentials for Csp, Csp, and Crp to be 8.86, 13.57, and
12.37 eV, respectively. Comparing with the experimental
estimations of the ionization potential 7.54+0.04 eV (and
previous estimatess) for Csp, our result is in good agree-
ment with the data within 10%. For a closed-shell cluster,
the ionization potential must be larger due to the stabil-
ity of the cluster. Our results reflect this fact. We have

used for Csp, Csp, and C7p radii of 3.45, 3.3, and 3.65 A,
respectively. The bandwidths of Csp, Cgp, and C7p are
predicted to be 18.0, 12.35, and 15.04 eV, respectively, in
reasonable agreement with the tight-bindingii and local-
density-approximationiz (LDA) calculations for Csp.

The quasiparticle energy spectrum for a helical
graphitic microtubles in an external magnetic field ap-
plied along the tube axis can be calculated exactly, and
is given by

e„q(A) =

where
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with N„and Ni the highest and lowest occupied sub-
band indices, and l&

——2m, a~ay/h the normalized Fermi
wave vector. Also, in the above a denotes the radius of
the helical graphitic microtubule and K and I are mod-
ified Bessel functions. We have defined all wave vectors
in units of the microtubule radius a, and A=4/4p with
4=7ra2B and the unit of fiux Cp=(2irhc/e). Note that
the spectrum is continuous along the microtubule direc-
tion but quantized along the angular direction. If, on the
other hand, we choose a finite length (L) helical graphitic
microtubule with periodic boundary conditions we obtain
a toroidal graphitic microtubule with a completely quan-
tized spectrum given by the above equation except that
now the wave vector q is quantized as q = (2vrta/I ).

The Fermi energy and the subband filling indices (N„
and Ni) are calculated at fixed surface electron den-
sity. The surface electron density is approximated by
0 = 4/()rr)2 = 63.14 nm z, in a circle of radius r/2 on
the graphite surface, where r = 1.42 A is the C-C bond
length. Thus, we solve

N
0() )~

p= —Nt

t~2 —(p+ A)2

FIG. 1. Quasiparticle energy spectrum for Cso, Cse, and

C70 in the absence of a magnetic field. The dashed lines
denote the lowest unoccupied energy levels.

for l&, N~, and N„. The quantity 00 is defined as oo ——

2/(7ra)2 and depends on the microtubule radius a. The
solution of the above equation gives the Fermi energy.

In Fig. 2 we show the quasiparticle energy subband
spectrum for a helical graphitic microtubule as a func-
tion of the wave vector (along the microtubule axial di-
rection). The spectrum is discrete in the angular direc-
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FIG. 2. Quasiparticle energy spectrum for a helical

graphitic microtubuie (a=0.35 nm) as a function of the wave

vector in the absence of a magnetic field. eF is calculated

from the free-particle energy spectrum.

FIG. 3. Fermi energy eF as a function of the applied mag-
netic field associated with a helical graphitic microtubule for
three different radii. The inset shows the twin-peak structure
at very high magnetic fields for the smallest helical graphitic
microtubule (a=0.35 nm).

tion due to the finite microtubule geometry. Note that
the free-particle energy subbands are parabolic (dashed
curves) but shift down in energy (symmetric about the
vertical axis) after the inclusion of the interaction (Fock)
term (solid curves). The calculated bandwidth (at q=0)
is 15.2 eV, which is comparable to 14.4 eV predicted by
LDA. is Furthermore, by suitably adjusting the curva
ture (the radius a) of the microtubule, one can control
the quasiparticle level spacing and adjust the strength
of the Coulomb interaction. At a given value of q one
can also deduce the optical excitation energy of a helical
graphitic microtubule from Fig. 2.

The Fermi energy obtained from the tree-particle en-

ergy spectrum is plotted as a function of the magnetic
field in Fig. 3 for helical graphitic microtubules of three
different radii. With increasing magnetic field, the sep-
aration between subbands increases. The cusp in the
Fermi energy results from a subband crossing the Fermi
surface. This kind of level crossing gives rise to two dif-
ferent types of oscillations. First, the primary dHvA
oscillations which occur at very large field values (i.e. ,

I/Op an integer, see the inset) and result from subband
reordering. Second, there is a single peak (for A = 0) su-
perimposed on the primary dHvA oscillation due to the
broken degeneracy that results from the Zeeman splitting
of the subbands. At very large fields there is a twin-peak
structure superimposed on all higher primary dHvA os-
cillations due to the double degeneracy of each subband
(see the inset). The splitting of a twin peak is a direct
measure of the subband splitting of n = 1, 2, 3, . . . levels.

