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We have performed an ab initio study of the surface energy and the work function for six close-
packed surfaces of 40 elemental metals by means of a Green's-function technique, based on the
linear-muon-tin-orbitals method within the tight-binding and atomic-sphere approximations. The
results are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation
of surface energies and work functions for the 4d metals. The present calculations explain the trend
exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d
transition and noble metals, as derived from the surface tension of liquid metals. In addition, they
give work functions which agree with the limited experimental data obtained from single crystals to
within 15', and explain the smooth behavior of the experimental work functions of polycrystalline
samples as a function of atomic number. It is argued that the surface energies and work functions
calculated by present day ab initio methods are at least as accurate as the experimental values.

I. INTRODUCTION

The surface energy and the work function are the two
most fundamental electronic properties of a metallic sur-
face, and their determination is of great importance in
the understanding of a wide range of surface phenom-
ena. This includes growth rate, the form of crystallites,
sintering, catalytic behavior, adsorption, surface segre-
gation, and the formation of grain boundaries. In spite
of considerable experimental efforts, it appears that for
many metals the recommended values of both quantities
have uncertainties of unknown magnitude. This is, for in-
stance, true for the surface energies derived from the sur-
face tension of liquid metals and listed by de Boer et aL

Nonetheless, to our knowledge the compilation by these
authors represents the most consistent choice of surface
energies in existence. Similarly, the work functions listed
by Michaelson2 are derived mainly from measurements
on polycrystalline samples and in many cases have not
been confirmed by ultrahigh-vacuum measurements. In
this situation one may turn to theoretical models and in
particular to ab initio calculations as a guide, especially
since the accuracy of such calculations has recently im-
proved considerably.

In the last two decades there have been several theoret-
ical studies of surface properties, starting with the pio-
neering jellium calculations of Lang and Kohn. These
model calculations were later improved by Perdew and
co-workers, s ~ and they explained the trends exhibited
by the work function and the surface energy of the sim-
ple and noble metals. Nieminen and Hodges used band
estimates of the Fermi level and the experimentally ob-
tained work function to deduce the surface dipole barrier
for transition metals. Weinert and Watson used a dif-
ferent approach in the form of overlapping atomic charge
densities to estimate the work function of some 30 met-
als, including both simple and transition metals. Their
results gave a good description of the experimentally ob-

served trends but overestimated the work functions by,
on the average, 80%.

In the past, ab initio calculations of surface proper-
ties have been performed only in particular cases, ~o

mainly because of the large computer resources re-
quired. However, recently Skriver and Rosengaard2s
implemented an efficient self-consistent Green's-function
tech nique2s based on the linear muffin-tin-orbital
(LMTO) method and used it to calculate the work
function of alkali, alkaline earth, transition, and no-
ble metals. 2s At the same time Methfessel, Hennig, and
ScheffierM presented the first comprehensive study of sur-
face relaxation, surface energy, and work function for the
4d metals by means of their full-potential LMTO slab
method. It is gratifying to see that the two calculations,
which differ in both approach and level of approximation,
give work functions and surface energies for the 4d metals
which typically agree to better than 10%.

Since the preliminary account of the present work2s our
Green's-function technique has been improved in several
respects. Most notable is the use of linear-response the-
ory and a linearized version of the Dyson equation to
improve convergence. This cuts the number of iterations
by an order of magnitude. Furthermore, in the bulk cal-
culations we apply the second-order LMTO Hamiltonian
also used in the Green's-function technique, we use the
Brillouin zone appropriate to each particular surface, and
obtain the kinetic energy by integration of the Green's
function on a complex energy contour. As a result we
obtain an effective cancellation of errors and improved
accuracy in the calculated surface energies.

Here, we report a comprehensive series of calculations
for the closed-packed surfaces of alkali, alkaline earth,
divalent rare earth, 3d, 4d, and Gd transition and noble
metals. The main objective of the study is to provide
a consistent set of work functions and surface energies,
which may serve as a database for the construction of
models of a wider range of surface phenomena.
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II. COMPUTATIONAL METHOD

The tight-binding linear-muffin-tin-orbitals (TB-
LMTO) Green's-function technique as implemented by
Skriver and Rosengaard2s is based on the work by An-
dersen and co-workers. si s7 An essential aspect of the
technique is the ability, within the atomic sphere approx-
imation (ASA) and in the tight-binding representation,
to generate the Green's-function matrices for a real, two-
dimensional interface by a simple and efficient procedure.
Since the details of the technique may be found in Ref. 28
we shall here restrict ourselves to an outline of the ma-
jor steps, with special emphasis on the results of linear-
response theory.

A. Surface Green's function

The Hamiltonian Green's function matrix, G(z), for
the infinite crystal is most conveniently obtained from
the LMTO-ASA equations

-V V V r Vi —1 V
OaI3 —~aa Na~ (N~a) ~ca. (6)

As explained in Ref. 28 the vacuum Green's-function ma-
trices are found directly from an analytic expression for
the LMTO structure constants and no k~ integration is
needed.

The surface Green's-function matrices g for the unre-
laxed, combined system is found from the definition of the
KKR-ASA Green's function written in the block form

l((g..) ' —S.b ll I( "g~bll = (1„0
baal

l, —~b (gbb) ) (gb gbb) (0 b &bb)

Finally, the effect of relaxing the potentials close to the
surface is found from the finite Dyson equation

tions in the P representation the Lowdin downfolded ideal
Green's-function matrices for the bulk (X) and the vac-
uum (V) are given by

-X X X X —1 X
9AA 9AA 9Ab(9bb) gbA ~

within the orthogonal representation. Here, z is a com-
plex energy and H~ the second-order LMTO Hamilto-
nian

G7 (k z)
—ikll (Rll —Rll )

27t /d~ —ik~ (R~ —R~)

xGR, i, Rl(k~z)

where L refers to the combined angular-momentum quan-
tum numbers (l, m), dg is a layer distance, k = (k~~, k~)
is the decomposed reciprocal-space vector, and R
(R~~, R~) denotes sites in the three-dimensional (3D) cell.

