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A general method for computing the spectra of periodic Schrédinger operators is introduced here.
The method is based on the classical theory of moments, and provides exact, rapidly converging
bounds to the energy bands of periodic Hamiltonian operators, in any number of space dimensions.
As an illustration of the general theory, we develop an application to the electronic states of mod-
ulated superlattices, in the envelope-function approximation. This allows one to obtain important
information on the effects of variable effective mass and relative-band-offset ratio in these materials.

I. INTRODUCTION

When the potential V(r) is periodic: V(r+T) = V(r),
for a group of translations 7, T € 7, the Hamiltonian

H=-— (VEV) +V(r), Q)

is a periodic Schrodinger operator. The operator V rep-
resents the derivative with respect to the components of
r € R9, and (1) has been ordered in such a way that H is
an apparently symmetric operator, even for a mass m de-
pending on r.1:? We will generally assume also that m(r)
is invariant under the action of the translation group 7.
This exactly corresponds to the case of modulated super-
lattices, as will be seen later.

Thanks to the Bloch-Floquet theorem, the spectral
properties of H can be obtained by “fiber integral”
decomposition:? that is, by posing 9 = exp{ik-r} uy(r),
the eigenvalue equation H = Eyy becomes

2
—2%(—# +2ik - V 4 V?)

K2 )
+W(Vm) (tk+ V) ux + (V — Ey) ux =0,

(2)

where uk(r) has the periodicity given by the translation
group 7. The second term on the left-hand side is null in
the ordinary case of constant mass. The eigenvalues Ej
draw the energy bands, as k ranges in the first Brillouin
zone in reciprocal space: the aim of this paper is to show
that the eigenfunctions uy and the related eigenenergies
Ex can be rigorously computed via a moment method
technique.

This technique starts out from a Fourier space rep-
resentation of ux and employs a linearized version of
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the Toeplitz inequalities for the Fourier components (also
called trigonometric moments) of any positive function.
Contrary to most Fourier methods, this allows us to com-
pute ezact, rapidly converging upper and lower bounds to
the energy bands: E<(k) < Ex < Es (k) for any value of
the wave vector k. We now illustrate the key steps in this
approach, which follows from general moment method
techniques (see Ref. 4 and references therein).

The one-dimensional case with £ = 0, and m constant
(which has been partly anticipated in Ref. 4) is partic-
ularly simple, and can be used for illustrative purposes.
Here, Eq. (2) simplifies to

R _,
—%V u+(V—E)U—0, (3)

with u(r) = u(r + T). Its solutions u can be taken to
be real functions. The basic ingredients of our construc-

tion are the trigonometric moments u,, of such solutions,
defined by

1 /T .
— wmnmgr
Up = T /o €™ u(r) dr, (4)

where T is the period of the potential, and g = 2#/T.
It is immediate that such moments are the coefficients
of the Fourier expansion of u(r). Due to periodicity, the
potential V(r) can also be expressed as a Fourier sum-
mation:

Vir)= Zvl e ior, (5)
1

By inserting the trigonometric expansions for V and u
into Eq. (3) one transforms the eigenvalue problem, for
any given k, into an infinite set of algebraic equations for
the moments u,. This formulation is exactly equivalent
to the original problem, and as hard to solve; neverthe-
less, in the common case where a finite number of har-
monics appears in the potential expansion (5), a recur-
sive solution is possible: u,, can be obtained as a (recur-
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sive) function of the energy F, the Fourier components of
the potential v, and a finite set of missing moments u;,

j=0,...,I, which are needed to initialize the recursion
relation:
un = Fp(uo,...,ur; E;v). (6)

For instance, if V' = 2v; cos(gr), Eq. (3) becomes a Math-
ieu equation, for which one obtains
h2

%nzg%n + v1Up+1 + V1Un—1 — Eu, =0

with —co<n<o0. (7)

Assuming u to be even (the odd case is equivalently
treated) one has u, = u}, = u_, and hence

1
- —F
Uy 2'[)1 Uo,

1 h2g?
U2 = 50 (E " om

etc. All moments are then functions of F and ug. This
is a particular case of Eq. (6) with I = 0. In Eq. (6), the
eigenenergy E and the missing moments are still unde-
termined. [The particular case (8) is easier, as a single
missing moment can always be determined via a normal-
ization condition.]

