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In many cases synthetic structures are specified on length scales large compared to the interatomic dis-
tances. On such scales local phenomenological field theories are being used that dispose of the atomic
structure but allow one to make extensive use of higher-level bulk properties. We derive equations of
motion including higher-order spatial derivatives, which can be adopted to various effective continua
like Schrodinger fields for electrons in solids, electromagnetic fields in dielectrics, and acoustic or optical
displacement fields. For these generalized fields we solve the long-standing problem of how to derive a
complete set of continuity conditions at a plane interface. In the same way continuity conditions for in-

teracting fields (e.g., polaritons) are obtained.

I. INTRODUCTION

In recent years the rapidly developing techniques for
creating artificial structures on a submicrometer scale'
have tended to direct much interest from the ideal homo-
geneous solid state, the traditional realm of fundamental
research, to the understanding of considerably more com-
plex structures, the dynamics of which are basic also to
device physics. The design variations of such inhomo-
geneous systems appear almost indefinite. An important
class to be discussed here concerns structural changes in
one direction, in particular, layered structures.

In principle, existing theoretical schemes developed for
homogeneous systems can be extended to deal with such
inhomogeneous materials. As far as phonons are con-
cerned, there are detailed lattice-dynamical studies for
slabs, superlattices, and double heterojunctions, and
corresponding investigations based on a set of local atom-
ic wave functions for electron states. ' Nevertheless, an
alternative though less fundamental approach has been
quite successful: In the continuum approximation for
displacement fields ' the inhomogeneous structure is de-
scribed in terms of spatially dependent elastic coefficients.
In the same way, the so-called envelope function approxi-
mation for electrons ' makes explicit use only of bulk
parameters like band edge and effective mass, and a mod-
el for their spatial variation. A classical example of
renewed interest is continuum electrodynamics" with,
e.g. , spatial variations of the dielectric constant. ' All
these phenomenological structure models thus define phe-
nomenological field theories for the phonon, the electron,
and the light field, respectively.

The possibility of such schemes rests upon the ex-
istence of different inherent length scales. In simple crys-
talline materials there is basically one inherent length
scale: the typical interatomic distance Lo. Complex
structures contain additional (larger) length scales L;.,
which may even form a hierarchy, like in superlattices. If
L; «L,-+i holds, a finite level of resolution Ar with

L, & Ar &L, +, will focus on longer-scale patterns, while

short-scale modulations (with respect to the structure as
well as with respect to the field) are ignored. Any such
phenomenological structure model thus defines homo-
geneity as a scale-dependent concept: What appears as a
(periodic) structure on one level is homogeneous on the
other.

Despite its obvious limitations phenomenological field

theory is able to address most directly two pertinent
problems of inhomogeneous systems: How does the pa-
rameter field pattern influence the linear modes? And
how does it influence the interactions (i.e., mode dynam-
ics)? As input only the local bulk parameters and their
spatial dependence are required. For heterojunctions
with their discontinuous parameter changes, no addition-
al information about the interface enters (on the accepted
level of resolution): This is convenient since such micro-
scopic information is usually very scarce anyway.

In this investigation we apply phenomenological field

theory to the phenomenological electromagnetic field, the
effective Schrodinger field, and acoustic and optical dis-
placement fields in layered structures. The accepted spa-
tial resolution is Ar &&Lo. We briefly discuss approaches
with further reduced resolution. This is a generalization
of conventional continuum theory in several respects: the
systematic account of various fields of different physical
origin, the inclusion of dispersive corrections, and the
definition of continuity conditions at interfaces.

This paper is organized as follows. In Sec. II we briefly
review the connection between static structure fields and
dynamical fields as it applies to a treatment of inhomo-
geneous systems. Continuity conditions are derived from
the pertinent balance equations. The electromagnetic
field and the phenomenological Schrodinger field are dis-
cussed as examples in Secs. III and IV, respectively. We
then introduce multiple displacement fields in Sec. V, and
in Sec. VI mutual field interactions.

II. PHENOMENOLOGICAL FIELD THEORY

Formal similarities between the Schrodinger field equa-
tion, say, and the electromagnetic wave equation, have, of
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course, long since been noted (see, e.g., Ref. 13). La-
grangians including higher derivatives have been dis-

cussed previously (see, e.g., Refs. 14—16). It appears,
however, that these analogies and generalizations have
not been systematically exploited in the context of inho-
rnogeneous structures defined by parameter fields. We
therefore start with a brief review of local-field theory.

A. Local-field approximation picture

Let ]II;(x) be an arbitrary vector field on
x [xQ x ] xp x3 ] =

I t, r„rz, r& ], the dynamics of which
is determined by the extremum property of the action
functional S[%;(x)]= fdxoL, where I. denotes the
respective Lagrangian. We assume S[%;(x)]to have the
nonlocal and retarded form

S['0;(x)]=—,
' f f d xd x'P,.i(x, x')]II;(x)%.(x')

+—,
' f f f1 xd x'd x"y, „(x x', x")

XV,.(x)%.(x')%k(x")+ .

(2.2)

(2.1)

Here and below summation is implied for any repeated
index in an individual term. We use the convention that
indices following a common denote differentiation with
respect to this coordinate, e.g., ]II, =BV; /Bx, etc.
Greek indices are 0,1,2,3; Latin indices will be restricted
to 1,2,3 unless stated otherwise. Transforming to Jacobi
coordinates (see Ref. 17), e.g. , (x,x') —+(x', g), with

x'= —,'(x+ x'),

(2.1) can be written as

S[]II,(x)]=fd x' fd g P;, (x', g)%;(x'+ —]g)% (x' ——]g)
Ji

J~+f d rI y" (x' g rI)% (x'+ —'g ——'rj)% (x'——'g ——'r))% (x~+—'r))+ (2.3)

The J; are the respective Jacobi determinants, and since
the transformation preserves volume and direction, J;=1
holds. The integrand in the outer brackets is the La-
grangian density X(x').