The Green s-function matrices for a semi-infinite crys-
tal are obtained by a Lowdin downfolding technique
which hinges on the fact that the LMTO structure con-
stants in the most localized representation are short
ranged, i.e. ,

S&~& ——0 for (ABj P (ab). (4)

Here, AB refers to the two half-spaces separated by the
surface and (ab) is the small subset of layers where the
hopping is nonzero. After the transformation of
the layer Green's-function matrix (3) into the form de-
fined by the Korringa-Kohn-Rostoker (KKR) ASA equa-

H~(k) = C+ vAS~(k)vA

evaluated at a particular vector k in reciprocal space.
The center C, bandwidth 6, and p potential parame-
ters which enter the Hamiltonian are taken from a self-
consistent bulk calculation while the structure constants
S~ are obtained by matrix inversion of the most localized
structure constants S~, evaluated by real-space summa-
tions once and for all for a given surface.

In a layer representation the Green's-function matrix
may be expressed as

g' = 9+96P'9',

where the surface Green's-function matrix g' is expressed
in terms of the unrelaxed Green's-function matrix and
the diagonal potential-function matrix hP which de-
scribes the relaxation of the potentials.

B. Linear-response theory

In the iterations towards self-consistency, there are two
problems which slow down the convergence. The first
is the time-consuming numerical solution of the Dyson
equation (8) which must be performed at each iteration.
The second is the well-known instability caused by the
long-range Coulomb interactions, leading to oscillations
in the potential as the iterations progress. Tradition-
ally, the latter problem is solved by mixing input and
output potentials or charge densities from previous it-
erations to form the input for the next iteration. Such
mixing schemes correspond to a linear solution of a gen-
eral nonlinear problem which may not be appropriate in
all cases.

In a recent study of the band offsets in heterojunctions
Lambrecht, Segall, and Andersen showed that linear-
response theory gave an accurate estimate of the size of
the electrostatic dipole at the interface. Combined with
the Green's-function technique, their result means that
one may use linear-response theory, based on the correct
nonlinear problem, to estimate the input potential for
the next iteration. As a result, the mixing of the charges
causing the most troublesome part of the oscillatory be-
havior will be optimized to the surface situation. If, in
addition, one solves a linearized version of the Dyson
equation, one needs only to solve the complete Dyson
equation when a self-consistent linear solution has been
obtained, thus overcoming simultaneously the first prob-
lem.

Let us assume that we have solved the Dyson equation

(8) for a specified input potential. Hence, we know the
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6QR = ) XR,R'6VR')
R'

(9)

where )(R,R is the linear-response matrix given below.
If we impose a shift 6H~ on the I MTO Hamiltonian (2)
the corresponding change in the Green's function may be
found from the linear Dyson equation

(10)

as obtained by keeping terms to linear order in (1). If we

neglect the small change in the bandwidth parameter b,
caused by 6VR. we have that

6H~~, = 6CR = 6VR,

charge density in our system, and in particular we know

the net charge QR in the atomic spheres through the
surface region. If we then shift the potential in each
sphere by a small amount 6VR, the change in the charges
6QR may be found to linear order from

simply given by

(~+i) (n,) 6 ( +i)
Sin —Sin + Sin (18)

This solution does not automatically lead to charge-
neutrality but one may impose a small R-independent
potential shift 6V given by

(n+X)6V = —) ERR'6V;„.R~ ) XRR'
RR' RR'

(19)

which will guarantee that the entire two-dimensional unit
cell contains no net charge. The complete long-range
part of the input potential corresponding to a neutral
distribution of net charges may therefore be found as

+6 (" ) + (1 —A) 6V (20)

Viewed as a function of R, this potential is a stepwise ap-
proximation to the surface dipole barrier, and is used as
the boundary condition on the numerical solution to the
Poisson equation inside the individual atomic spheres.

and hence the linear-response matrix may be obtained
from the Green's-function matrices as the integral

1
dz dk~~ ) GRr R,L, (k~~~, z)

27t 2

x GR, r,, Rl (k~(, z), (12)

which is easily evaluated from the known Green's-
function matrices.

Given the change in the net charges calculated by
linear-response theory (9) the change in the long-range
Coulomb potential is obtained as the Madelung sum

SS6VR = —) MR R 6QR (13)

where S is the average Wigner-Seitz radius and MR R,
the two-dimensional Madelung matrix given in Eq. (59)
of Ref. 28. Thereby the change to linear order in the
output potential upon a small disturbance of the input
is given by

6vout ——A6v;„,

where we have defined a new matrix

A=M

(14)

(15)

as the product of the linear-response matrix and the two-
dimensional Madelung matrix.

Self-consistency requires that the input and output po-
tentials at a given iteration (n + 1) are equal, i.e.,

(fL) $ (A+1) (n) ~$ (%+1)
+in +in +out ~in (16)

This equation may be solved to give the change in the
input potential in the form

(n,+i) (1 A)
—i( (n) (n)) (17)

where the matrix to be inverted numerically only has the
dimension of the number of layers in the surface region.
Thus, at each iteration and to linear order, the long-range
part of the input potential for the following iteration is

C. Details of the calculations

At the outset of a surface calculation, one needs start-
ing potentials as well as total energies corresponding to
the perfect, infinite crystal of the atomic species that
form the surface. To obtain this input, we perform self-
consistent bulk calculations by means of the second-order
Hamiltonian (2) also used in the Green's-function tech-
nique, and calculate the kinetic energy by integrating the
Green's function on a complex energy contour. Also, al-
though it is more time consuming, we use the Brillouin
zone appropriate to each particular surface and perform
bulk calculations for each surface facet. As a result we
obtain an effective cancellation of errors and improved
accuracy in the calculated surface energies.