The final and crucial step in the theory comes after
noticing that, u(r) being real continuous and periodic,
there exists a suitable constant @ in such a way that
f(r) = u(r) + Q is positive. As a consequence, the mo-
ments f, = u, + Qbn,0 are bound to satisfy a stringent
set of inequalities, obtained via the Toeplitz matrices of
rank M with entries T;; = fi_;, 4,5 =0,...,M —1. The
required inequalities are det(T") > 0, for any M.%1%

We will show that a suitable linearization of such in-
equalities, which involve the missing moments and the
eigenenergy via Eq. (68), provides exact bounds for the
allowed values of such unknown quantities, and recon-
struct both the spectrum F, and the eigenfunction u(r).
For instance, taking @ = 0 in the previous example the
ground state is uniquely identified as the only eigenstate
whose eigenfunction has no nodes. Then, the inequality
for M = 2 reads

TooT11 — ToaTho = ui —u? >0,

and inserting the value of u; one obtains bounds for the
ground-state energy Ey: |Eo| < 2|vi]. Increasing M
leads to exponentially convergent bounds, as observed
in Ref. 4.

This procedure recommends itself for many reasons:
first of all, it produces rigorous bounds to the spectral
properties, and, as such, can be used to test other so-
lution procedures. Moreover, it provides a fully con-
structive solution of the spectral problem for the wide
class of systems mentioned above. We will exem-
plify this technique via its application to an interest-
ing physical problem: the determination of the electronic
states of superlattices in the so-called envelope-function

) Eup — uo,
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approximation.5® To end this Introduction, let us show
how these can be described via a Hamiltonian of the form
(1).

A superlattice is a material composed of two or more
different crystalline solids, which are arranged in a peri-
odic fashion. Two fundamental length scales character-
ize such a system: the atomic period of the elementary
constituents (typically a few angstroms), and the “super-
period,” that is, the periodicity of the man-made com-
posed material, which can be of the order of hundreds
of angstroms. A typical example is given by a structure
where N4 atomic layers of solid A, are followed by Np
layers of solid B, and so on by periodicity.

Because the superperiod is one or two orders of mag-
nitude larger than the intrinsic periods of the crystalline
solids, a set of tight “minibands” is created, which are
highly desirable for the design of ultrafast electronic
components.” As a first approximation, one can think of
the (conduction and valence) bands of the different mate-
rials as producing a sequence of square-well potentials,?
which have been appropriately called “man-made quan-
tum wells.” Minibands are then given by the quantum
states of particles (electron and holes) confined in such
wells.

A more general shape of superlattice can be consid-
ered, as illustrated in the following example: via the
molecular-beam epitaxy (MBE) technique,? it is possible
to build a structure composed of successive layers of the
crystalline semiconductor Al,Ga;_,As, where the alloy
ratio of aluminum, z, can be varied from layer to layer.
In this way, a “modulated” specimen is produced, where,
for instance, z is a sinusoidal function of the growth co-
ordinate of the superlattice. Since the energy gaps can
be assumed to vary also proportionally with = (see the
discussion in Sec. IV), this system can be rendered by
the Hamiltonian (1), where m(r) is the local effective
mass, V(r) is proportional to the local direct energy gap
of Al;Ga;_,As, and k ranges in the first Brillouin zone
of the superstructure.

When applied to this problem, our technique allows
us to study the influence of significant physical parame-
ters, namely, the band-offset energy!® and the position-
dependent effective mass. To our knowledge this latter
has been treated up to now only by perturbative methods
or via square-well approximations.5!!

It is important to remark at this point that our method
is not conceived to be applied to square wells, Kronig-
Penney (KP) -type potentials, which allow for an efficient
transfer-matrix-based computation of its spectral quanti-
ties: this technique is straightforward, precise,'? and does
not require the mathematical sophistication presented in
this paper. In fact, the trigonometric moment technique
developed here is not the most well-suited to deal with
such traditional superlattices (truncation of the infinite
Fourier series corresponding to periodic square wells is
possible, but not optimal). If rigorous upper and lower
bounds for KP potentials are needed, a different moment
method technique (not based on trigonometric moments)
can nevertheless be developed, following, e.g., the lines
of Ref. 13.

The scheme of this paper is the following: in Sec. II
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the general formalism for periodic Schrédinger operators
is explained in detail. The Toeplitz inequalities are in-
troduced, as well as their (infinitely many) linearizations.
It is shown how to employ these inequalities to obtain
bounds to the spectral properties. In Sec. III we treat the
illustrative example of modulated semiconductor super-
lattices, obtaining explicit formulas to enter the general
framework of Sec. II. In Sec. IV we show the numerical re-
sults obtained for two realistic examples of superlattices,
and we comment on their physical significance. Finally,
we compare our exact predictions with numerical results
obtained by a more traditional Fourier technique.