We will presently consider only the bilinear term in
(2.3), keeping in mind that multilinear terms of higher or-
der appear, e.g., in Coulomb interaction or lattice anhar-
monicity. The Lagrangian density reads

X(x')= —,
' f1 (P, (x', g)%,.(x'+ —,'g)% (x' ——,'g), (2.4)

To derive the equation of motion we should have more
information about the kernel P in (2.4). Let us assume
that P;~ decreases exponentially with ~g~ on a scale on
which the field changes are small compared to this. We
are then allowed to expand the field product into a Taylor
series around x' implying

25(x') =f d gP; (x', g)2)%. ;(x)V (x')i, , (2.5)

with the operator

1+ +
2 Bx

2X =M, 8,,'e, e,' —C,, i,'e, ,e—,' C. .., ,e, e—,', ,

Di ~ij''k'+i +i',j 'k' (2.7)

C;, i,
'(x')= ,' fd—g—P,, (x', g)g'= —C, i, , (x'),

D;ji; '(x')= —
—,
' fd gP, ,'(x', g)g, ( —g')

= —D;(;~'~(x'),

(2.&)

etc. In this integral representation the coupling tensors
appear as moments of g~ over the "weight function" P;;
(cf. Mills' for a similar representation of the dielectric
tensor). The relations between the various coupling ten-
sors as expressed in (2.8) also follow directly from (2.7) by
partial integration (plus appropriate boundary condi-
tions). Alternatively we may write (2.7) as

with the coupling tensors (signs chosen to have the "po-
tential energy" positive, see applications below)

B;;.(x') = —fd'( p;; (x'g) =8;.;(x'),

+2 2
a

2 Bxp Bx

'+a+a+, ' "+ ae ae,i i 0 i,j i 0

+—
2 2 Bx Bx

(2.6)

We thus find, comprising all terms involving time deriva-
tives into Xo,

pe gy & Jk l g~ g~g / i,J k
l~Jk I 0 i i' j'k' 0

(2.9)
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with 4; =4'; o and the second-rank parameter tensor

0 a'x
8;; = . . =

—,
' fd gP;;(x', g)g ( —

g ), (2.11)
8%,8%,',

so that X=X(%;,4;,ql; j,%; k, . . . , x„'), i.e., only spatial
derivatives of finite order are supposed to appear. The
equation of motion for the dynamical field 4; reads for'
(2.7)

ar d ar d ar
B%, dt g+. dr 8%',

12 aX + I ~ 0 0 (2. 12)

where all the second-order field derivatives of L have to
be taken at 0'; =0, 4'; - =0, etc. These give, by compar-
ison with (2.7), another interpretation of the coupling ten-
sors (2.8).

For field equations of second order in time we require

(2. 10)

metry and other model-dependent restrictions. Parame-
ter fields give rise to modified equations of motion.

B. Balance equations

Equation (2.12) can be written as a balance equation
for the conjugate field ~;:

d BL
P&J

J I

(2.16)

where p; is the (conjugate) momentum current tensor

ax
PIJ gyp

l,J

d aX d d aL
drk B%'; k drk dr 8%'; k

(2.17)

The right-hand side of Eq. (2.16) disappears, if 4, is a cy-
clic field variable. In general, p," is not necessarily sym-
metric.

We note that this balance equation (2.16) can be recast
into the recursive form

One is easily convinced that, e.g. ,

X =go+ D;j;j 0'; jql; (2.13) with

d , ax d ax
dr '

B%, dt g+.
(2.18)

arid

=Xp Dij i j' i +i'', 'j'j 0 (2.14)

(which differ by a divergence) produce the same equation
of motion. This (well-known) nonuniqueness of X can be
reduced by considering certain standard forms, e.g. , the
symmetric (2. 13) instead of (2. 14). This will typically be
the case for the applications in the following sections.

The conjugate field to 4'; is the canonical momentum
density

= a
a,J=

B%;.

az

d
dPk

jkl (2.19)

For the energy momentum balance we obtain as usual

(2.15)
d

H

pvX
%=0, 1,2, 3

a
BXv ex

(2.20)

which, if 4; =qI;(nj, %j,%, k, . .. . ) exists, allows one to in-
troduce the Hamiltonian density by &=4;m; —X. Field
quantization is obtained, as usual, by taking Poisson
brackets into comrnutators, so that the classical field
equations become the operator equations of the Heisen-
berg picture.