Based on convergence tests we use a surface region con-
sisting of four layers of metal plus two layers of empty
spheres simulating the vacuum. For the k-space integra-
tion we use 36 special points40 in the irreducible part
of the two-dimensional Brillouin zone for the fcc (100)
and bcc (100) surfaces, 45 points for the fcc (111) and
hcp (001) surfaces, and 64 points for the fcc (110) and
bcc (110) surfaces. Finally, we calculate the moments
of the state density by means of a Gaussian integration
technique with 16 points distributed exponentially on a
semicircle in the complex plane to emphasize the contri-
butions close to the Fermi level. In a few difficult cases
with surface states close to the Fermi level we include
a Fermi function corresponding to 300 K in the manner
described by Zeller et al. i As a result, we expect the
calculated work functions and surface energies to be con-
verged to within 0.1 eV and 5 mJ jmz, respectively.

As pointed out by Alden et aL4z the work function
depends critically upon the exchange-correlation func-
tional, since electrons are removed from a region of space
with metallic density to a region of zero density. Hence,
any constant difFerence in the exchange-correlation po-
tential is directly refiected in the calculated work func-
tions. In the calculations for the alkali metals we
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P = E2D(N) —NE3D (21)

between the total energy of the N atoms in the surface
region and N times the total energy of single atoms in
the bulk.

Within the ASA, and for a bulk cell with only equiv-
alent atoms, the zero of energy is taken to coincide with
the electrostatic potential at the surface of the (neutral)
atomic sphere, and the work function W of the corre-
sponding semi-infinite metal may then be expressed as
the difference

W = p —EF, (22)

between the electrostatic surface dipole P and the Fermi
level EF for the bulk crystal on the ASA energy scale.
The inclusion of the above-mentioned dipole-charge con-
tribution to the electrostatic potential reduces the surface
dipole barrier by up to 2 eV, and hence is essential for
the accuracy of the calculated work function.

III. RESULTS

In the following we shall present surface energies and
work functions for 40 metallic elements, as obtained by
the procedure described in Sec. II. All calculations are
performed at the experimentally observed equilibrium
volumes, and surface relaxations are neglected. For each
metal, the surface energy and the work funcCion have
been calculated for the most close-packed surface of the
experimentally observed crystal structure. These results
are listed in the first line for a given metal in Tables I—IV
and together with results for other close-packed surfaces

found that the functional of Ceperley and Alder in
the form parametrized by Perdew and Zunger gave the
best overall agreement with the measured work functions.
We have therefore used this functional throughout the
present work.

The one-electron potentials are calculated within the
ASA, i.e. , they are spherically symmetric inside overlap-
ping spheres. In particular, we note that the exchange-
correlation potential is obtained from the spherically av-
eraged electron density and not from the full density.
Test calculations show that this approximation tends to
overestimate the work functions by typically 0.2 eV. The
electrostatic potential is also obtained within the ASA,
but in addition to the monopole Madelung contribution
from the net charges, it contains a contribution from the
second, i.e. , dipole terms in the multipole expansion of
the charge density in the other spheres. Hence, in the
present implementation the surface dipole barrier has
two contributions, one from the monopoles, i.e. , the net
charges in the spheres and one from the dipole charges
in the spheres.

The surface energy is the work required to form a unit
area of surface, and is the solid analog of the surface ten-
sion of a liquid. In the present case and within the Born-
Oppenheimer, local-density, atomic sphere, and frozen-
core approximations it is simply calculated as the differ-
ence

also listed in the Cables they will be compared with the
two compilations of experimental data ' and with recent
jellium and ab initio calculations.

A. Nontransition metals

Traditionally, the surface properties of the so-called
simple metals have been calculated within the jellium
model, to which was added the effect of the ion lat-
tice treated by perturbation theorys 4 or by a variational
approach. 7 In Table I we therefore compare our calcu-
lated surface energies and work functions for the alkali,
alkaline earth, divalent rare earth, and aluminum with
the most recent jellium-type results.

2. Surface energy

From Table I it is seen that the surface energies for the
heavy alkali metals, K—Cs, obtained by the present and
jellium-based methods agree to within 7%. In contrast
to this, the deviations for the two light alkali metals, Li
and Na, are 40% and 60'%%uo, respectively. For the divalent
metals, Mg—Ba, the deviations vary from 15% to 8'%%uo. It
is furthermore seen that the present surface energies in
all cases are higher than the corresponding jellium-based
values, and in closer agreement with the surface energies
derived from the surface tension of liquid metals.

One of the justifications for what has become known as
the Miedema model of cohesion has been the linear rela-
tionship between the surface energy and the interatomic
electron density, nws. In Fig. 1 we have therefore fit-
ted the calculated surface energies to r, s nws. It is
interesting to note that on this scale, which is slightly
different from the one used by de Boer et at. , the calcu-
lated surface energies are closer to the linear relationship
than are the experimental values.

We take the agreement between the calculated surface
energies and the values derived by de Boer et aLi demon-
strated in Fig. 1 to mean that local-density theory and
the present Green's-function technique can provide sur-
face energies which are at least as accurate as those de-
rived from experiments.

2. Work function

From Table I it is seen that the work functions of the
alkali metals, Li—Cs, obtained by the two methods agree
to within 8'%%uo. For the divalent metals, Mg—Ba, the de-
viations are larger, and in Ba the present work funcCion

is 19'%%uo lower than the jellium result. This is, however,
quite understandable, since the jellium-type model is ex-
pected to be less accurate for divalent metals than for
the simple, monovalent metals.

In the comparison with experiment, Fig. 2, we find that
the calculated work functions in most cases are larger
than the measured values. This is in agreement with
the fact that the calculations are performed for single,
close-packed surfaces, while the experimental values are
obtained from measurements on polycrystalline samples
and reBect an average over different surfaces facets, some
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TABLE I. Work functions and surface energies for monovalent, divalent, and trivalent nontransition metals.
The experimental work functions in parentheses are polycrystalline values.

Metal Surface

(eV) (ev)

Work function
Jellium Present Expt.

