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Self-energy of a hydrogenic atom near a metal surface
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General expressions for the self-energy of hydrogenic atoms near a metal surface have been derived.

It is found that the self-energy at the metal surface saturates to a finite value with the inclusion of mul-

tipolar excitations of the hydrogenic atoms. Numerical results have been presented for hydrogenic

atoms moving normal to the metal surface at two speeds. It is also found that dispersion effects of
surface-plasmon excitation further reduce the magnitude of the self-energy.

I. INTRODUCTION

In the past, efforts have been made to study the
theoretical as well as the experimental' aspects of the in-
teraction between an atom and a metal surface. The in-
teraction between an atom and a metal surface is basical-
ly of the van der Waals type and is due to induced exci-
tations of the atom and the metal surface. Although the
interaction has been examined using semiclassical ap-
proaches, ' a quantum-mechanical treatment of the
problem has been proposed only recently by Manson and
Ritchie. These authors have shown that the interaction
energy near a metal surface is determined by quantum
effects arising from virtual atomic excitations and surface
plasmons. In their work they used a dipolar approxima-
tion to simplify the interaction Hamiltonian, thereby con-
sidering only virtual atomic excitations of simple dipoles.
They have found that the interaction energy varies as
I /Z when Z, the separation between the atom and met-
al surface, is very large, and it varies as 1/Z when separa-
tion between atom and metal surface is very small. Man-
son and Ritchie have attributed the softening of the in-
teraction to quantum effects near the surface. These au-
thors have also shown that this interaction also depends
on the speed of the atom relative to the metal surface.

Recently, several papers have extended the work of
Manson and Ritchie to incorporate multipolar excita-
tions of the atom. With inclusion of these excitations,
they have shown that at the surface, the interaction ener-

gy saturates to a finite negative value. The numerical re-

sults for the interaction energy of a positronium atom
have been obtained by Pathak, Jindal, and Paranjape. It
has been found that this interaction energy is smaller
than the value obtained by Manson and Ritchie. In all

earlier works the dispersion effects of surface and bulk

plasmons have been neglected and results have been ob-
tained with only the positronium atom kept in mind. In
this paper we formulate a general theory for the calcula-
tion of the self-energy of hydrogenic atoms near a metal
surface, using a hydrodynamical model of metallic elec-
trons. We incorporate the dispersion effects of surface

plasmons. Our expressions for the self-energy of the
atom moving normal to the surface at a speed below
threshold reduce to the earlier results ' in the dispersion-
less limits of surface plasmons.

We present a theoretical formulation in Sec. II. The
numerical results and discussions for the self-energy of
the positronium and hydrogen atoms are presented in

Sec. III.

II. THEORETICAL FORMULATION

A. Hamiltoaian

The Hamiltonian representing two charged particles
with charges +Q', momenta P„P2, and masses m„mz,
and interacting with a metal surface is given by

p2 p2
0 + +Hmet +Hjgf 7

2Pl i 2m 2

H „=gtrtcog(agag+ —,'),
Q

H ;„,= —
~

+ g [exp(iQ R )I &(Z )
r1 f2 q

—exp(iQ R )I ~(Z ) j

X(ag+a g) . (3)

In Eqs. (2) and (3) a& and a& are the annihilation and
creation operators of the plasmon modes of the metal
electrons. Q represent the wave vectors of the surface
plasmons. The position coordinates of the two charges
are, respectively, r& and rz, which in the cylindrical coor-
dinates are given by (R+, Z+) and (R, Z ), where R+
is parallel to the surface and Z is the positive distance
away from the surface on the vacuum side. After making
a transformation into the center of mass and relative
coordinates, the positional coordinates of the two charges
(R+, Z+ ) and (R,Z ) become
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R' Z'
R+=R+, Z+ =Z+

v+1 ' + v+1

R =R—
v+1

Z vZ- .+1
where v=m&/mz, (R,Z) are the coordinates of the
center of mass of the atom with mass M =m, +m2, and
(R', Z') are the relative coordinates. With this transfor-
mation the Hamiltonian in Eq. (1) can be written as

p2 +Hatom +Hmetal +Hint2M
(4)

The first term represents the Hamiltonian for the motion
of the center of mass of the atom and H„, is given by

2p

where p=m mi2/Mand P' is the relative momentum.
The Hamiltonian corresponding to the interaction of the
atom with the metal surface is given by

8;„,= —Q'g exp iQ R+.
R'