II. GENERAL FORMALISM FOR PERIODIC
OPERATORS

We develop in this section the general formalism for pe-
riodic Schrodinger operators, in a generic d-dimensional
space. The general solution uk(r) of Eq. (2) can be writ-
ten in its real and imaginary parts:

uk(r) = ak(r) + ’iﬂk(r), . (9)

the usefulness of this decomposition will be apparent in
the following. By inserting Eq. (9) in Eq. (2) and iden-
tifying real and imaginary parts one gets the coupled
equations

hZ 2 2 h2 3
—%(V a—-2k-VE—k%a)+ W(Vm) -(Va —kp)

+(V-E)a=0, (10)

ﬁ2 9 2 h2
——2—E(V B+2k-Va—k*pB) + W(Vm) - (VB + ka)

+(V-E)B=0, (11)

The subscript k on «, 8, and F has been dropped, and
will be implicitly understood throughout the following.
For any k, the above are the eigenvalue-eigenvector equa-
tions of the k fiber of the Hamiltonian, which is charac-
terized by a pure point spectrum, that is, by an infinity
of eigenstates E,(k).!* In this eigenvalue problem one
can multiply both sides of the equality by m?, but this
also puts a position-dependent factor in front of E, the
eigenvalue, thereby leading to a complicated problem.
Perturbative techniques around the constant mass solu-
tion are possible, but must be developed with care (see
Sec. IV). [In the perturbative approach, self-adjointness
of the operators does not come out naturally if the correct
Hilbert space is not identified (see the following section).]
Our analytical approach, on the contrary, does not suf-
fer any limitation. Each E,(k), for n fixed, corresponds
to an energy band of the system; we now show how to
compute the spectrum of such fibers in an exact way.

Thanks to their periodicity properties, the real func-
tions a, B, m, and V can be written as trigonometric
series in terms of their trigonometric moments ag, B,
mg, and Vg, where g are vectors in the reciprocal lattice
G: by letting h be any of these periodic functions, we
write

7039
h(r) =) hg e &T. (12)
gEG
The generic g moment hg is defined by
hg = %/eig" h(r) dr, (13)

W being the volume of the integration region, which is
defined by the periodicity of the system. The reality
requirement obviously corresponds to hy = h_g. We will
assume that m and V are such that only a finite number
of their trigonometric moments are non-null. One now
employs the trigonometric expansions (12) into Egs. (10)
and (11). Multiplication by m? in these equations does
not constitute a problem in this approach, and solves the
problem of position-dependent denominators.

Alternatively, one could employ the different assump-
tion that the trigonometric expansion of m~!(r) is finite.
In this case, no denominators appear in Egs. (10) and
(11), and the resulting equations can be treated in the
same way as we are now going to do under the former
assumption.

The net effect of the manipulations leading to Eqs. (10)
and (11) is to produce a lattice model completely analo-
gous to the original Hamiltonian (1).* [The word lattice is
here used to signify the Hilbert space [2(Z") of square-
integrable functions defined only on discrete positions.]
In order to understand the structure of the lattice Hamil-
tonian it is crucial to look at the action of the operators
involved in (10) and (11). The operators V2, k - V, k2,
act multiplicatively on each “mode number” e~ T, Since
g now identifies a site in a lattice, the previous operators
give “diagonal” contributions. On the contrary, factors
such as m(r), Vm, and V(r), all provide “couplings”
between different sites. We remark that, thanks to our
assumptions (and after multiplication by m?), a finite
number of trigonometric modes appears in front of the
diagonal operators. Hence the range of such couplings is
finite.

This fact can be expressed by defining the set S C G
such that two modes g and g’ are coupled from Egs. (10)
and (11) if and only if g— g’ € S. In the above notations
(which are illustrated in Fig. 1) Eq. (10) takes the general
form

A} | CSTs
(]

FIG.1. Couplings in the lattice space G. The components
of the lattice eigenfunction at the site g’ are ags and Bg/. The
diagonal energy of the site g is indicated by D(g). The site g
is coupled to the state g+ S via the coupling C(g, S), for any
S € S. S is the coupling set, centered at the origin 0. The
box B; is also shown.
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D (g,k)og + DP) (g, k)Bg + D _[C*) (g, 5,k)ogrs + CP(g,5,Kk)Bgs] = Eog, (14)

SES

for any lattice vector g. The coefficients D (diagonal) and C (coupling) can be explicitly constructed as functions of
the trigonometric moments of V and m. A similar equation follows from (11):

D*)(g,k)og + D) (g,k)Bg + D _[C®(g,5,k)agts + C¥)(g,5,k)Bg+s] = Efg, (15)

sES

with the corresponding coefficients D and C.
Let us now consider “boxes” in the lattice Fourier space
defined by writing the reciprocal vectors on a dual basis

{ej}v
g =nie; +--- +nyen, (16)

and identifying the box Bjs as the vectors such that
|n;| < M Vj. We will also call Bys the set of moments o,
and fg for g € By First of all, not all such vectors are
independent: the reality condition for o (3) immediately
implies a—g = ag (B-g = fBg). Moreover, particular
symmetry conditions may hold, which also restrict the
set of independent vectors. All these conditions must be
checked a priori. A particular case of this procedure will
be shown in the next section; we continue here on the
most general footing.