IfX does not explicitly depend on x', we have a conser-
vative homogeneous system, for which all parameters are
constant. Any explicit spatial dependence of L must
necessarily be represented by the expansion coefficients
(2.8). Inhomogeneity therefore leads to the concept of
parameter fields: Their pattern constitutes a phenomeno-
logical structure model of given spatial resolution to
which the dynamical properties must be referred. If one
accepts that phenornenological field theories also should
be of Lagrangian type, the separation of any Lagrange
term into a contraction of a tensorial parameter and field
derivatives is uniquely defined: There can be no dispute
about what to consider as the proper parameter field and
the equations of motion are unambiguously specified.
The nature of the parameters, to be sure, depends on the
level of description. They are constrained by point sym-

8 =/5 a~% bj"—% —c—j"rq
pv pv j, i, v & i, j)(,v I i, k, yv (2.21)

For the Lagrangian (2.7) with (2.10), the terms of (2.19)
involving the time derivative are

b,l' =0 for pv=0
(2.22)

etc. For v=0 (2.20) represents the local energy balance
equation

—%+d S=
at

'"
at

(2.23)

where the energy density has been identified as

8oo=n. ql

and the energy current density as

(2.24)

where (aL/ax„), „denotes the explicit derivative of X
with respect to the variable x„, and the (nonsymmetric)
energy-momentum tensor is
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(2.25}

We note that S decomposes into exactly y terms if y is
the highest-order spatial derivative appearing in X [cf.
(2.19)]. If X includes this highest derivative in bilinear
form, the highest-order spatial derivative in the equation
of motion (2.18) is 2y. For j=1,2, 3 we obtain the
momentum balance

N(i ) in k3, there are N(i ) (in general complex) solutions.
We note that if the highest-order field derivative in X is
y(i) and included in bilinear form, we have N(i ) =2y(i).
Let N+ (i } be the number of real solutions with k3 & 0,
N (i ) those with k3 & 0, K+ (i ) the number of solutions
with Imk3 & 0, IC (i ) those with Imk3 & 0. Then

2y(i)=N+(i)+N (i )+K+(i)+E (i), i =1,2 .

a a—q. + P; =
Bt ' Br, Br

ex

j +5" k+kj bk+k, lj k +k, l j ~ ~ ~

where the (translational} momentum density is

q =8O ——
m %'.

and the momentum current density

(2.26)

(2.27)

(2.28)

(2.30)

It is convenient to further restrict the superposition in
medium (1) to one propagating incoming mode of given
amplitude y =1 and polarization e together with the
M(1)=N (1)+E (1) modes and the M(2)=N+(2)
+E+(2) modes in medium (2). [The nonpropagating
modes K+(2),K (1) will give rise to localized modes at
the interface ]W.ith N (i)+K (i)=N+(i)+K+(i) we
obtain

As is well known, this tensor is not uniquely defined: it
can be symmetrized to satisfy the balance of angular
momentum. For a homogeneous system momentum is
conserved, as (dX/dr, ),„=0; for one-dimensional inho-
mogeneity, where X depends explicitly on r3 only,
(BX/Br3 ),„%0acts as a source term for q3.

C. Layered structures: Bulk-mode representation

1. Constrained superpositions

M(i) =y(i)

so that

ik'r k trt

lm(1 )e me

l=l m =l

(2.31)

r3 &0
(2.32)

IfX does not depend explicitly on r;, all the phenome-
nological parameters are constant, and the respective
equation of motion is solved by plane wave (e.g., for
periodic boundary conditions). Due to the linearity any
solution can be written as a superposition of such modes.
Special superpositions are required by additional con-
straints: The origin of these may be traced back to addi-
tional continuity conditions at interfaces and/or prepara-
tion.

For layered structures the individual bulk mode, in
general, no longer satisfies those continuity conditions, so
that specific superpositions (including nonpropagating
modes, e.g., complex k; ) will have to be considered in any
sublayer. A layered structure as a one-dimensional inho-
mogeneous system violates translational invariance only
in one direction, say the r3 direction. According to
Bloch's theorem we may thus write (complex representa-
tion}

i(k~~R
—cot )

(r, t)=e e . " ql(r3) (2.29)

with k~~=(ki, kz) being real and R=(r„r2). e is the po-
larization vector, ~e~ =1. Here we restrict ourselves to a
heterojunction, in which a single-plane interface at r3 0
separates medium (1) in r3 &0 from medium (2) in r3 & 0.
An eigenmode of this structure may thus be specified by
lo and ki, while y(r3) can be represented as a superposi-
tion of the (in general complex) solutions k3 of
co ( k

~~

k 3 ) =co in medium ( 1 ) and (2), respectively, with,
in general, three independent polarization vectors e for
each allowed k (in the case of a three-dimensional
vector-field). If to (k~~, k3) =co in medium (i ) is of order

2. Continuity conditions

(a) Energy conseruation. If (BX B/x„),„=0, with v%3
we obtain, applying Gauss's theorem to (2.20),

83 (1)=83„(2) for v+3 . (2.33)

For v=0 we thus arrive at the continuity condition for
the energy current density in the r3 direction,

S = —a-% —b ~%- —c J%3 3' 3'k
3 i i i ij i ijk 7 (2.34)

while for v=n =1,2 at the continuity for the momentum
current density,

8 = —a%- —b j% —c j%3 3 3k
3n i i n i ijn i ijkn (2.35)

Due to translational symmetry in the r„r2 plane we can
replace d/dr by ik for j= 1,2. and thus r.ewrite (2.34)

S = —A%- —8% —C%3 i i i i 3 i i 333 (2.36)

(kR- tj 3 y(2)
l l k. ..iIl (2}=e ~~ g g qr' (2)e' e ' ', r3 0.

l=l m =l

It is clear that all these 3[y(1)+y(2)] as yet undeter-
mined (in general) complex amplitudes lp' should result
from the same number of continuity conditions. There
cannot be any ambiguity as this scenario corresponds to a
typical experimental situation for which a unique solu-
tion must be expected. However, it is not obvious how
these conditions might be found at all. It will be shown
that they follow from rather general assumptions about
the interface: energy conservation and linearity.
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where

A =a +igb~k —. g c~"k k.+
j&3 j,1%3

B =b-"+2i ~ c"Jk +l i j
JW3

333+

(2.37)

A, (1)=A;(2), %,(1)=%,(2), i =1,2, 3

&;(1)=&;(2), 4; $(1)=e;,(2),

C, (1)=C, (2), 0, »(l)=%, »(2) .

