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Potential and current distribution in an ideal Hall bar
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The local potential and current distributions in a confined ideal two-dimensional electron gas with
perpendicular magnetic field are calculated. The nondissipative current-carrying state of the system
is described by a generalized equilibrium density operator appropriate for the boundary conditions.
The Coulomb interaction of the electrons is taken into account in Hartree approximation. The results
obtained by numerical computation allow the interpretation of seemingly contradictory experimental

data.

I. INTRODUCTION

It is well known that the global Hall conductivity of
a confined system of noninteracting electrons can be ex-
pressed in terms of edge states. In contrast to this the
local potential and current distributions are determined
by both the edge states and the bulk states. Obviously,
we are facing here a problem of self-consistency: on the
one side the distributions are determined by all quantum-
mechanical states which, on the other side, depend on the
distributions (e.g., via the confining potential).

In the past, several attempts have been made to calcu-
late the local quantities in ideal Hall bars. Some of these
are restricted to fully occupied Landau levels! ™ and oth-
ers omit the self-consistent treatment of the screening as
a function of the filling factor,®8 the importance of which
was pointed out in Refs. 7 and 8.

The basic assumption of the present work is a gener-
alized equilibrium density operator which takes into ac-
count the conservation of the total momentum in the di-
rection of the Hall current maintained by periodic bound-
ary conditions (Sec. II). The corresponding single elec-
tron density operator is significantly different from the
velocity-shifted Fermi operator postulated by Heinonen
and Taylor®1® which is nonstationary, since, in contrast
to the momentum, the velocity is not a conserved quan-
tity. At zero temperature the distribution operator used
in this work reduces to the one introduced by Li and
Thouless.!! Using the generalized equilibrium density op-
erator, we calculate the effective Coulomb potential (Sec.
IIT). By identifying the difference of the calculated poten-
tials at any two sample sites with the local voltage drop
we can compare our results with experiments'? 14 and
interpret apparently contradictory data (Sec. IV). The
calculations show that the current density consists of two
parts: a large diamagnetic current which is concentrated
at the edges of the sample and does not contribute to
the total current, and a current which is distributed over
the whole sample (Sec. V). Whether the net current is
dominated by edge or bulk contributions depends on the
value of the filling factor.

II. THE MOMENTUM ENSEMBLE

We consider an ideal interacting two-dimensional elec-
tron gas in a perpendicular magnetic field B. The system
is assumed to be confined in the z direction by a poten-
tial Veonf(z) and to be translational invariant in the y
direction. To allow for a net current along the y axis
we impose for the wave functions ¥(z,y) the periodic
boundary conditions ¥(z,y+ Ly) = ¥(z,y). The system
length L, is assumed to be large compared to the effec-
tive system size L, brought about by the confinement,
ie., Ly < Ly.

Since the system is ideal, no dissipation occurs and,
therefore, it can be described by an equilibrium density
operator. In the construction of this operator all additive
conserved quantities have to be taken into account. In
our case these quantities are the total energy (Hamilto-
nian) 7:[, the number of electrons A , and the total mo-
mentum in the y direction P, (script letters denote addi-
tive many-electron quantities, e.g., H = >, H:). Fixing
their average values, the stationary density operator cor-
responding to maximal entropy is

P’ = % e—[i(’fi+v‘f’y—ui\7),

Zv =Tr e—ﬂ(’fi+v’ﬁ’y—u.’\7)‘

1)

The value of the parameter (Lagrange multiplier) v is
fixed by the total current in the y direction,

=% )

€ S

I = —-L—y’:[‘l' (Vyp"
where N = Tr(Nj?) is the average number of electrons in
the system and f/y is the y component of the velocity op-
erator. For v = 0 the density operator ¥, which charac-
terizes a momentum ensemble, reduces to the usual grand
canonical operator °. Formally, the momentum ensem-
ble can be generated from the grand canonical ensemble
by a Galilei transformation to a system of reference (labo-
ratory system) moving with velocity v = (0, —v) relative
to the rest frame,
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HoH =H+vP, (3)

The drift motion with constant velocity v gives rise to a
constant electric field E = (E, 0),

v
E=-2B (4)

in the rest frame. Note that the momentum ensemble and
the canonical ensemble in the presence of the electric field
E characterized by the density operator

. 1 _a o_LEX
pE — ﬁ e ﬁ(?‘H—eEX 17 N) (5)
are substantially different. Whereas the averages of the

particle density with respect to the two ensembles coin-
cide,

n*(z) = n®(z) = n(z), (6)
the averages of the current densities differ by a drift term,
Jy (@) = 3 (z) + evn(z). (7)

Due to the confinement, the total current corresponding
to the current density jF(z) vanishes.!®” The chemical
potentials are related by u = uZ + mv?/2.