These boxes in reciprocal space are needed for a sort
of “exact truncation” of the problem to a finite subspace.
We will show how to derive consistency relations on such
finite subspaces which constrain the physical variables
(eigenvalues, eigenfunctions) within exact bounds, which
get exponentially sharper as the box dimension increases.
So far the theory has been standard manipulation, we
will now enter the two main steps of our method: the
first, “dynamical” (where we define the concept of miss-
ing moments); the second, analytical (where we find such
missing moments).

Dynamics comes into play once symmetries have been
properly taken into account. Equations (14) and (15)
provide new linear constraints on the box moments, in
terms of the coefficients C, D, C, D, and of the energy E.
One is always able to find a smaller set of linearly in-
dependent moments, which can be enumerated: we will
denote such moments with u;, ¢ = 0,...,I. Their num-
ber, I+1, in general depends on M, and on the structure
of the coupling set S. One can equivalently say that the
; are the least set of o and 8 moments required to lin-
early produce all the moments of the box Bys:

I
ag =Y Ai(g, E)wm,
1=0

17)

I
Be = Bi(g,E)ui, Vg € Bu.
i=0
The coefficients A; and B; can be explicitly calculated as
functions of E from Egs. (14) and (15). The number of
unknowns has now been reduced to I+2, the missing mo-
ments u;, and the energy E: dynamics has been taken

f

into account. [By imposing proper normalization con-
ditions, one of the missing moments can be eliminated
as a linear function of the others. Yet, this numeri-
cally relevant procedure does not change the structure
of Egs. (17).]

The final and decisive step is provided by analysis: ow-
ing to the representation (13), the moments o and g
cannot be any set of complex numbers; on the contrary,
they must satisfy rather stringent requirements, corre-
sponding in the one-dimensional case to the traditional
Hankel-Hadamard inequalities.'® As the case of o and 8
moments is perfectly symmetric, we will only derive the
set of inequalities for a. The real periodic function a(r),
is characterized by a minimum value over the region of
periodicity. Then we can take an arbitrarily large con-
stant @ such that f(r) = a(r) + Q is a positive function.
It is then also true that

2

F@) D cee®T| 20, (18)

gEB

for any choice of the set of complex numbers cg, and for
any box B. By integrating the inequality (18) one obtains
a relation involving the trigonometric moments of f:

Z Z CcgCe' fg'—g = 0. (19)

gEBg'EB

By introducing the matrices Tg g = fg'—g (for different
boxes B) the above inequalities are equivalent to the pos-
itivity of these matrices, and can hence be rewritten in
terms of determinants. For our purposes, though, the
linear form (19) is more convenient.

Since the moments of f are exactly the same as the
moments of o, except for g = 0, for which fo = ap + Q,
one finally obtains the desired set of inequalities for the
moments of the solution of the Schrédinger equation:

oY cicgog-g 2 —(Q+a0) D lel’ (20)

gEB g'#g€EB gEeB

The inequalities (20) must always be true, as they are a
sort of consistency condition dictated by analysis. When
dynamics is input via Eq. (17), expressing the box mo-
ments oy in terms of the missing moments y;, a new set
of inequalities is produced, which are linear in the missing
moments 4;, and nonlinear in the energy E:
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I
Y (z T e Aie - 8 E)

i=0 gEB g'#gEB

+[Q+Ai(o,E>1Z|cg|2) >0. (21)

gEeB

These final sets of inequalities are the cornerstone for
the solution of the spectral problem: at any fixed (arbi-
trary) value of E we carefully choose a set of vectors cg
in order that one of the exclusive opportunities holds: (i)
the set of inequalities (21) has no solution, and hence the
chosen value F is unfeasible, or (ii) a set of missing mo-
ments u; which satisfies all the inequalities (21) is found.
This latter set of moments, as well as the value of E, is
then defined feasible. The optimal procedure to choose
cg values is explained in Refs. 16 and 4.