(2.38)

There are exactly y(v) such vectors in medium (v) not
equal to zero (confer the discussion in Sec. IIB). For
dispersionless field modes we obtain S3 =0, and there are
no continuity conditions at all. The continuity of 83„,
n = 1,2, does not lead to any additional constraint.

(b) Linearity. For a linear field we expect that the
reAection and transmission patterns of any incoming
mode are not changed by the presence of another mode.
This means that the continuity conditions must be linear
in the field. In order that S3 is continuous for any super-
position of modes, the individua/ factors appearing in
(2.36) should be continuous at ri =0. If we restrict our-
selves to the case y(l)=y(2) =y, this results in 2y com-
plex vector equations, e.g. , for y =3:

III. PHENOMENOLOGICAL ELECTROMAGNETIC
FIELD

In a nonconducting isotropic continuum the Lagrang-
ian for the transverse electromagnetic field e = —A in

terms of the vector potential A; (Coulomb gauge
div A=0, scalar potential 4=0, and SI units) can be tak-
en as

X(A„A;,J)=SO(A;)+ —A, J A; 1

~ ~ 1 8
2 BA, .BA,', (3.1)

be thought to go to zero as g~0 for finite field O';. Con-
tinuity then requires A;,8, , in medium (1) to be zero
at the interface ("soft environment").

The boundary conditions of type h generalize the con-
cept of a "hard-environment": In this case the phenome-
nological parameters in medium (2) all go to infinity as
7)~ ~. In order that X according to (2.7) remains finite,
the corresponding field terms must scale as g

' and
thus go to zero. Continuity then requires % % '3 to
be zero at the interface. One can also think of mixed
model environments like A3=0, 0', =0, i =1,2, . . .
Such boundary conditions are well known in convention-
al elasticity theory. ' We will verify this concept by ap-
plying it to a number of known scenarios before we use
its power for generalizations.

These conditions must be satisfied by the ansatz (2.32)
thus leading to a set of 6y linear algebraic equations for
the 6y amplitudes y' (1),qr' (2). If y(1))y(2), e.g. ,
y(1)=3,y(2) =2, the last line of (2.38) would read

C, (1)=0, 4;»(1) unconstrained,

which are 3[y(1)+y(2)] equations as required.
Under special conditions these equations are solved by

real amplitudes y, i.e., without additional phase factors.
This is the case if the A;,8;,C;, . . . contain either odd or
even spatial derivatives only (as is true for isotropic and
cubic symmetry).

with

Xo=—(1+y)A; A;

and

with

D;. ; = 1 1

q, 1+y
With Dij j)i D&j'jij

82

BA BA ' jl'j'
1,J l,J Q

(3.2)

(3.3)

(3.4)

3. Boundary condition Sz =0

The surface boundary condition Si =0 [in which case
there are no transmitted modes in medium (2)] can be
satisfied basically by two different sets of conditions.

Type s:

ax
aA,

=e (1+y)A = D— (3.5)

The phenomenological parameters are thus controlled by
the electric susceptibility y and the magnetic susceptibili-
ty y . The conjugate field is

A =B =C = . . =0 i=1,2, 3 (2.39)
and the equation of motion ("Helmholtz-equation" )

reads

with consequently no constraint on +,-, +,- 3, . . .
Type h:

( I+y)(1+y )
A,- =0,

c Bt
(3.6)

A;WO, B;WO, . . . , i =1,2, 3

with % i 0 %i 3 0

(2.40)

In either case we obtain 3y(l ) conditions sufficient to
determine the amplitudes of the rejected modes in medi-
um (1).

The boundary conditions of type s generalize the con-
cept of a "free surface": In this case all the phenomeno-
logical parameters entering A, , B, , . . . in medium (2) may

S3=—a; A,.

with

(3.7)

where pot o
= 1/c has been used. This equation of

motion is easily generalized for spatially dependent
dielectrics y(x). The parameters y and y can also be
taken to define a heterojunction at r& =0 (cf. dielectric or
magnetic superstructures' ). The pertinent continuity
conditions are derived from the continuity of [cf. (2.36)]
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As the magnetic field is

implying (for a nonsingular interface)
(3.8}

%,(2)=%,(1)

and the condition

(4.6)

1 1

Po 1+Xm
curl A,

the continuity of a;, i =1,2, implies

H;(2)=H;(1}, i =1,2
and the continuity of A, , i = 1,2,

8, (2)=8;(1),

(3.9)

(3.10)

(3.11)

4(1)=%(2)

(for any eigenmode 4 ~ 4). On a length hr &&Lo (the in-
teratomic distance) lattice electrons within a given band
may be described by an effective Schrodinger field with

= —E
Be

i.e., the tangential components of 8 and H are continu-
ous, as is well known. There is no constraint on 83, as
a =0.3

B2 = —A. ,Be W'
(4.7)

IV. PHENOMENOLOGICAL SCHRODINGER FIELDS

A. Scalar field

Neglecting spin we first consider the scalar complex
Schrodinger field %(r, t) and %(r, t)'. Their Lagrangian,
bilinear in 4 and 4', can formally be defined by (y = 1)

B2 B2

BV JB%'