(ev)

Jellium

(3/m )

Surface energy
Present

(eV) (8/m')
Expt. ~

(J/m~)

Li

Na

Rb

Cs

Be

Sr

Ba

Eu

Al

bcc (110)
bcc (100)
bcc (110)
bcc (100)
bcc (110)
bcc (100)
fcc (111)
bcc (110)
bcc (100)
fcc (111)
bcc (110)
bcc (100)
fcc (111)
hcp {001}
hcp (001)
fcc (111)
bcc (110)
fcc (111)
bcc (110}
bcc {110)
fcc (111)
bcc (110)
bcc (110)
fcc {111)
bcc (110)
fcc (111)

3.09
2.92

2.75
2.58

2.37
2,21

2.28
2, 12

2.17
2.01

3.44

3.10

2.94

2.83

3.72

3.33
3.15

2.94
2.76

2.38
2.34
2.41

2.32
2.22
2.29

2.09
2.03
2.3.0

5.62

3.86

2.86
2.84

2.42
2.39

2.28
2.23

2.25

2.42

2.51
2.45

4.54

(2.9)

(2.75)

(2,30)

(2.i6)

(2.i4)

(4.98)

(3.66)

(2.87)

(2.59)

(2.7)

(2.5)

4.24

0.326
0.371

0.190
0,216

0.111
0.115

0.086
0.098

0.069
0,079

0.554

0.325

0.256

0.233

0.921

0.247
0.332

0.242
0.263

0.139
0.220
0.132

0.127
0.207
0.120

0.117
0.210
0.111

0.583

0.356

0.296
0.293

0.287
0.291

0.286
0.277

0.288

0.317

0.318
0.328

0.56

0.458
0.436

0.307
0.236

0.116
0.129
0.112

0.092
0.107
0.089

0.072
0.092
0.070

2.122

0.642

0.352
0.339

0.287
0.282

0.260
0.258

0.247

0.342

0.391
0.391

1.27

0.525

0.260

0.130

0.110

0.095

2.70

0.76

0.49

0.41

0.37

0.45

0,50

1.16

See Ref. 7.

See Ref. 2.

See Ref. 1.
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FIG. 1. The calculated surface energies for nontransition
metals, solid squares, compared to the structure-independent
values derived from the surface tension of liquid metals, open
circles (Ref. 1). The solid line represents a fit of r, to the
calculated energies.
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FIG. 2. The calculated work function for nontransition
metals including the alkali, alkaline earth, divalent rare
earths, and aluminum, solid squares, compared to the com-
pilation of experimental polycystalline data by Michaelson
(Ref. 2), open circles. The results are plotted as functions of
the density parameter r„and the lines connecting the exper-
imental values are guides to the eye.
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=M—q
'I (23)

where q is the charge per atom in the first surface layer
and M is a constant of the order 10 depending on crys-
tal structure and surface facet. The dependence on the
Wigner-Seitz radius S is a consequence of the fact that as
the layer distance increases so does the surface area per
atom. With q independent of atomic number, which is
approximately correct for both the alkali and the alkaline-

of which are relatively open and have low work functions.
Hence, one would expect the calculated values to rep-
resent an upper bound on the experimental results, as
indeed they do.

If one considers the work functions in Fig. 2 as func-
tions of the density variable r„one finds that the values
as a rule decrease with increasing r, In. fact, the work
functions of the monovalent metals lie close to a line from
Li to Cs while those of the divalent metals lie close to a
line from Be to Eu. This trend is followed by the calcu-
lated as well as the experimental values, except for the se-
quence Ca-Eu-Sr-Ba, where the measured values increase
with r, . The jellium-type results for Ca-Sr-Ba, Table I,
support the decreasing trend, and hence one may argue
that the deviation between theory and measurement in
this sequence is caused by experimental difficulties.

On the ASA energy scale the work function of a metal
surface is obtained as the difference between the electro-
static dipole barrier and the Fermi level. To understand
the variation with atomic number we have therefore plot-
ted the two terms of Eq. (22) for the alkali and alkaline-
earth metals in Fig. 3.

A simple estimate of the dipole barrier may be ob-
tained within a two-plate condenser model. One finds

earth metals, the decrease in the dipole barrier with
atomic number in Fig. 3 follows immediately. The de-
viation from the straight 1jS dependence can be traced
to a breakdown of the constant q approximation and to
the effect of the dipole-charge contribution not included
in the simple condenser model.

The Fermi level in simple metals may be estimated
from

t'9~'l '~ I 2~ws
F =

q4p r,' S (24)

B. Transition metals

Ab initio surface calculations for transition metals re-

quire large computer resources and have typically been
performed only in particularly interesting cases. io 7 As
a result, the recent study of surface relaxation, surface en-

ergy, and work function for the 4d metals by Methfessel,
Hennig, and Scheffierso is the first comprehensive study

where the first term on the right-hand side is the free-
electron Fermi level and the second an approximate
exchange-correlation potential at the Wigner-Seitz ra-
dius, which provides a good estimate of the bottom of
the free-electron band. With Zws = 0.8 the balance be-
tween kinetic and potential energy inherent in Eq. (24)
explains the slow increase in the Fermi level of the alkali
metals as a function of atomic number. For the high den-
sities realized in Be and Mg, i.e. , r, ( 3, the first term
in Eq. (24) dominates and, as a result, the Fermi level
exhibits a minimum in the alkaline-earth series.

8.00

4.00—

—0.00—

Li

Ba Ra

Np K Rb Cs

Q)~2-8
C

Q)
O
Q 1

L

(f)

0 s «s I

0 2

pcU

12

er et nI..
—ASA (fcc111)

po la rized
I I I I I I I I I I I I I I I I I I I I I I

4 6 8 10
Va I ence

—4.00
1.00 2.00 3.00 4.00 5.00 6.00

r, a.u.

FIG. 3. The calculated dipole barrier and Fermi level for
the alkali and alkaline-earth metals plotted as functions of the
density parameter r, .