Doing as prescribed above, one determines the extrema
of the region of values of E for which a solution of the
inequalities (21) exists, for any vector cg. (The set of
feasible values of E turns out to be an interval if the
box B is not too small.) This region depends on the
box B, and provides eract upper and lower bounds to
the unknown eigenvalue. The linear programming tech-
niques implicit in (21) also bring about exact bounds to
the missing moments. As the size of B increases, these
bounds exponentially shrink around the true eigenvalue
E, and the related missing moments. The full solution of
the problem is then obtained by computing the remain-
ing box moments via Egs. (17). The example of the next
section will further clarify this technique.

IIT. MODULATED SEMICONDUCTOR
SUPERLATTICES

Let us now get back to the specific example of modu-
lated semiconductor superlattices described in the Intro-
duction. The theory of electronic states in these struc-
tures is conveniently carried out in the so-called envelope-
function approzimation.>%17 The essential feature of this
approximation is to leave unperturbed the atomic scale
physical characteristics (host semiconductor band edge
and effective mass), and to describe the large period su-
perstructure via a slowly varying envelope function F(r).
For instance, in a multiwell structure, the electron wave
function is written

¥ = 3 F(r)ui (x), (22)

where uf are the periodic parts of the Bloch wave func-

tions at k = 0 (I point) for the bulk S material, where
S is either one of the semiconductor components, and
the sum over j involves different bands. In the simplest
case, one can assume that the interaction governing F(r)
is localized at the sharp interfaces between different S
materials: as a consequence, dynamics can be rendered
by appropriate matching conditions for F.2:5

Modulated semiconductor superlattices are a notable
case for which the last approximation fails, as they do
not present sharp interfaces. The envelope-function de-
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scription can nevertheless be maintained, by writing

¥(R) =} F;(R) wi(x), (23)

where r = R — [l is the difference between R and the
closest lattice vector I. While r is a vector on the atomic
scale, R ranges on the much larger superperiod scale.
Since the components of the superlattice now vary con-
tinuously with R, by uR(r) we now mean the k = 0 pe-
riodic part of the (bulkg Bloch wave function for the jth
band of the material which is found around the position
R. The electronic states F; are then governed by an effec-
tive Hamiltonian H: (HF); = AF};. H is usually a matrix
differential operator, as it couples different Bloch func-
tions u;. This is typically the case of valence-band lev-
els, where coupling between light- and heavy-hole states
is required. The structure of modulated semiconductor
superlattices and the relevant notations are illustrated in
Fig. 2.

Let us now focus on the electron conduction band in
III-V semiconductor superlattices: as this band is well
separated from the others one can safely use a scalar en-
velope function F(R). The theory of valence-band levels
is also possible by our method, although more compli-
cated. Since the envelope function depends only on the
growth direction of the superlattice, R can be taken as
a scalar variable. Let P be the length of the superpe-
riod of the specimen. The effective Hamiltonian H for
F assumes the form of a periodic Schrédinger operator,
discussed in Sec. II:

H = s V1V E,(R)+ U, 24
-2 (viv)+amm-, (24)

where Q. is the conduction-band offset value, E4(R) the
energy gap for the material at R, and U allows for the
possibility of an external field. In the next section we

show that to a good approximation one can write
QcEg(R) = 6cos(gR) (25)

and

(b) ’nvl\“l\‘u’,’(r)
R r
Pl z
(a) X N\ /\v -
l i N~
P i p!

—_—_— =

FIG. 2. Geometry and notations for modulated semicon-
ductor superlattices. In (a) the aluminum ratio z is plotted
vs the growth direction z of the superlattice. The vector P
indicates the periodicity of the modulation, and the vector p’
the local periodicity of the crystalline lattice. In (b), the en-
velope function F(R) is shown, together with the (schematic)
local Bloch functions uf(r) of Al,Gai_zAs.
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m(R) = mo + A cos(gR), (26)

where g = 2n/P, and §, mg, and A are structural con-
stants.

Let us now employ the techniques of Sec. II to solve
the spectral problem (24)-(26), with U = 0, using the
notation § = gR to emphasize its periodic nature. The
decomposition (9), as well as Egs. (10) and (11) imme-
diately apply to this case. On the other hand, thanks to
(25) and (26), the problem is characterized by an addi-
tional symmetry: it is easy to show that the eigenfunc-
tions u(#) satisfy

(T + T2y + D2+ (n — DI = (n — 1) Ta,-q + T3
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o(6) = a(=0), B(0) =—B(-6), (27)

since this form is required for H to be a symmetric op-
erator. It is also immediate to verify that this form is
preserved by the action of H, and hence defines a cor-
rect Hilbert space for the system. The moment rep-
resentations (12) enjoy the corresponding symmetries
Oon = a_p = o), and B, = ib,, with b, = —b_, = b};. Us-
ing these representations in Egs. (10) and (11) one gets
two coupled lattice Hamiltonian equations of the form
(14) and (15):

—(n+ 1) = (n+ 1) ans

+T%(an_2 + ong2) + T8(an_3 + any3) + nl7by + [(n — DI =Ty + [(n + )T + 1%y =0, (28)

(T +T202)b, + I3+ (n— DI = (n — 1)2T4bp—1 + 3 — (n + DI — (0 + 1)°T)bpt1

AT (bp_g + bpya) + T8(bn_z + bpta) + nl7ap + [(n — )I® =)y + [(n + 1)I® + T, = 0. (29)

The constants I'/, j = 1,...,9 are explicit functions of
E, k, and the structural constants, as shown in Table I.