(4.1)

where

B%'JB% J,
Here 8,; denotes the reciprocal effective-mass tensor and
Eg the band edge. For cubic symmetry A =0 and
SJ~'=(A' /2m")5JJ. Nonparabolicity can easily be ac-
counted for by including higher-order derivatives (y & 1).
With constant E and 8;;. the phenomenological struc-
ture is now considered homogeneous: The lattice periodi-
city (and, correspondingly, the lattice-periodic part of the
field modes) is no longer resolved. This is the well-known
envelope function approximation. ' Inhomogeneity on
this longer length scale now means to let Eg and Sjj de-
pend on space. This leads to the "generalized"
Schodinger equation

i' 4 4+c.c.0 (4.2)
iA%+ (BJJ ip ) Eg(r)%=—0 . (4.8)

For cubic symmetry all parameters are zero except
Heterojunctions are then controlled by the continuity
condition %(1)=%(2)and

= —V0,a@*a%, a (2)=&3J(2)~p J(2)=&3J(1)pJ(1)=a (1), (4.9)

B+ = — 5
2m0

(4.3)

S3=—a 4+e.c.

with

(4.4)

(4.5)

In this ease the resulting Lagrange equations are just the
usual time-dependent Schrodinger equation for 4 and
4*, respectively, interpreted as a classical wave equa-
tion. On this fundamental level of description homo-
geneity means constant external potential V0. An inho-
mogeneous structure model then amounts to defining a
spatially dependent potential, while the mass m remains a
fundamental constant: This does not change the per-
tinent equation of motion. Heterojunctions appear if the
otherwise constant V0 jumps on a plane interface, say
f3 0. The behavior of the Schrodinger field is then con-
trolled by the continuity condition for

which, for an isotropic or cubic material, reduces to the
relation'

1 1(2)p 3(2)= (1)p 3(1) .
m m

(4.10)

The justification of this equation has so far been rather
unsatisfying. ' ' Our approach can be applied to even
longer length scales: For hr »L, (the repetition length
of a superlattice) the superlattice may be considered to
define the homogeneous reference structure, so that for a
heterojunction of superlattices one may wish to study the
behavior of minibands.

B. Vector field

The phenomenological Schrodinger field can be extend-
ed also to multicomponent fields 4, (r, t },i =1,2, . . . , i.n
order to account for a multiple band structure, such as,
e.g., heavy-hole and light-hole bands in semiconductors.
The corresponding parameter tensors are constrained by
the appropriate point symmetry requirements. Such a
procedure can be viewed as a real-space formulation of
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the Kohn-Luttinger approach in momentum space. Let
us consider the field q1;(r, t }, i =1,2, 3, where ip, trans-
forms like rtv Generalizing (4.1), the respective Lagrang-
ian is (again up to first-ordr derivatives)

a2
4,* 4';+c.c.

V. MULTIPLE DISPLACEMENT FIELDS

An exposition of the Lagrangian formulation including
multipole displacement fields can be found in Ref. 29.
However, for the treatment of higher-order derivatives
(dispersive corrections) in a layered material we have to
focus on the concept of local (tensorial) parameter fields,
which carry the local point symmetry as well as the ma-
terial invariance constraints.

where

iA . ,
1P,'. 1I1, +c.c. ,

(4.11)

A. Invariance properties

Let us finally apply phenomenological field theory to
multicomponent displacement fields u,"(r, t ), where v re-
lates, in the atomistic structure model, to different atomic
units (mass M„) within the elementary lattice cell
(volume U, ). On a length scale b, r ))a the discrete
periodic character may be ignored. The Lagrange model
in harmonic approximation reads [cf. (2.4) and (2.7)]

ZE""= g f d g P;,' (x', g)u,"(x'+ ,' g)u—,"(x' , —,'(—), (5.1)

For cubic symmetry we have from (2.8) and Ref. 27

(4.12) with the expansion (in "standard form"; see Sec. II A}

~uu —~ Bvv'u v v' Cvv' u vu v'

0 ii' i i' ili'j' i i',j'

&Jl& J ~1J I J

and

(5.2)

B = V05" CJl =C
l j =0 D"

l

=a

DV
I
J=D~)plp 1+j

D.. .j=y, i+j .

(4.13)

Here Vo is the potential energy and a,p, y are the Kohn-
Luttinger parameters (describing the light-hole and
heavy-hole dispersion without spin). D;~~;~ is in com-
plete analogy with the fourth-rank elastic tensor (see next
section). The equations of motion for the 1I1; read

d
ifi1I1;+ (DJ~;.&'%'; ) ) Vo+;=0 . —

2 de
The continuity conditions are now

1I1;(2)=1P;(I),

a, (2)=a, (1), i =1,2, 3

where

(4.14)

(4.15)

J=
t gy tJl& J & J

19J

so that

(4.16)

—a, =p(%, 3+%3, ), i =1,2

3 +3,3+ V(+2,2++1, 1

Similar continuity conditions have been derived in Ref.
28. For lower symmetry the tensor C may also contrib-
ute giving rise to k linear terms in the dispersion and
modifications in the continuity conditions.