FIG. 4. The calculated surface energy for the fcc (111)
surfaces of the 3d metals, solid squares, compared to the
structure-independent surface energies derived from the sur-

face tension of the liquid metals, open circles (Ref. 1). The
solid line is a guide to the eye while the dashed line connects
the spin-polarized results of Alden et al. (Ref. 47).
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fcc1 1 1
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Tc

pRe
W

Ae
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C8

0
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10
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Q)~2
C
0)

O
Q 1
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4 6 8
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pAU

Der et uL
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10 12

FIG. 5. The calculated surface energy for the fcc (111)
surfaces of the 4d metals, solid squares, compared to the
structure-independent surface energies derived from the sur-
face tension of the liquid metals, open circles (Ref. 1). The
solid line is a guide to the eye while the dashed line connects
the full-potential, all-electron, slab-supercell results of Meth-
fessel, Hennig, and Scheffler (Ref. 30).

FIG. 6. The calculated surface energy for the fcc (111)
surfaces of the sd metals, solid squares, compared to the
structure-independent surface energies derived from the sur-
face tension of the liquid metals, open circles (Ref. 1). The
solid line is a guide to the eye.

of surface properties of a transition-metal series by means
of a traditional one-electron technique. Within the slab-
supercell approximation their full-potential, all-electron
method is expected to yield highly accurate surface ener-
gies and work functions, and we have therefore included
their results in Table III for comparison.

Surface energy

The calculated surface energies of the fcc (111) sur-
faces of the transition metals shown in Figs. 4—6 exhibit
a parabolic variation with the valence, defined as the to-
tal number of s, p, and d electrons. This is in accord with
the simple picture of d-electron contribution to the sur-
face energy suggested by Friedel. 4s Assuming a constant
state density with a bandwidth for d electrons which is
reduced by bW at the surface, one finds the d-electron
contribution to the surface energy to be given by

Es = 2n(1 —n/10)bW, (25)

where n is the number of d electrons. If we disregard the
anomaly in the 3d series, which was recently explained in
terms of magnetic eKects by Alden et al. ,

47 the parabolic
behavior is also obeyed by the surface-independent sur-
face energies derived from the surface tension of the liquid
metals. Hence, the trends exhibited by the experimen-
tally derived surface energies of the 3d, 4d, and Gd transi-
tion metals are completely described by the present type
of calculation.

Examination of Figs. 4—6 and Tables II—IV reveals that
the calculated surface energies for the heavy elements in
each transition series are in close agreement with experi-
ment, while for the lighter elements they tend to be lower
than the experimental values. In view of the approxima-
tions used in the reduction of the surface-tension data
to zero temperature, this agreement is surprisingly good
and lends credibility to the calculated as well as the ex-
perimentally derived surface energies.

To judge the accuracy of our LMTO-ASA Green's-
function approach we have included the fcc (111)surface
energies obtained by Methfessel, Hennig, and SchefflerM
in Fig. 5. For the first metals in the 4d series, Y and Zr,
the difference between the two calculations is 43% and
30%, respectively. Part of this large discrepancy may
be due to the fact that the present calculations are per-
formed at the experimentally observed equilibrium vol-
umes while those by Methfessel, Hennig, and SchefHerm
are performed at the somewhat lower calculated equilib-
rium volumes. For the heavier metals, Nb —Ag, on the
other hand the agreement between the two sets of calcu-
lations is seen to be better than 10% which we find ex-
tremely satisfactory in view of the fact that the methods
applied differ in both approach and level of approxima-
tion.

8. Work function

The calculated work functions of the transition-metal
series including the alkali, alkaline earth, and noble met-
als, are presented in Figs. 7—9 together with the exper-
imental values compiled by Michaelson, 2 supplemented
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TABLE II. Work functions and surface energies for the 3d metals. Values for ferromagnetic Fe,
Co, and Ni are taken from Alden et at. (Ref. 42) and denoted by an F after the surface label. The
experimental work functions in parentheses are polycrystalline values.

Metal

Sc

V

Mn

Fe

Co

Ni

CG

'See Ref. 2.
bSee Ref. 1.
'See Ref. 42.

Surface

hcp (001)
fcc (111)

hcp (001)
fcc (111)
bcc (110)
fcc (111)
bcc (110)
fcc (111)
fcc (111)

bcc (110)F'
bcc (110)
fcc (111)

hcp (001)F'
hcp (001)
fcc (111)

fcc (111)F'
fcc (111)
fcc (111)
fcc (100)
fcc (110)

4.59
4.63

5.12
4.88

5.45
5.27

5.45

5.16
5.78
5.54

5.48
5.81
5.76

5.68
5.77

5.30
5,26
4.48

(4.33)

(4 3)

(4.5)

(4.1)

(4.5)

(5.0)

5.35
5.35

4.94
4.59
4.48

Work function
Theory Expt.

(eV) (eV)

3.74 (3.5)
3.84

(eV)

0,48
0.44

0.90
0.72

0.82
0,99

1.33
1.10

1.17

0.96
1.12
1.15

0.94
1.08
1.10

0.90
0,88

0.69
0.85
1.33

Surface energy
Theory

(J/m')

0,82
0.76

1.95
1.56

2.02
2.55

3.63
3.09

3,24

2.66
3.09
3,28

2,74
3.18
3,23

2.69
2,63

1.96
2,09
2.31

Expt. b

(J/m')

1.28

2.10

2.55

2.30

1.60

2.48
2.48

2.55
2.55

2.45
2.45

1.83

6— -C

04-
O
C~3-

0C Ni+
0

Cr
Fe 0

U
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O

&3-

Mo
0R +Rh

0Ag
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&2—0
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0
0 4 6 8 10

Valence
12

0
0 4 6 8 10

Valence
FIG. 7. The calculated work function for the 3d series in-

cluding the alkali, alkaline earth, and noble metals compared
to available experimental polycrystalline data, open circles,
and single-surface data, solid circles (Ref. 2). All calculations
are performed at the most close-packed surface of the experi-
mentally observed crystal structure. The solid line connecting
the theoretical values is a guide to the eye.