Qp v+1

R'v—exp iQ R—
v+1

Z'
rg z+

Z vxr~ z— [ag+at g] . (6)

I &(Z)=—N&[8(Z)Ae ~ +8(—Z)(Be~ —Cer )],
(7)

A =cozy —Qw~, B=w, y, C=Qw~,

where wp=47Tne /m is the plasma frequency and m is
the mass of the electron. 8(Z ) = 1 for Z )0 and 0 other-
wise. The normalization factor iN& i

is given by

The coupling coef5cients for the interaction of the atom
with surface plasmons are defined' for any Z,

irie '( 2wz —w,' )'
Ng 4am Qw(2w+w )(w —w )

w'= ,' [w—'+t3'Q'+PQ(2 '+O'Q')'"]

and

y =Q +(wp —wz)/P (10)

In Eqs. (9) and (10) P is the dispersion parameter. Its
value is equal to 3uz,' vF=(9m. /rzao)'i in the random-

phase approximation and ( —,'uz) in the Thomas-Fermi ap-
proxirnation. The form of the Hamiltonian given by Eqs.
(1)—(3), describing the interaction between an atom and a
metal surface within the hydrodynamical model of metal-
lic electrons, is quite general. This form of the Hamil-
tonian differs from those of earlier workers, who used
a simplified version of Eq. (3).

B. Self-energy of the hydrogenic atom

The interaction energy of a hydrogenic atom interact-
ing with a metal surface is given by

X(Z):

& y„O, Oia, „,in, t, k ) (t, n iH, „,iO, O)
X

Ep E +ep ek El +l'5

(11)
In Eq. (11) a state vector in, t, k ) represents the products
of a surface state vector of energy E„,atomic state vector
with energy c.I, and the translational state vector with en-
ergy el„respectively. i/0) is the unperturbed state of the
free atom with incident momentum fiko/M where ko is
the speed of the atom. k is the free atomic state with K
and k3 as its parallel and perpendicular components to
the metal surface. After substituting the interaction
Hamiltonian given by Eq. (3) into Eq. (11) and complet-
ing the summation over the parallel component K and
plasmon intermediate state, we get

X(Z) =—
2 I'

2M 2 m 2 +„dk3 R'
2

Q' —g i' J z 0 exp iQ iZ+(k—3+k03)
i@

— (k3+a ) v+1

R'v—exp —t'Q IZ (kg+kp3) I)v+1

A B C
Q —i(k3+ k03 ) Q+i (k +3k )03y+i(k3+ k03 )

X. l 6 Z+ Ae ++9 —Z+ Be + —Ce +

R'v—exp iQ v+1
R'

&& exp i Q. —

X [8(Z ) Ae +8( —Z )(Be —Ce ] 0

(12)
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where

a2 —Q2+Q2+Q2 k2

Q, =2Mws /]]1,

Q] =2M']If& .

(13)

(14)

I3efore proceeding toward the k3 integration we make the substitution k3+ko3 =t in Eq. (12). The limits of integration

are not affected by this change and we get X(Z) in a m«e»mp»fied «rm:
x2

X(Z)= —
~

Q'

XylN I'
—~ a+(t —k )

R' . . R'v
0 exp i —iZ+t —exp —i —iZ t l

v+1 + v+1

B C

Q it —
Q +it y+it

R'
X l 6 Z+ Ae ++9 —Z+ Be + —Ce + exp —i v+1

—exp (Q [8(Z )Ae +8( —Z )(Be —Ce )] 0)
R'v —QZ +gZ rz
v+1

(16)

Now integration over t in Eq. (16) can be done by methods of complex variables for speeds of an atom below threshold.
After integrating over t for Z )0 and Z (0, Eq. (16) becomes

2M Q'

e $ 2

t

X g lN&l 0 exp iQ [T B(Z )+T B(—Z )]
le '. v+1

—exp —(8 [T,8(Z )+T,8( —Z )] i)
R'v

e

I

X l exp —i Ae Z+ e ++6 —Z+ Be + —Ce

R'v —QZ QZ rZ—exp —(Q [Ae 8(Z )+8( —Z )(Be —Ce )] 0)v+1
In Eq. (16) T], T2, T3, and T4 are defined as follows:

(17}
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—QZ
2Ae

a +(k +0i3g )

2Ae B
—QZ

a +(k03 —ig)

aZ 1k03Z
e

(Q+a+ ik[]3 )

—aZ +ikp3Z
e
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C e
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C e
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2Ce