2X""=
o Pvi

p=M /U, ,

(5.3)

(5.4)

Po QPv (5.5)

As before, the parameters are constrained by point sym-
metry. "Spatial invariance, " however, imposes addi-
tional relations: For a rigid translation u,"~u '+5R,.
we require

X""[u"+5R,]
—X.""[u"]=5Q=0

which means for arbitrary displacements u,
5Q= g fP;,'. (r', g)[u (r' ——,'g)5R

VV

(5.6)

+u;" (r'+ —,'g}5R, ]d (=0 . (5.7)

We expand this condition up to second-order terms in the
derivatives of the displacement field. For higher-order
terms the standard form of X (see Sec. II A) automatical-
ly fulfills homogeneity. 5Q=0 should hold for arbitrary
6R; and therefore

g f d gP;,' u,". (r') = g B; u (r'}=0,

—,
' g fd g P,",", g„u,' „.(r '

}= g C; ~~;"I, u;" k (r') =0. (5.8)

gB;"=0, QCI'k =0. (5.9)

results for any displacement field. These subsidiary con-
ditions can be taken care of by the coupling constants if
we let
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For the invariance under rigid body rotation of angle a,
we insert

The leading terms of the potential-energy density for the
s field are

5R;(a)=da co; r (5.10) ij lij'' l'j i',j'+ iJ(ij''k' ij i',j'k'

into (5.7) with the antisymmetric tensor co; = —$0; and
r =r' +g . The expansion up to first-order field
derivatives leads again for arbitrary u, to where

~ ijkli'j'k'si jksi',j'k' &
(5.21)

which should hold for any co;, so that

(5.11) a
v Ii'j '

()S; ~/Sr J 0

denotes the elastic tensor, while

(5.22)

I I I I

X fd gp,
" g. gk, u k, co;. =u;"k QDpm~t, k, m, =0.

~im Ii'k' ~mi Ii'k' (5.13)

(5.12)

This constraint is, again, taken care of by the coupling
tensors, if

and

g $$
ijl i'J'k' =

BS( 'BS(' 'k'

Fijk Ii'j 'k'
~s;jk~s', j'k' 0

(5.23)

(5.24)

Corresponding relations for higher-order terms are ob-
tained, e.g.,

account for dispersive corrections. The leading terms for
the w field are

etc.

~ikl li'k'l' ~' kil li'k'l' (5.14)
with

(5.25)

B. Center-of-mass and relative displaceeent fields g WW-
~

I

~ $

Bw;Bw;
(5.26)

Without loss of generality we restrict ourselves to a
twofold displacement field (corresponding to a lattice unit
cell with two atoms, typical for semiconductors). In anal-
ogy to the Jacobi coordinates (see Sec. II A) we may then
introduce the center-of-mass (COM) displacement
fi ld3129 ' ~ijk I I $s&J k wi $ 1 ~I'J'k

Ii J'$&',jk wi (5.27)

etc. Finally, the coupling between the s and w field is de-
scribed by

SW — SW SW+D

pv
s, =g u,

"
Po

and the relative displacement field

W —Q Q.1 2

(5.15)

(5.16)

We see that s; is a cyclic field variable while w; is not.
The transformed parameters D", F", etc., can be ex-
pressed in terms of the original parameters as given in the
Appendix. The invariance properties of the latter [cf.
(5.13)] thus imply

Though, in general, these two fields do not decouple (see
below), they serve as long-wavelength approximations of
the acoustic and optical displacement fields, respectively,
and appear in virtually all electron-phonon coupling
models.

Transforming the Lagrangian (5.1), to these new fields,
we obtain

ij li'j' ji Ii'j' ij lj'i' (5.28)

ij li' jili' & ~ijklij'' ~jik(J'i'

Antisymmetry obtains

(5.29)

Corresponding relations hold for D' and D . Further-
more,

+Oil —+$ ++W p'$$ p $W +WIB
kin kin

where

/S J ~ ~ /W~kin 2P(Pi i & ~kin 2Peff i i

(5.17)

(5.18)

ij (i' Ci'j Ii & Eijkli'j' ~i'j'klij

using (2.8).

C. Lagrange equations

(5.30)

are the kinetic energy terms with
—1

1 1
Pea +

P1 P2
(5.19)

The Lagrange equation of motion reads (within a
homogeneous layer)

Po i ~ij Ii j Si jj 2~i'jk(ij si jkj +~ ijkli j k Si j k jk ~i

(5.31)

+i P(Pi ~ ~i =PeWi (5.20)
E and F describe dispersive corrections. The source term
on the right-hand side is
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with

~i ~ij'']is& J + iJ:[i.'J si', J'J" ~ij''k [}i si',j 'k' (5.34)

The existence of similar equations of motion for the m

field has been previously postulated. If allowed by
point symmetry, the C terms could be responsible for k
linear terms in w (lt) (as has been discussed for the vector
Schrodinger field). S and S; ' describe optical- and
acoustic-mode mixing, as discussed in the next section.

VI. INTERACTIONS BETWEEN DIFFERENT FIELDS

Our procedure of obtaining continuity conditions also
applies to interacting fields +', ', v=1, 2, . . . , as long as
we restrict ourselves to bilinear terms. Examples for such
coupled modes are the mixed center-of-mass and relative
displacement modes ("phonons" proper) and the mixed
photon field and polarization field modes ("polaritons").
For the latter an additional boundary condition (ABC)
problem has long since been recognized if the (mechani-
cal) polarization mode shows dispersion (y&1): '
This problem is easily resolved by our prescription pro-
vided the polarization field can be considered local (i.e.,
expandable in terms of finite-order derivatives).