FIG. 8. The calculated work function for the 4d series in-

cluding the alkali, alkaline earth, and noble metals compared
to available experimental polycystalline data, open circles,
and single-surface data, solid circles (Ref. 2). All calculations
are performed at the most close-packed surface of the experi-
mentally observed crystal structure. The solid line connecting
the theoretical values is a guide to the eye.
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TABLE III. Work functions and surface energies for the 4d metals. The experimental work
functions in parentheses are polycrystalline values.

Metal Surface
Slab

(eV)

Work function
Present

(eV)

Expt. b

(eV)

Surface energy
Slab Present

(J/m ) (eV) (J/m )

Expt. '
(J/m')

Nb

Mo

Tc

Ru

Rh

Pd

Ag

hcp (001)
fcc (111)

hcp (001)
fcc (111)
bcc (110)
fcc (111)
bcc (110)
fcc (111)

hcp (001)
fcc (111)

hcp (001)
fcc (111)
fcc (111)
fcc (100)

fcc (111)
fcc (100)

fcc (111)
fcc (100)
fcc (110)

3.46

4.38

4.66
4.63

4.94
4.98

5.15

5.44
5.25

5.53
5.30

4.67
4.43
4.23

3.38
3.42

4.15
4.35

4.80
4.69

5.34
5.09

5.36
5.42

5.84
5.73

5.91
6.14

5.90
5.96

5.01
5.02
4.40

(3.1)

(4.05)

4.87
(4 3)

4.95
(4.6)

(4.71)

(4.98)

5.6

4.74
4.64
4.52

1.15

1.75

2.36
2.20

3.14
2.64

2.63

2.99

2.53
2.81

1.64
1.86

1.21
1.21
1.26

0.48
0.45

0.85
0.68

0.79
0.96

1.38
1.06

1.12
1.06

1.28
1.12

1.09
1.31

0.77
0.90

0.50
0.62
0.94

0.68
0.65

1.53
1.22

1.64
2.06

3.18
2.50

2.80
2.69

3.32
2.90

2.78
2.90

1.88
1.90

1.12
1.20
1.29

1.13

2.00

2.70

3.00

3.15

3.05

2.70

2.05

1,25

See Ref. 30.
bSee Ref. 2.
'See Ref. 1.

by recent results for Pt. In the comparison with ex-
periment we find that the calculated work function is in
good agreement with the single-crystal data and gener-
ally above the corresponding polycrystalline data. This
is in agreement with the fact that the calculations are
performed for the most close-packed surfaces which have
the highest work functions, and hence the theory gives a
correct description of the trends exhibited by the exper-
imentally observed work function for the 3d, 4d, and 5d
metals.

In most of the cases where single-surface data exist, the
agreement between theory and experiment is particularly
good. This applies to Ni, Cu, Pd, and Ag fcc (111) and
to V, Nb, Mo, Ta, and W bcc (110)where the difFerences
range from 0.0 to 0.4 eV. For Re the difference is also
small, but here the measurement is performed on the
hcp (1011) surface, and hence should not be compared
directly with the theoretical hcp (001) value. The largest
discrepancies in terms of absolute values are found at the
end of the Gd series, where the differencies for Ir, Pt, and
Au fcc (111) range from 0.7 to 0.9 eV, which, however,
is only of the order of 15%%u&.

To judge the accuracy of the present approach we com-
pare in Fig. 10 the work functions for the fcc (111) sur-
faces of the 4d metals as obtained by our I MTO-ASA
Green's-function technique with those obtained by the
full-potential, all-electron, slab-supercell calculations of

5c
Ir

0
R

G4-
~~
U
C&3-

&2—0

1
«o«Expt. Polycrystalline)

Expt. Close —packed surface)
~ ~ ~ ~ ~ LMTO ASA)

0 I

0
I I I I I I I I I I I I I I I I I I I I I I I I I I I I

2 4 6 8 10
Valence

12

FIC. 9. The calculated work function for the 5d series in-
cluding the alkali, alkaline earth, and noble metals compared
to available experimental polycrystalline data, open circles,
and single-surface data, solid circles (Refs. 2 and 48). All cal-
culations are performed at the most close-packed surface of
the experimentally observed crystal structure. The solid line
connecting the theoretical values is a guide to the eye.
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TABLE IV. Work functions and surface energies for the 5d metals. The experimental work
functions in parentheses are polycrystalline values.

Metal

La

Lu

Hf

Ta

Re

Os

Pt

Au

See Ref. 2.
bSee Ref. 1.
' hcp (1011).
dSee Ref. 48.

Surface

hcp (001)
fcc (111)

hcp (001)
fcc (111)

hcp (001)
fcc (111)
bcc (110)
fcc (111)
bcc (110)
fcc (111)

hcp (001)
fcc (111)

hcp (001)
fcc (111)
fcc (111)
fcc (100)

fcc (ill)
fcc (100)

fcc (ill)
fcc (100)
fcc (110)

3.57
3.65

4.26
4.54

5.08
4.86

5.62
5.09

5.71
5.88

6.42
6.25

6.63
7.05

6.74
6.97

6.01
6.16
5.40

(3.3)

(3.9)

4.80
(4.25)

5.25
(4.55)

5 75'

(4.83)

5.76
5.67

5.31
5.47
5.40

Work function
Theory Expt.

(eV) (eV)

3.21 (3.5)
3.30

(eV)

0.43
0.43

0.50
0.47

0.94
0.75

0.86
1.06

1.70
1.06

1.34
1.34

1.60
1.37

1.36
1.75

0.98
1.19

0.72
0.88
1.31

Surface energy
Theory

(J/m )

0.57
0.57

0.77
0.72

1.75
1.39

1.79
2.27

3.84
2.50

3.27
3.28

4.04
3.46

3.41
3.81

2.35
2.48

1.61
1.71
1.79

Expt. '
(3/m')

1.02

1.23

2.15

3.68

3.60

3.45

3.00

2.48

1.50

Methfessel, Hennig, and SchefHer. It is seen that for
the entire series, Y—Ag, the agreement between the two
sets of calculations is better than 9' which again is ex-
tremely satisfactory.