Thanks to the symmetries of ay,, b,, a careful analy-
sis of Egs. (28) and (29) shows that the infinite set of a
and 8 moments can be generated recursively as a func-
tion of oy, a1, ag, b1, ba, by, which constitute the missing
moments set. This leads to the general equation (17),
with g = n, I = 5, and where the coefficients A; are also
obtained recursively from Egs. (28) and (29). It is note-
worthy that, in one-dimensional cases like the present, a
finite set of missing moments is capable of generating the
infinite, full sets of moments, and not only a finite box
B.

To obtain the necessary set of Hankel-Hadamard in-
equalities (20) one considers nevertheless a finite box By
in moment space, which is now defined by 0 < n < M.
When the proper algebraic steps leading to Eq. (21) have
been taken, one is left with an infinite set of inequalities
for the missing moments, and the energy E, parametrized
by the complex vectors c,. A straightforward applica-
tion of the numerical techniques described in the previ-

TABLE L
(28) and (29).

Constants IV appearing in the lattice equations

I'=h?k*mo + 2moAé — E(2mf + A?)
F2:hzgzmo

I‘3=§h2k2A +m&6 + 2A%6 — 2EmoA
F4=—%h2g2A

MP=moAs — LEA?

T°=1A%6

I'"=—2h%kmog

r=h%kA2g?

°=—h%kAg

f

ous section then leads to the determination of the feasi-
ble regions of E, which are nested for increasing M. The
numerical results are shown in the next section for two
particular choices of physical parameters.

IV. ELECTRONIC STATES: NUMERICAL
RESULTS

Let us now specialize the previous theory to two real
examples. Via the MBE technique, successive layers of
Al,Gaj_,As have been deposed in the growth direction
[001] (z axis) of a superlattice. The MBE technique has
been so improved that it is now possible to modulate the
aluminum ratio x from layer to layer as a function of z.
In a particular superlattice (which we will denote SL No.
1),'2 r was varied sinusoidally between 0.2 and 0.5, with
a period of 500 A. 80 such periods were deposed.

The bulk £ = 0 energy gaps at the temperature of 0 K
(Ref. 18) are given by a quadratic approximation in z,
which takes the values E; = 1.747 eV for z = 0.2, and
E, =2.157 eV for x = 0.5. It must be noticed, however,
that the conduction-band minimum for z > 0.45 is no
longer at the ' point. We will nevertheless use the gap
at the center of the Brillouin zone. In the z range between
0.2 and 0.5 one can assume a linear variation of E,, of
the form Ey(z) = E(0.2)+[(z—0.2)/0.3[E(0.5) - E(0.2)].
Since = varies sinusoidally with 2z, we can now write
E4(z) = E; + 6cos(gz). In the following, we will take
the zero of the energy axis at E., that is, at the cen-
ter of the oscillation of E;. The potential energy act-
ing on electrons (holes) in conduction (valence) bands is
given by the product of E, times the offset factor Q.
(Qvw =1 — Q). We can assume that this value is con-
stant through the oscillation. As a first approximation,
one can take the value valid in the case of sharp inter-
faces between Alg.oGaggAs and AlgsGag.sAs materials,
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TABLE II. Structural constants for two superlattices. ok T " j T ]
SL 1 SL 2 sl
5 2.204 x 10713 erg 1.120 x 10713 erg £l ]
mo 2.133x 10728 g 2.130x 10728 g =
A 1530 x 107%° g 7.652x 10730 g 2 7
g 1.256 x 10° cm™?! 6.283 x 10% cm™? Q

Q. = 0.67.1° Our following considerations will enable us
to determine this factor from matching of experimental
data. The effective Hamiltonian potential energy takes
then the form (25), where § = Q.[E(0.5) — E(0.2)]/2.
The numerical value of § is reported in Table II.

Similarly, a linear variation can been assumed for the
mass m as a function of the aluminum ratio z, so that
the modulation of the mass in the 2z direction is also
sinusoidal, and it ranges around the value of my =
2.133 x 1028 g with an amplitude A = 1.53 x 10~2° g.
In this way, one obtains Eq. (26), and the full effective
Hamiltonian for the envelope function is produced.