A. Mixed COM and relative displacement modes

Since the s and w fields interact [see (5.27)], the proper
phonon eigenmodes 4 of the bulk system have to be for-
mulated in the six-dimensional (direct sum) space with
unit polarization vectors e„, n =1,2, . . .6, which are
defined, as before, over three-dimensional real space. The
coupling will change the respective dispersion relations
(as would do also higher derivatives in the separate fields)
but, in particular, will change the original set of eigenvec-
tors for the u1, u2 displacement fields:

P2 , P1e1=e'+ —e, e2=e' ——e
Po Po

(6.1)

where [e'=(e},iez, e3), e =(e4, e5, e6)]. Recent experi-
ments allow us to determine these eigenvectors, from
which the s-w coupling could, in turn, be estimated. We
now consider the continuity conditions for these mixed
modes. The plane-wave ansatz as given in (2.32) is for
y(1)=y(2) generalized to

e (1)=e

~i Cij ~i' i',j +~ij ~i'j ' i',j'j ~ij kIi' i',jk ~ijk~i'j ' i',jj 'k

(5.32}

Similarly we obtain for the w field

(5.33)

where e„denotes the six-dimensional (normalized) eigen-
vectors corresponding to frequency co and k~~ in regions
(1) and (2), respectively. The 12@ amplitudes

(1),g™(2)have to be determined. Observing that
s ( 0 ] 0 p % 3) and w = ( 0'4, %'~, %'6), this ansatz must
satisfy the 6 X 2y continuity conditions, (2.38), i.e.,
%„(1)=%'„(2),+„3(l)=%„3(2),. . . , with n =1,2, . . .6
and

A„(1)= A„(2), B„(1)=B„(2), (6.3)

where A„B„,. . . are decomposed according to (2.37)
with

ss ssa; = —D, 3I,'J. %'; J
—2E,3} j k O' J

SW SW d 3J ~—
Ci3~i' i +3

—
i3~i J i +3 j — b

drJ

ss ss
bi — 2Ei j [i3j %i',j ' Fi3j li'j'k' +i', J d

Ci
drl

(6.4)

NN NWa;+3 —2C;3~;.0;.+3
—D;3)' j % '+3 J

SN 3—Di'J'ti3+i', J
—

~ &m
drj

(6.5)

As we see from (6.4) and (6.5) there is an optical- and
acoustic-mode mixing also due to the continuity condi-
tions.

B.Longitudinal polar phonon modes

X'"=X'"(u,u;", , . . . , 8; )=8;p;, (6.6)

where p; denotes the polarization field with the expansion

p; =eo(e„—1)6;+B; u +CP . u, , + (6.7}

e„ takes into account the electronic background. Trans-
formation to the s and w fields implies

P; =P +p,"+eo(e„—1)6', ,

with

(6.8)

(6.9)

For a polar displacement field we have to include the
interaction with the electric field 8;, given by the La-
grangian density"

X e„e ' '+ g g q)™(1)e™e
1=1 m =1

Here

()2/ E'$

CE$ —C Es
'~' J gs gg Iji,j i o

(6.10)

i(k R — t)

1=1 m =1

r3 On=1. . .6,

is the first-order piezoelectric tensor. " The interaction
X"' influences the equations of motion of the mechanical
fields s and w and of the electric field 6: The right-hand
side of (5.31) is supplemented by
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and the right-hand side of (5.33) by

(6 11) field. The Lagrangian for these modes reads

X=X"+X + v,p, , (6.21)

S' =8" 6 —(C'". '6 ) + .i' ii' i iIi'j' i i, ' (6.12) with X" given by (3.1} with g =1, g=e„—1 =const,
and

The electric field may be split into a longitudinal
(curl@ =0) and a transverse part (divB =0). In
Coulomb gauge div A=O, the longitudinal part is given
by

(6.13)

p;=co(e„—1)A;+Bt;.w, , +Ct w;. '+. . . (6.22)

The equations of motion for the transverse parts with

y = 1 (for either field) read

so that

1
dlvp ~

E'0
(6.14)

and controlled by the equation of motion of the scalar po-
tential 4, C

pw' —8" w —C -w +D " 'w."
I ll I I Jl I ~ J IJl J l ~J J

d
drj.

(6.23)

T
~Pi' T

A;
Bw I,J

divb' = ——divp
E'0

(6.15)

or

div(cob +p) =divD=0, (6.16)

which can be satisfied by

roe„@ = —(III +pL ) . (6.17)

In this way 8 can be eliminated from the respective
equations of motion. Neglecting s-w coupling, the y=1
version of the effective equations of motion for w reads

The respective space for the mode solutions of (6.23) is
now the six-dimensional polariton vector space
4'=( A, w). Keeping only terms in w (y =0), we recover
the result as discussed in Ref. 31. To get the appropriate
conditions we make an ansatz for the polariton modes 4
in the same way as we did in Sec. VI A.

The scenario of a plane wave 8 = —A being incident
perpendicular to a free surface (note that there would
otherwise be mixing between longitudinal and transverse}
leads us to the following constraints for the electromag-
netic field (A &, A2 A3)=(0'), 0'2, %3):

p w +P.wwwL+2( ww wL Dww w0 i ii' i' ij''Ii i',j ' ij Ii'j ' i',j j' O'J. (1)='PJ(2), a~ (1)=a (2), (6.24)
2e„—1

[gnaw(g

EwwL+ CEw wL )ii' i'j j ij'k j,k
F06'~

as before [cf. (3.8)]. Assuming a soft environment for the
w field in medium (1), (w&, wz, w3) =(%'4, %'5, 46), the per-
tinent continuity conditions are [cf. (2.39)] with

(6.18) a, +3(1)=0, i=1,2, 3 (6.25)

2e —1

2 C333 33 3 333W 3 3 )
E'pE ~

(6.20)

which is for a11 tensors C =0 just the mechanical bound-
ary condition.