It is perhaps surprising that the work function varies
so smoothly through a transition series. To understand
this, we may consider the two terms in Eq. (22) sepa-
rately, and since the work functions of the three transi-
tion series follow the same trend, it will suffice to explain
the variation exhibited by the 4d series on the basis of
the calculated Fermi level and dipole barrier shown in
Fig. 11.

Pettifor, 4s Mackintosh and Andersen, s and Glotzeis~
found in agreement with our bulk results that the Fermi
level in the 4d series exhibits a maximum close to Mo.
They explained this behavior as the eKect of a repulsive
ion core whose size, relative to the atomic sphere, attains
a maximum in the middle of the series. The s electrons
respond to being con6ned in the narrow volume between
the core and the atomic sphere by increasing the mean
band energy and the bandwidth. Since the number of
non-d states remains essentially independent of atomic
number, the "parabolic" behavior of the Fermi level fol-
lows.

In a metal, the relative confinement of the s electrons

6—

C04—
U

Q3-

Rh

Ag

&2—
0

1

0 I

0

00000

I I I I I I

Ex pt. (Po I yc ry st a I line)
LMTO ASA)
LMTO SLAB)

I I I I I I I I I I I I I I I I I I I I I I

4 6 8 10
Valence

FIG. 10. The calculated work functions for the fcc (111)
surfaces of the 4d metals, solid squares, compared to the avail-

able experimental polycrystalline data, open circles (Ref. 2).
The solid line is a guide to the eye awhile the dashed line con-
nects the full-potential, all-electron, slab-supercell results of
Methfessel, Hennig, and Schefller (Ref. 30).
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which are also the inequalities found in tight-binding
studies. s2 ss The anisotropy of the work function is deter-
mined by the electrostatic dipole barrier (23), and based
on geometric considerations alone one finds the inequal-
ities

0%
~(111) + ~(100) + ~(110)' (27)

—0—

4 I

0

Rb

~Ck
Mo ~

Ru

8 R
~Z Nb

/
Je) Q. ~
~ ~ ~ ~ & ~ Work function
a&a» Dipole barrier
o&Qo& Fermi level

I I I I I I I I I I I I I I I I I I I I I I I

4 6 8 10 12
Valence

FIG. 11. The calculated vrork function, dipole barrier,
and Fermi level for the 4d metals as a function of the total
number of s, p, and d electrons .

C. Anisotropy

The surface energy and the work function of a given
metal depend on the crystallographic orientation, i.e., the
surface facet, of the surface under consideration. If one
assumes that the surface energy is proportional to the
number of bonds being cut in the formation of the sur-
face, one finds for an fcc crystal that

P(110} + Y(100) + P(111) (26)

results in an increase in the kinetic energy, and for that
reason the bulk modulus attains a maximum close to the
middle of a transition series. At a surface the s electrons
will reduce their kinetic energy by spilling out into the
vacuum, and therefore the surface dipole also exhibits a
"parabolic" dependence on atomic number. As a con-
sequence, the work function, obtained as the difference
Eq. (22), varies smoothly with atomic number, in agree-
ment with experiment.

Nieminen and Hodgess reversed Eq. (22) and deduced
the surface dipole barrier for transition metals from band
estimates of the Fermi level and the experimentally ob-
tained work function. Their results agree with our first-
principles values to within 10%—30% which may be con-
sidered a surprisingly good agreement in view of the large
uncertainties in their procedure. Thus, the present cal-
culations substantiate the notion~ that the width of the
dipole layer varies little with atomic number, because it
is governed by the screening length, and that the height
of the dipole barrier therefore to a large degree is deter-
mined by the charge which is able to reduce its kinetic
energy by fIowing out into the vacuum.

In general, one expects the surface energy to increase
and the work function to decrease as the surface becomes
more open.

Examination of Tables I—IV shows that the present
surface energies for the alkali metals, Li and Na, in
contrast to the jellium results, do not follow the order

piiool ) p~iio& expected for bcc crystals Ho.wever, for
the heavier alkali metals, K—Cs, and for the noble metals
the order is the same as that given by the broken-bond
model (26). Similarly, the present work functions of the
alkali metals in Table I exhibit the order expexted for
bcc surfaces, in complete agreement with the jellium re-
sults. The expected order (27) is also found for the work
functions of Cu, Table II, in agreement with experiment
but for Ag, Table III, the work function of the fcc (100)
surface is similar to that of the fcc (111)surface, in con-
trast to both slab calculations and experiment. For Au
the order does not follow the simple model but here the
calculation is in agreement with experiment.

IV. DISCUSSION

The determination of the surface energy and the work
function of a metal is of great importance in the under-
standing of a wide range of surface phenomena, includ-
ing the growth rate, the form of crystallites, sintering,
catalytic behavior, adsorption, surface segregation, and
the formation of grain boundaries. Traditionally these
properties have been estimated from a variety of surface
measurements using procedures which bring about un-
certainties in the recommended values of unknown mag-
nitude.

For instance, de Boer et aLi have estimated the surface
energy of a metal by subtracting from the measured sur-
face tension of the liquid an entropy term proportional to
the melting temperature. Although this may seem a rea-
sonable procedure, it can only be justified by the validity
of the physical picture it leads to, or by the degree to
which it agrees with ab initio calculations. The fact that
two very different sets of calculations are in closer agree-
ment with each other than they individually agree with
experiment (see Fig. 5) strongly suggest that present day
ab initio calculations may be the most accurate way of
estimating surface energies.