We have applied the method explained in Secs. II and
IIT to find the spectrum of this Hamiltonian. The re-
sults of the computation of electronic levels are shown
in Table III. These values are obtained for £ = 0, but
the variation within the first Brillouin zone of the super-
lattice is less than the number of digits reported: the
minibands here are very tight.

Internal miniband structure begins to appear when the
superperiod gets smaller and smaller. In order for this to
be technically feasible, a smaller variation of the alloy ra-
tio x is to be considered. We can hence consider a second
set of physical parameters, corresponding to a modula-
tion of x between = 0.3 and z = 0.45, taking place
with a superperiod of 100 A. The related parameters are
reported in Table II, and are labeled as superlattice (SL)
No. 2. The dispersion relations E(k) here are more sig-
nificant, since the shorter period and the lower barrier
allow a more significant tunneling to take place. We are
considering a one-dimensional problem, and hence we ex-
pect the electronic levels to be monotonic functions of k,
the superlattice quasimomentum. This latter is defined
in relation to the superperiod of the material, and for this
reason, it is of the order of 10% cm~!. It also corresponds
to the “global” k vector in the [001] direction, in the
envelope-function approximation. In Fig. 3, we see that
the energy bands described by E(k), k = 0,7/P are very

TABLE III. Electronic levels of SL No. 1 for k = 0. The
conversion constant is 1 eV=1.6022 x 10712 erg.

E[ (eV)

—0.1240
—0.0973
—-0.0713
—0.0463
—-0.0221

W~ O

4.25] -4.25

L
: L

-4.50 - !

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k (108 em™1)

FIG. 3. Band structure of superlattice No. 2. The two
lowest minibands are plotted.

narrow, of the order of meV. This is explained by the fact
that such typical “minibands” originate from tunneling
of wave functions through the potential barriers created
by the oscillating effective potential.

It is to be remarked that our diagonalization procedure
offers exact values for the energy bands: to show this
fact, in Table IV we exhibit the £k = 0 exact upper and
lower bounds to the eigenenergy of the lowest band, as a
function of the box size M (see Sec. III). Since increasing
this number gives more stringent inequalities, the bounds
get better and better at an exponential rate.

Via the same technique it is possible to compute the
band structure as a function of all the constants ap-
pearing in the theory; in particular, we considered the
most relevant role of the potential amplitude 8. Since
the global oscillation of E, is rather well known, § is
basically determined by the offset Q., whose value is im-
precisely known. The values reported in the literature
vary between Q. = 0.5 (Ref. 11) and Q, = 0.85;% we
therefore calculated the three lowest energy bands in a
range of values of § which contains such extreme values.
The resulting bands are plotted in Fig. 4, showing their
obvious narrowing for increasing 6. The variation of the
band energies with § is significant, and should allow us to
determine the value of Q. from experimental absorption
spectra (revealing the transition energies), via an analysis
similar to that of Ref. 10. This analysis must be com-
pleted by computing hole valence states, which can also
be done via our procedure (in a matricial Hamiltonian
form when necessary).

TABLE IV. Lower (E<) and upper (E>) bounds to the
electronic lowest-energy state of SL No. 2, as a function of
the box size M, for k£ = 0.

M E. (107 erg) Es (107 erg)
6 —4.48 —4.40

7 —4.444 —4.432

8 —4.4379 —4.4371

9 —4.437515 —4.437490
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FIG. 4. Band structure of superlattice No. 2 as a function

of §. This corresponds to a variation in the value of Q.. The
value of é corresponding to Q. = 0.67 is indicated by an
arrow. The three lowest minibands are plotted.

Finally, the band structure can also be computed as
a function of A, the oscillation in the effective mass
[Eq. (26)], in a quite analogous way. In fact, let us
first neglect this effect by posing A = 0—that is, by
considering a constant average effective mass. We can
compute the band structure, also via our technique, and
denote by E(k,0) the lowest energy band, say, for the
superlattice No. 2. We then compute the true energy
band, with A # 0: E(k,A), and study the difference
E(k,A) — E(k,0) as a function of k, and A. This differ-
ence is plotted in Fig. 5. The arrow indicates the value

FIG. 5.
band of superlattice No. 2 as a function of k and A. The
horizontal k axis ranges between 0 and % = 3.141x 10° cm™*.
The vertical A axis ranges between 0 and 11.5 x 10730 g, the
arrow indicates the value A = 7.652 x 1073% g typical of SL
No. 2 (Table II). Level curves are in units of 107'® erg.