C. Transverse modes: Phonon polariton

Since the value of the electromagnetic wave vector is
very small, the coupling of the s and w fields may be
neglected in this region. Though, in general, there is a
coupling of the transverse electromagnetic field to both
displacements s and w, we restrict ourselves to the w

For all third-order tensors C=O we obtain the usual
shifted LO mode. In any case, the number of continuity
conditions required is the same as without polar cou-
pling. For the w fields with a plane wave being incident
perpendicular to the surface, these conditions are, from
(2.37) and (2.38) (cf. Refs. 37 and 38),

w3 (1)=w3 (2), a3(1)=a3(2),
where

a = 2Cww WL Dww WL
3 3313 3 33133 3 3

3 BX WN NW GW'+3
@

'31' '+3 '3'j '+3 j '3j ji+3, 3

i=1,2, 3 . (6.26)

We first discuss these terms for an isotropic or cubic ma-
terial: In these cases C and C' are zero, and with the
appropriate form of D w (6.26) reduces to w; 3 =0,
i = 1,2. This result coincides with the ABC's as discussed
by Ting, Frankel, and Birman for the exiciton polari-
ton.

The ABC w,. =0 suggested by Pekar, on the other
hand, is recovered for a hard environment or "clamped
surface" scenario [compare (2.40)). In terms of the
Schrodinger (or excitonic) field, this model assumes an
infinite barrier at the surface. It is interesting to remark
that if we drop the constraint of C =0, we would get
generalized continuity conditions as linear combinations
of the ones described above. With C' %0 the mechani-
cal boundary condition explicitly depends on the light-
wave amplitude. Instead of using these field expansions,
the required continuity conditions can alternatively be
obtained from a properly handled integral equation (see,
e.g., Ref. 41).
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VII. SUMMARY AND CONCLUSIONS

We have investigated the properties of dynamical fields
in heterostructures, starting from a variational formula-
tion. Including gradient terms higher than first order, we
are able to take into consideration that most dynamical
fields in solids are dispersive, as a consequence of the ma-
terial properties. We have then introduced the concept
of parameter fields describing the local couplings of the
dynamical fields and their derivatives. While the bulk-
material determines the point symmetry of the parameter
fields, their tensor character is given by the order of the
derivatives introduced: The higher the order, the "less
local" the description becomes. Structural length scales
specify the spatial dependence of the parameter fields. If
these length scales are large enough in the case of hetero-
structures, the parameter fields are allowed to change
discontinuously at the interfaces.

Our main object has been to derive the continuity con-
ditions at a plane interface. Our systematic derivation is
based on the conservation of the energy flux perpendicu-
lar to the interface and on the linearity of the equations
of motion. Two different classes of surface models have
been considered: The first class with zero energy fiux
comprises the hard and soft environment, which is illus-
trated for the displacement field by the free or clamped
surface, respectively. For the second class with finite en-

ergy fIux we have provided various examples for different
field types: In the case of the electromagnetic field dielec-
tric or magnetic heterostructures have been discussed.
For the Schrodinger field we have shown that the spatial
dependence of the effective mass is just another version of
a parameter field, and also how it properly enters the con-
tinuity conditions. These considerations, have been gen-
eralized to a degenerate band structure (heavy-hole,
light-hole bands), a situation which is formally equivalent
to the longitudinal and transverse phonon branches. Fur-
ther examples have been given for multiple phase dis-

placement fields: We have derived boundary conditions
for the optical phonon field (with dispersion). Finally, the
procedure has been applied to interacting dynamical
fields. In this case the respective eigenvector space is the
direct sum of the subspaces of the noninteracting fields,
while the continuity conditions are calculated as before,
thus including the so-called additional boundary condi-
tions. There is no ambiguity or additional degree of free-
dom in the choice of the proper continuity conditions.
This is highlighted, e.g. , by the additional boundary con-
ditions for the electromagnetic field interacting with the
polarization field. Once the model is defined, the condi-
tions are conclusive in our description.
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APPENDIX: EFFECTIVE PARAMETERS

(1) Parameters of any order not involving the w field
are constructed according to

Xss ''s g Xvvv

VV V

for each matrix element. This means, e.g.,

azCst

C}2

BQ; „B6;

az
D ss

ij~&J
g v g v

Explicit examples are

a'z ~i a'z
p, a,'a, , p, a,'a, , '

s» a'z s i a'z
ij [i'j'

Po v Q'j Q' '
o Po v Q' ' Q' ' o

Only symmetry requirements with respect to the Carte-
sian indices of one and the same field carry over from the
u'/u representation to the s/w representation.

(3) Parameters to any order quadratic in the w field are
constructed according to

2

Xss. ww y Xvv'' '' ii+
PO vv'

2

Xvv' 22

PO vv

~ (x"' "+x""' ") .
2

pO vv'

Explicit examples are

Dw
1JE J

'2
Pz

Po

Pipz
2

po

Pz

Po

a'x s»
' a'z

aQ, 'aQ, ', , P. aQ,'aQ, '. ,
BL

aQ, 'aQ, ', , aQ,'aQ, ', ,
L

2 2a'z i i

BQ; BQ; - o Po
2 2

BQi jBQ; J o

PjP2
2

po

a'x a'r

D" is the elastic tensor. All symmetry requirements with
respect to the Cartesian indices in the u'/u representa-
tion carry over to the s/w representation.

(2) Parameters to any order linear in the w field are
constructed according to

-=—" yx- ——" yx-''
Po vv Po vv

The parameters for the s and w fields can uniquely be
expressed in terms of the original parameters for the u
fields. They come in three groups.

In this pure w case, again, a11 symmetry requirements

with respect to the Cartesian indices i,j. . . in the u'/u
representation are the same as in the s/w representation.
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