If one considers the difFerence between the work func-
tion measured on a polycrystalline sample and the work
function measured on a single crystal of the same metal
as a measure of the uncertainty in the experimentally
derived work functions, one finds that the values rec-
ommended by Michaelson2 are in error by up to 1 eV.
Again, this uncertainty is larger than the difference be-
tween present day ab initio calculations (see Fig. 10) and
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suggests that such calculations may form a most valuable
tool for estimating work functions.

Based on the present experience, we would argue that
for properties as dificult to assess experimentally as sur-
face properties, ab initio calculations have reached a stage
where they may form the most consistent basis for a phys-
ical description of surface phenomena.

ACKNGVVLEDC MENTS

This work was supported by grants from the Novo
Foundation, the Danish Natural Science Foundation
(SNF), and the Danish Technical Science Foundation
(STVF) under the development program for materials
(MUP).

'F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema,
and A. K. Niessen, Cohesion in Metals (North-Holland,
Amsterdam, 1988).
H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

sN. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970).
N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).
R. Monnier and J.P. Perdew, Phys. Rev. B 17, 2595 (1978);
22, 1124(E) (1980).
Z. Y. Zhang, D. C. Langreth, and J. P. Perdew, Phys. Rev.
B 41, 5674 (1990).
J. P. Perdew, H. Q. Tran, and E. D. Smith, Phys. Rev. B
42, 11627 (1990).

sR. M. Nieminen and C. H. Hodges, J.Phys. F 6, 573 (1976).
M. Weinert and R. E. Watson, Phys. Rev. B 29, 3001
(1984).
0, Jepsen, J. Madsen, and O. K. Andersen, Phys. Rev. B
18, 605 (1978).

"J.A. Appelbaum and D. R, Hamann, Solid State Commun.

27, 881 (1978).
M. Posternak, H. Krakauer, A. J.Freeman, and D. Koelling,
Phys. Rev. B 21, 5601 (1980).
J. R. Smith, J. G. Gay, and F. J. Arlinghaus, Phys. Rev.
B 21, 2201 (1980); F. J. Arlinghaus, J. G. Gay, and J. R.
Smith, ibid. 23, 5152 (1981).
P. J. Feibelman, Phys. Rev. B 26, 5347 (1982).

' O. Jepsen, J. Madsen, and O. K. Andersen, Phys. Rev. B
26, 2790 (1982).
D.-S. Wang, A. J. Freeman, and H. Krakauer, Phys. Rev.
B 26, 1340 (1982).
A. Euceda, D. M. Bylander, L. Kleinman, and K. Mednick,
Phys. Rev. B 27, 659 (1983).

' S. Ohnishi, A. J. Freeman, M. Wienert, and K. Mednick,

Phys. Rev. B 28, 6741 (1983).
' H. Krakauer, Phys. Rev. B 30, 6834 (1984).

L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 29, 5372

(1984).
G. W. Fernando, B. R. Cooper, M. V. Ramana, H.

Krakauer, and C. Q. Ma, Phys. Rev. Lett. 56, 2299 (1986).
G. W. Fernando and J. W. Wilkins, Phys. Rev. B 33, 3709
(1986).
O. Jepsen and R. O. Jones, Phys. Rev. B 34, 6695 (1986).
K.-M. Ho and K. P. Bohnen, Phys. Rev. Lett. 59, 1833
(1987).
J. E. Inglesfield and G. A. Benesh, Phys. Rev. B 37, 6682
(1988).
R. J. Needs and M. Mansfield, J. Phys. Condens. Matter 1,
7555 (1989).
H. Erschbaumer, A. J. Freeman, C. L. Fu, and R. Pod-

loucky, Surf. Sci. 243, 317 (1991).
H. L. Skriver and N. M. Rosengaard, Phys. Rev. B 43, 9538
(1991).
H. L. Skriver and N. M. Rosengaard, Phys. Rev. B 45, 9410
(1992).
M. Methfessel, D. Hennig, and M. SchefBer, Phys. Rev. B
(to be published).
O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev.
B 2'7, 7144 (1983).

ssH. L. Skriver, The LMTO Method (Springer-Verlag, Berlin,
1984).
O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571
(1984).

sO. K. Andersen, O. Jepsen, and D. Glotzel, in Highlights of
Condensed-Matter Theory, edited by F. Bassani, F. Fumi,
and M. P. Tosi (North-Holland, New York, 1985).
O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev.
B 34, 5253 (1986).
W. Lambrecht and O. K. Andersen, Surf. Sci. 178, 256

(1986); (private communication).
P. O. Lowdin, J. Chem. Phys. 19, 1396 (1951).
W. Lambrecht, B. Segall, and O. K. Andersen, Phys. Rev.
B 41, 2813 (1990).
S. L. Cunningham, Phys. Rev. 10, 4988 (1974).

4iR. Zeller, P. Lang, B.Drittler, and P. H. Dederichs (unpub-
lished).
M. E. Alden, S. Mirbt, H. L. Skriver, N. M. Rosengaard,
and B. Johansson, Phys. Rev. B 46, 6303 (1992).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566

(1980).
J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
See, for instance, Fig. 2.2 of Ref. l.

e J. Friedel, Ann. Phys. (N.Y.) 1, 257 (1976).
M. E. Alden, H. L. Skriver, S. Mirbt, and B. Johansson

(unpublished) .

M. Kiskinova, G. Pirug, and H. P. Bonzel, Surf. Sci. 133,
321 (1983).
D. G. Pettifor, J. Phys. F 7, 613 (1977).
A. R. Mackintosh and O. K. Andersen, in E/ectrons at the

Fermi Surface, edited by M. Springford (Cambridge Uni-

versity Press, Cambridge, 1980), p. 149.
D. Glotzel, in Physics of Solids under High Pressure, edited

by J. S. Shilling and R. N. Shelton (North-Holland, Ams-

terdam, 1981), p. 263.
F. Cyrot-Lackmann, Surf. Sci. 15, 535 (1969).
M. C. Desjonqueres and F. Cyrot-Lackmann, Surf. Sci. 50,
257 (1975).