Difference E(k, A) — E(k,0) for the lowest-energy
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of A typical of SL No. 2 (Table II). Even if one has that
A/my is of the order of a few percent, it induces a shift
of the energy bands which is nonlinear in k. This shows
the importance of taking into account the effect of vari-
able mass via an exact procedure. To appreciate this fact
even more, we now resort to a more traditional approach,
to compare its prediction with our results.

A possible approach to the spectral problem (24)-(26)
is the following. The position-dependent denominator 71{
can be approximately written as mg a1 - Amg'cosgR)
plus terms of second order in A. This leads us to consider
an approximate k-fiber Hamiltonian of the form

Ho= - (1 _A cos(gR)) (—k? + 2ikV + V?)
27710 mo
R A .
~ e 7—n—0g sin(gR)(ik + V) + 6cos(gR).  (30)

The above Hamiltonian is also self-adjoint on the do-
main of u(gR) defined in (27),!° and hence defines a
good approximation to the exact problem. A basis for
the Hilbert space (27) is easily written as 1 = 1, ¢2, =
%(eingR + e—ingR)’ and 1/)211——1 — %(eingR . e—-ingR).
We can then take a truncated basis set n =0,..., N and
restrict Hy to such subspace. The matrix elements are
readily computed and the resulting finite order matrix
can be diagonalized numerically.

This provides us with an interesting comparison with
our previous results. We noticed that—for the physical
parameters corresponding to the superlattices above—
the lower-energy bands results were practically stable for
matrix dimensions of order 10. This is due to the small
value of the perturbative constant & in Eq. (30). Also
due to this fact, results were quite consistent with the
exact bounds reported before; yet the superiority of the
moment approach can be noticed.

First of all, due to the nonlinear effect in k noticed
above, the approximate matrix formulation should work
at its best for K = 0. We hence considered the lowest-
energy band, in the case of superlattice No. 2, and we
computed the the eigenenergy, as a function of the ma-
trix dimension—Table V, which is to be compared to
Table IV. In the first column of Table V we report the
result that one would have obtained by setting A = 0
(thereby neglecting altogether the variation in the effec-
tive mass). The second column reports the diagonaliza-

TABLE V. Lowest-energy band of SL No. 2, at k = 0,
with A = 0 (first column), A = 7.652 x 107%° g (second
column), obtained by diagonalization of matrices of order V.
These results are to be compared with the exact results of
Table IV.

N E (107 erg) E (107 erg)
1 —4.29 —4.29

2 —4.45 —4.44

8 —4.4599 —4.4384

9 —4.459 922 —4.438417
20 —4.459 922 —4.438417
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tion values with A = 7.652 x 10730 g.

We notice that these values converge rather quickly
to their asymptotic value, but that such an asymptotic
value is in both cases unfeasible; that is, surely, incorrect.
For example, the value obtained with N = 8 is out of the
feasibility region delimited by using the same number of
moments, and the exact method. It is to be remarked
that, while in this case the agreement is good, we expect
it to get worse as the ratio A/my increases. Higher-order
perturbative approximations could correct this tendency
only initially.

In general, we believe that the exact method will be
a viable tool in the very general class of operators here
considered, superlattices being only an illustrative one-
dimensional example. Moreover, as we have stated al-
ready, obtaining exact bounds on the energy bands can
also be a critical test of other solution procedures.

V. CONCLUSIONS

We have presented an exact diagonalization scheme
which can be applied to any periodic Schrédinger op-
erator with a finite number of harmonics, in spaces of ar-
bitrary dimension, and also for the case of variable mass.
This case is particularly significant in solid-state physics,
where the effective mass is given by the local band cur-
vature, and can therefore depend on position. The same
theory applies to quantum systems defined on a lattice,
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where the coupling between different sites has a finite
range.

Our theory is based on the classical theory of moments,
and allows us to derive exact upper and lower bounds on
the energy bands of these systems. As these bounds can
be made arbitrarily tight, the spectral problem can be
considered exactly solved.

To illustrate the present techniques in a physically sig-
nificant example, we have computed the electronic states
of modulated Al,Ga;_,As semiconductor superlattices.
The exact results obtained by our technique permit us
to master the important physical effects taking place in
these materials. In this context, by the techniques of
Secs. IT and III suitably generalized to a matrix Hamil-
tonian formalism, one is also able to treat hole energy
spectra, in valence bands. More harmonics can be also
kept in the effective-mass expansion, and their effect on
the energy bands studied in detail.

We envision that this work will provide the solution of
many physical problems, in the solid-state domain (e.g.,
to be used like a tool in band-gap engineering) and more
generally in the quantum mechanics of periodic systems.
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