(a +k(]3 iy)—(21)

Equation (17) represents the self-energy of a hydrogenic atom interacting with a metal surface when dispersion effects

of surface plasmons are included. It is valid for an atom moving with any arbitrary speed ko. Here summation over Q
can be replaced by integration and the angle of vector Q can be integrated out to yield
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X(Z)=— I
e

2
2M
g2

L

X g f dQ Q~N&~ fdr' fdr"1(0(r')$0(r")g, (r')f, (r")
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g
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In Eq. (22), Jo is a Bessel function of the first kind and Z'+, Z'+, Z', and Z" are given as

Z+ =Z+Z'/(v+1),

Z+ =Z+Z" /(v+1),
Z' =Z —Z'v/(v+1),
Z" =Z —Z"v/(v+1) .

(23a)

(23b)

(23c)

(23d)

Equation (22) is applicable to any arbitrary atom (i.e., hydrogen, positronium, and muonium). If v= 1, one gets re-
sults for the self-energy of the positronium atom and if v=1836 one gets results for the self-energy of the hydrogen
atom. In the P=O limit our results agree with those obtained by earlier authors.

It is of interest to obtain the self-energy given by Eq. (22) in the limits of Z~0 and Z~ ao. The expression for X(Z)
can be easily worked out from Eq. (22). For Z~0, the self-energy of a stationary hydrogen atom is given as

r I rl III rr 2 2 2

X(Z~O)= — Q'~g f dg fdr'f dr"
2 2 2 z 2 2
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In the presence of the dispersion effects of surface plasmons, the expression for the self-energy is somewhat lengthy even
for an atom of zero speed. However, in the dispersionless limit we obtain a simple expression, given as

2 2
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+Re

Z v
exp —Q

Di
+

a
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D2

where D =Qs+g&+2iko3Q D'2=2k03 —
Qs Q—

&

2—ik03a On the other hand, in the limit of Z~oo dispersion
effects play no role and the expression for X(Z) reduces to

~2 2 2gZ
—(a+ ik03+ Q)Z~ e

X(Z)= — g f dg fdr'f dr"f (or')g (1r')g (or)Pl (r") +—
2

1 D) a

x J, IR' —R "I +J,v+1 ' v+1

R'v+R "I —J. IR'+R "vl
v+1 v+1 (26)

The dominant Z dependence of self-energy can be obtained from Eq. (26) by expanding the integral in the small-Q limit.
We thus obtain

2 e 2e —2QZ
r(Z ~ ) = — ' g l(air'll ) I'f dg +—' —aZ —ik Z —QZ03

D2
(27)

It can easily be seen that Eq. (27) reduces to a well-known Lifshiftz result whose real part is given as

Qse 1 2
12k 03r Z ~)=— V l(Olr'li&l2 1 —

2 2 2
+

12Z I Qs+QI Z (Qs+Ql )
(28)

In obtaining the result in Eq. (28) we have omitted some
correction to the Lifshitz result arising from the speed of
the atom. It may be mentioned that Eqs. (25) and (28) for
v=1 reduce to results obtained by Pathak and Paranjape.

III. RESULTS AND DISCUSSIONS

shown in Fig. 1. It is clear from Fig. 1 that the integral is
fairly stable if we select nearly 15 000 random points. We
have also checked our integration routine for a known
six-dimensional integral. " Our computed results with
the Monte Carlo method was found to be in very close
agreement with the known results.

We present the result for the self-energy of the posi-
tronium and hydrogen atom using Eq. (22). We measure
the self-energy in Rydbergs (Q' /2ao) where ao is Bohr's
radius (i.e., ao =A' /me, where m is the mass of the elec-
tron). The unit of length is taken to be ao. wz is mea-
sured in the units of plasma frequency wz. The rnultiply-
ing constant for the numerical calculation of Eq. (22) con-
tains r, which arises from the definition of cop (i.e.,
w&=4mne /m; n =. 3/4nr, ao) The value .of r, lies in the
range 2 —6 for various metals.

Using the hydro genic wave functions, seven-
dimensional integration is done using a Monte Carlo
technique. For the summation over 1 in Eq. (22), the first
five excited states of the hydrogen atom have been taken.
The sum is found to be sufficiently convergent up to the
fifth excited state of the atom. A study of the variation of
the integral with respect to the number of random points
choosen for the Monte Carlo method is done and is

0 06-

rv 0.0I—
LLJ

l

0.02-

0.0
0 5 10 15 20 25 30 x lO~

No. of R an dom p oints

FIG. 1. Variation of the self-energy with respect to a set of
random points chosen for the Monte Carlo method.
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FIG. 2. Variation of the self-energy with respect to the dis-
tance between the center of mass of the positronium atom and
metal surface for 0- and 4-eV speeds. Curves 2 and 3 represent
the dispersion-effects-excluded and -included cases, respectively.
Curve 1 represents the asymptotic result.