III. THE ELECTROSTATIC POTENTIAL

In the Hartree approximation the self-consistent equa-
tions are

n(r) = Tr[p* (H)8(x — 7)), (8)

H = Z Ho(ri, p;) + V(r:) + Voack(rs), (9)
) = 2 n(r)

V(r;) = /__|ri — r|d T (10)

Here Hy is the Hamiltonian of a free electron moving
in the (z,y) plane in a perpendicular magnetic field and
Vback(r,-) is the potential induced by a constant positive
background charge density guaranteeing charge neutral-
ity. In our case the particle density is given by n(r) =
n(z)6(z). In the numerical solution of Egs. (8)—(10)
the single-electron wave functions are assumed to vanish
at £ = +L,/2 (Dirichlet boundary conditions) and the
length scales are choosen to L;/L, = 0.1, L;/eay = 20,
l/L; =0.1, and v/lw, = 0.1.

Here € is the dielectric constant, a the effective Bohr
radius of the host material, [ = \/hc/eB the magnetic
length, and w. = eB/mc the cyclotron frequency. For
GaAs we have ea} = 97.9 A and the parameters given
above characterize a Hall bar of length L, = 2 ym and
width L; = 200 nm subjected to a magnetic field of 1.6
T. The drift velocity is approximately 8 x 10% m/s.

The calculated effective electrostatic potential V?(zx)
= V(z) = Ve(z) + Voback(z) as a function of the filling
factor v = 27l*(N/L,L,) is shown in Fig. 1. While
V(z) changes slowly with v near the edges (z ~ L./2),
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FIG. 1. The electrostatic potential V(z) = Vi(z) +
Vback (z) as a function of the filling factor v.

it drops rapidly at the center of the bar (z = 0) when
a new Landau level begins to be populated. The reason
for this is the drastically different polarizability of nearly
completely filled (or nearly empty) and half-filled Lan-
dau levels.® This becomes more apparent in Fig. 2 where
the effective electrostatic potential is given for different
values of the filling factor. In the “bulk,” three differ-
ent types of behavior can be distinguished: for filling
factors far from integer values (v = 0.19 and v = 0.49)
V(z) increases linearly from the left side of the sample to
the right. When the Landau level becomes nearly filled
(v = 0.88), all states located in the right half of the sam-
ple are occupied and increasing the number of electrons
leads to a decreasing dipole moment. Thus, in the mid-
dle of the sample the potential saturates. With increasing
filling factor the region of constant potential grows until
the first states in the next Landau band become available.
While the electrons in the filled lower Landau band build
up nearly symmetric density and potential distributions,
the dipole moment required to screen the Lorentz electric
field has to be generated by the few electrons occupying
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FIG. 2. The electrostatic potential V(z) for different val-
ues of the filling factors v.
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the higher level (v = 1.01). Since, for this purpose, the
number of electrons is not sufficient, the main variation
of the potential occurs at the right edge of the sample.

A behavior very similar to this has been observed by
Ebert, von Klitzing, and Weimann,!? who measured the
voltage drop across ohmic contacts attached to a Hall
sample along a line perpendicular to the current direc-
tion. By varying the magnetic field, they observed that in
a plateau regime of the Hall voltage (i.e., near integer fill-
ing) the voltage drop between contacts in the middle and
at one edge of the sample changes rather abruptly. At
first, the whole Hall voltage drops in the immediate vicin-
ity of one edge, and second, by crossing the magnetic-field
value corresponding to integer filling the voltage drop
switches from one edge to the other. In contrast to this,
in the transition regime between adjacent plateaus the
voltage drop was found to be distributed linearly across
the sample. The contact measurements by Ebert, von
Klitzing, and Weimann probe the electrochemical poten-
tial p(z). This is related to the effective electrostatic po-
tential occurring in our treatment by u(z) = p + V(z).
Furthermore, in the measurements the total current and
the average number of electrons were fixed and the fill-
ing was controlled by the magnetic field, whereas in the
calculation the drift velocity and the magnetic field were
kept constant and the number of electrons was changed.
Therefore, in Fig. 3 the calculated voltage divided by the
total current is shown as a function of the inverse fill-
ing factor 1/v «x B. The Dirichlet boundary conditions
for the wave functions bring about an unphysical rise of
the electrostatic potential at the edges of the sample. To
eliminate this, the maximum of the potential was chosen
as a reference value and its location to deﬁne a physical
sample width Ly = 2Zmax, V(Zmax) = Vmax- The mea-
sured and calculated potential drops are related by the
following expressions:

elUys = V(xmax) - V(Em/4)a

6U46 = V(-Tmax) - V(O),

(11)
eUyr = V(xmax) - V(_Lm/4);
el = V(xmax) - V("xmax)~
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FIG. 3. Calculated voltage drops (see text) as a function
of the inverse filling factor 1/v.
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The potential drops within the sample are in good quali-
tative agreement with the measured data. With increas-
ing inverse filling factor, the pronounced maxima at inte-
ger filling factors are immediately followed by deep min-
ima in the bulk accompanied by a sudden shift of the
voltage drop from one edge to the other. This fact as well
as the shoulder in Ugg at half filling is in good agreement
with the experimental data. The calculated Hall voltage
Ugs, however, is too small (in particular at small values
of the filling factors). Moreover, the calculations do not
show any plateaus, since a random potential giving rise
to localization has not been taken into account.