The smallest helical graphitic microtubule has a radius
equal to that of a Csp fullerene molecule, i.e. , 3.5 k The
first peak in this case occurs at 169 T. As the helical
graphitic microtubule radius is increased the peak posi-
tion shifts to lower field values. However, the peak height
also decreases proportionally. As observed by Iijima, a

helical graphitic microtubule can contain from 2 to 50
coaxial microtubules varying in radius from 2 to 15 nm
and up to 1 pm in length. Therefore, experimentally for a
pure sample one would expect the number of peaks, and
their location and magnitude, to be directly related to
the number of microtubules in a coaxial helical graphitic
microtubule and their radii.

We calculated the magnetization [at zero temperature
and strong magnetic field (& 1 T)] by finding the deriva-
tive of the free energy with respect to the magnetic field.
We do not give the analytic expression for M here since
the derivation is straightforward, nor do we plot M as a
function of B. However, we find that Cgp has no mag-
netization whereas Csp aiid Ctp saturate at M = 31 and
11 in the units of the Bohr magneton, respectively. Also,
we note that the value of M is the same for fullerenes
which have the same number of either electrons or holes
on the highest partially filled shell. Thus, for example,
Csp (l=5 with 12 holes) and Csq (l=5 with 12 electrons)
have the same M = 31. The slope of all magnetization
curves is found to be negative indicating that all spher-
ical fullerenes are diamagnetic. The dHvA oscillations
occur at extremely large fields.

We also calculated the magnetization of a helical
graphitic microtubule as a function of the applied mag-
netic field; however we do not plot it here. The mag-
netization increases extremely slowly, and linearly with
the field. At around 169 T (for a helical graphitic mi-
crotubule with radius 3.5 A.) a sharp spike is predicted
which should be observable experimentally. For a coax-
ial geometry (assuming negligible interaction between the
adjacent microtubules) one would expect a series of spikes
below 169 T. The number of spikes would correspond to
the number of microtubules in the coaxial structure. At
very large values of the field there are twin spikes super-
imposed on the dHvA oscillations (cf. Fig. 3).
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The derivative of magnetization with respect to the ap-
plied magnetic field gives magnetic susceptibility of the
system. For spherical fullerenes the value of y is con-
sistent with previous investigations. i4 At magnetic fields
below the value of the first dHvA oscillation the y for Cso,
Csp, and Cro is 0.00363, 0.00276, and 0.00456 in the
units of Bohr magneton/T, respectively. Note that the
value increases with increasing number of carbon atoms
in a fullerene. In Fig. 4 we depict the variation of g with
magnetic field for helical graphitic microtubules of three
different radii. For the smallest helical graphitic micro-
tubule (a = 3.5 A.) the y is almost zero except around
169 T where a sharp peak is predicted. For a coaxial
structure many such peaks are expected below 169 T.
We have not shown the twin peaks at extremely high
fields that are superimposed on the dHvA oscillations.
The magnitude of these peaks can be measured experi-
mentally and provides information about the underlying
subband structure of the helical graphitic microtubules
in a magnetic field.

In summary, we have calculated the quasiparticle en-

ergy spectra for Csp, Cgp, and C7o as well as for their
ionized clusters. The single quasiparticle excitation en-
ergies are predicted and the ionization potentials are es-
timated. The results are consistent with the recent avail-
able experimental data. We also presented results at
zero temperature for the magnetic response of various
spherical fullerenes and coaxial helical graphitic micro-
tubules. Finite-temperature results and thermal proper-
ties will be reported elsewhere. The role of finite curved
geometry is clearly manifested in the finite magnetiza-
tion (at fields & 1 T) and diamagnetic response of some
of the fullerenes, and in the M and g peak structures
of coaxial helical graphitic microtubules below 170 T (as
contrasted with a planar 2D electron gas). The spheri-
cal fullerenes are found to be diamagnetic with different
slopes {ascompared to a 2D planar electron gas). For the
helical graphitic microtubules we have shown evidence of
the presence of an extra peak superimposed on the first
dHvA oscillation which should be accessible with special
(explosive) dHvA experiments. is Furthermore, for coax-
ial helical graphitic microtubules the number of peaks
superimposed on the first dHvA oscillation directly in-
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FIG. 4. Magnetic susceptibility as a function of the ap-
plied magnetic Geld associated with a helical graphitic micro-
tubule for three difFerent radii.

dicates the number of microtubules in the coaxial struc-
ture and their radii (assuming the 2D electron gas on
each individual microtubule is not interacting with its
neighboring microtubules). We believe it is possible to
synthesize a single (or a coaxial) toroidal graphitic mi-
crotubule provided that the radius of the torus is large
enough to accomodate the strain generated by folding a
tube into a torus.

We have also studied the plasmon excitations for vari-
ous fullerenes and multichannel transverse-electric (TE)
mode propagation in the coaxial helical graphitic micro-
tubules. These results along with their implications for
helical graphitic microtubules as waveguides will be re-
ported elsewhere. is
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