FIG. 3. (a) Variation of the self-energy of a hydrogen atom
for distance Z (0.5ao for 0- and 4-eV speeds. Curves 1 and 2

represent the dispersion-effects-excluded and -included cases,
respectively. (b) Variation of the self-energy of a hydrogen atom
for distance Z) 0.5a for 0- and 4-eV speeds. Curves 2 and 3

represent the self-energy for the dispersion-effects-excluded and

-included cases, respectively. Curve 1 represents the asymptotic
result.

Numerical calculations have been done for the alurn-
num surface corresponding to r, =2. 1 and these are plot-
ted in Figs. 2 and 3. In Fig. 2, results for the self-energy
of the positronium atom (i.e., v= 1) are presented for the
two normal speeds. Curves 2 and 3 represent the results
of self-energy obtained by excluding and including the
dispersion effects of surface plasmons. Curve 1 gives the
asymptotic behavior of the self-energy obtained from Eq.
(28). It is seen from Fig. 2 that the self-energy of the po-
sitroniurn atom attains a finite value of —0.086 Ry. This
finite value is due to inclusion of multipolar excitations of
the positronium atom. The self-energy further reduces to
—0.029 Ry when the dispersion effects of surface
plasmons are included. This decrease is due to electron-
screening effects. The speed of the positronium atom,
which is below threshold, has very small effects on the
self-energy. It can be seen that for the distances around

ao to 2ao there is an appreciable difference between the
Lifshitz result and that obtained by us. It is only around
a distance of Z & 3ao that the difference between our re-
sult and the Lifshitz result becomes very small.

In Figs. 3(a) and 3(b) we plot the self-energy of the hy-
drogen atom (i.e., v=2000). Figure 3(a) represents the
behavior of the self-energy for distance Z &ao/2. Here
the values plotted on curve 3 are multiplied by a factor of
25 to present the result in the same figure. The value of
the self-energy at the surface is —6.74 and —0.042 Ry for
the dispersion-excluded and -included cases, respectively.
There is a significant decrease in the value of the self-

energy with the inclusion of dispersion effects of surface
plasmons. It may be noted that here we have considered
the contribution to the self-energy from the surface

plasmons only. Bulk-plasmon contribution to the self-
energy is known to be very small. In Fig. 3(b) we have
plotted the self-energy for the distances Z )a o /2.
Curves 2 and 3 represent the self-energy of a hydrogen
atom for the dispersion-effects-excluded and -included
cases, respectively. Curve 3 is multiplied by a factor of 5

to represent the result of self-energy in the same figure.
Curve 1 represents the asymptotic value of the self-
energy obtained from Eq. (28). Here again there is appre-
ciable difference between our result and that obtained
from the Lifshitz formula, even for distances of ao to (1.5)

ao. As the center of mass of the atom moves away from
the surface, the difference between the two (curves 2 and
3) decreases. For Z )2ao there is practically no
difference between our results and the Lifshitz results.

On the basis of the numerical results as described
above it is clear that as the atom approaches the surface,
the range of Q's contributing to the self-energy increases,
as is evident from Eqs. (12) and (17). The self-energy is
therefore affected by the range of Q's and the dispersion
effects of increasing range. For large Z, the plasrnon
modes, with only small value of Q, are important and the
dispersion effects over this range are negligible. Thus the
dispersion effects will be large as Z is decreased. On the
other hand, the difference between the self-energy with
and without dispersion decreases as Z is increased. This
result is clearly seen in Figs. 2 and 3. Small effects of the
speed of the positronium and hydrogen atom on the self-

energy are also understandable from Eq. (13), where a is
much larger than ko&.

We conclude that our work provides a complete
description of the self-energy of the hydrogenic atoms
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near a metal surface. The metal surface is treated within
the hydrodynamical model and dispersion effects of the
surface plasmon in this model are completely taken into
account. The theory takes care of the multipolar excita-
tions of the atom. It is found that multipolar excitation
of the atom and dispersion effects of surface plasmons
provides a finite value of the self-energy at the metal sur-
face.
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