The Ohmic contacts attached to the system give rise to
perturbations, which are difficult to estimate. To avoid
such perturbations, Fontein et al.l31* invented a con-
tactless method based on the electro-optical effect for
measuring that part of the electrostatic potential which
is induced by the current. This part of the potential is
antisymmetric with respect to the center of the sample,
indicating that an equal amount of current induced volt-
age drop occurs at both edges of the sample. This seems
to be in contradiction to the measurements by Ebert, von
Klitzing, and Weimann, which show a strongly asymmet-
ric voltage distribution at least for integer filling factors.

In the bulk of the sample the measured induced po-
tential is nearly constant and changes rapidly near the
edges for integer filling factor (plateau regime). For half-
filled levels, however, the potential varies linearly in the
bulk and its change at the edges is much less pronounced.
Thus, in this case, the Hall field is nearly constant within
the sample.

The calculations show that the current induced poten-
tial is (within an error of about 1%) equal to the anti-
symmetric part of the self-consistent Coulomb potential,
Vina(@) = V(@) — Vio(@) = Va = [V(z) - V(-a)]/2.
[Both Vhack(z) and Vi—o(x) are symmetric with respect
to the center of the sample.] In Fig. 4 V,(x) is depicted
as a function of the filling factor. For an infinite classi-
cal electron gas the corresponding surface is an inclined
plane

veless(z) = e%Bx. (12)

For integer filling the quantum-mechanical calculation
yields a significant deviation from the classical behav-
ior: in the bulk, the electric field is strongly reduced; the
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FIG. 4. The antisymmetric part of the electrostatic po-
tential, Va(z), as a function of the filling factor v.
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potential drop occurs at the edges. For half-filled levels,
however, V,(z) shows a classical behavior (except in the
vicinity of the edges). This is in agreement with the re-
sults of Gerhardts and Gudmundsson® on the screening
properties of an ideal two-dimensional (2D) Hall system:
For half-filled Landau levels the screening is nearly ideal
and e(dV, /dzx) cancels the Lorentz force, whereas for in-
teger filling, screening breaks down resulting in a much
weaker Coulomb potential. Note that the canonical equi-
librium response of the electric potential to a constant
electric field coincides with the one yielded by the mo-
mentum ensemble, V¥(z) = VE(z).

Figure 4 shows that our calculations reproduce the
qualitative features of the experimental results obtained
by Fontein et al.}3!% Moreover, the apparent contradic-
tion between the different experiments can also be clar-
ified: Whereas Ebert, von Klitzing, and Weimann mea-
sured the total electrostatic potential which is the sum of
the current induced potential, the (nonuniform) equilib-
rium Coulomb potential, and the background potential,
Fontein et al. probed the induced part only. The mea-
sured quantities behave very differently. In particular,
the sudden shift of the voltage drop from one side of the
sample to the other at integer filling is entirely due to a
rearrangement of the equilibrium (I = 0) potential dis-
tribution.

IV. THE CURRENT DISTRIBUTION

The calculated current density j¥(z) and its symmetric
part jys(x) = [jy(x) + jy(—x)]/2 which yields the total
current | = eNv/L, are shown in Figs. 5 and 6, respec-
tively. The antisymmetric part of jy (the diamagnetic
current) does not contribute to the net charge transfer.
For small values of the drift velocity, the current density
is dominated by the diamagnetic contribution; especially
for filling factors greater than one, the total current dis-
tribution is much more complicated than its symmetric
part. As already found by Yogeshwar and Brenig,® at in-
teger filling the main current path jumps from one edge
of the sample to the other.

In Fig. 6 the contribution of edge and bulk states to
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FIG. 5. Total current density j,(z) as a function of the
filling factor v.
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FIG. 6. The symmetric part of the current density, jy:(z),
as a function of the filling factor v.

the current density can be well distinguished. In the
bulk (around z = 0) a sudden increase of the current
density occurs when a Landau level begins to fill. To
understand this, note that the contribution of a Landau
state of energy e,x, located at T ~ X = —I%k, to the
total current density is proportional to de,r/0k. In the
bulk

Oenk  9Va(x)

ok Bz (13)

=X

Since here ang(ﬂ is approximately constant, all bulk
states carry about the same amount of current which de-
termines the step behavior seen in Fig. 6. At any site z,
the current density can only be changed by varying the
level occupation. Moreover, from Fig. 6 it becomes evi-
dent that for nearly filled Landau levels the net current
is carried by the edge states, whereas their contribution
is strongly reduced, when a new level begins to be pop-
ulated. In that case the net current is set up by bulk
states.

V. SUMMARY

We calculated the potential and current distribution in
an ideal 2D Hall system. The Coulomb interaction of the
electrons was taken into account in Hartree approxima-
tion. We described the current carrying state by means
of an (equilibrium) momentum ensemble. The results
for the potential distribution are in qualitative agree-
ment with the data obtained by both Ohmic probing and
contactless measurements, and explain the apparent con-
tradiction between the latter. The local current density
shows a complicated structure. It was pointed out for
which filling factors the net current flow occurs in the
bulk or at the edges.
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