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From a ground-state analysis of the Ising model applied to the A15 crystalline structure with first-,
second-, and weak third- and seventh-neighbor pair interactions, additional ordered states are predicted
at the compositions A5B3 and A7B. Low-temperature expansions are performed and stability properties
as a function of temperature and concentration are investigated by means of variational methods, within

the Bragg-Williams and cluster-variation-method approximations. The results are compared with those
from Monte Carlo simulations. Typical prototype A 15-based order-disorder phase diagrams and short-
range-order diffuse-intensity calculations are presented and discussed in relation to experiment.

I. INTRODUCTION

It has been ascertained, in the recent past, that the su-
perconducting transition temperature, among other phys-
ical characteristics of condensed matter, was sensitive to
disorder in conventional superconductors. ' Disorder
effects can result mainly from three different sources:
compositional and configurational effects, ' and also ex-
tended defect or vacancy-induced disorder. In the
present study, we will mostly concentrate on the first two
closely related effects and examine in the framework of
the three-dimensional Ising model the ground-state prop-
erties, i.e., at zero temperature, as well as phase stability
as a function of temperature and concentration (or chem-
ical potential) of 3 15-based alloys. We leave for future
investigations the case of ternary systems A„ByV where
the existence of vacancies V in the alloy matrix is the re-
sult of radiation damage or rapid quenching from high
temperature.

Ordering processes have long been recognized to be of
primary importance for describing properly crystal chem-
istry as well as relative phase stability and physical prop-
erties of substitutional alloys. With this regard, most of
the work done so far has concentrated on alloys based
upon simple crystalline structure such as fcc or bcc,
and very little has been investigated on complex al1oys.
The main reason can be attributed to the fact that simple
alloys show a large variety of chemically ordered states,
very often stable in a broad range of concentration,
whereas Inost of the complex alloys exhibit a high degree
of configurational order and are usually known as com-
pounds. In the latter case, this observation leads to a
straight assimilation of the crystalline structure (or bare
skeleton) with the ordered configuration of the alloy (or
bare skeleton plus site occupancy). This situation is often
indicative of a major size effect as is the case for the
Laves phases and other Frank-Kasper phases, ' and
elastic strain is a major component of their formation and
stability. Meanwhile, in a few cases, it is suspected that
the geometrical factors are not dominant, and the broad

range of stability with respect to concentration leads to
the concept of substitutional solid solution or "electron
phase. " '" Such alloys are subjected to Vegard's law,
like the solid solutions of their constituents, and the
Goldschmidt-Hume Rothery rule, which make their for-
mation electronically driven. " Such is the case for
315- (of Cr3Si type)' and tr (or -D8b of FeCr type)'
based alloys. For this subset of complex alloys, it seems
therefore of particular interest to investigate ordering
processes which may take place as a function of tempera-
ture and concentration. In addition, after the recent
discovery of a quasiperiodic icosahedral phase in
A16Mn, ' a connection with Frank-Kasper phases was
strongly supported' and, therefore, the question of how
the ordering mechanism and geometrical icosahedral
frustration can assist the formation of quasiperiodic
phases is of major interest. Because the A15 structure
can be considered as the simplest complex structure
where local icosahedral order exists, an examination of its
phase formation from a thermodynamical viewpoint can
be considered as a first step towards a better understand-
ing of these more complex phases.

In this general context, we present a detailed study of
the possible existence of various ordered states for binary
alloys A,B, , possessing the A 15 crystalline structure
that we briefly recall in the following. Its space group is

Oi, (or Pm 3n) and the primitive unit cell shown in Fig.
1(a) contains eight sites. With the origin fixed at the
center m 3, six sites occupy the positions (c) with point
symmetry D2d (or 42m) and coordinates —,'(0, +1,2),
—,'(+1,2, 0), and —,'(2, 0, +1), in units of a, the lattice pa-
rameter of the A 15 structure. These sites belong to three
orthogonal sets of linear chains parallel to the three
directions of the cubic cell, denoted sublattice I. The oth-
er two sites, in position (a) with point symmetry Tz (or
m3), located at (0,0,0) and —,'(1, 1, 1) build up a body-

centered-cubic structure hereafter named sublattice II.
Table I gives a list of the distribution of neighbors associ-
ated with the nearest shells, for future references. Note
from Figs. 1(a) and 1(b) that the A 15 structure can be de-
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FIG. 1. (a) Primitive unit cell of the A15 crystalline struc-
ture. The circles and squares refer to sites of the set of chains
and the bcc which form sublattices I and II, respectively. (b)
Coordination polyhedra centered around the two inequivalent
sites of A 15.

scribed either as a periodic tiling of the three-dimensional
Euclidean space with three irregular tetrahedra or as the
interpenetration of irregular icosahedra and CN14
polyhedra. ' Of the 70 or so compiled A 15-based al-

loys, about 30 are transition-metal alloys and we list in
Table II the less ambiguously reported systems with their
homogeneity range of stability, extracted mostly from
Refs. 9 and 18.

In a recent paper, ' we assumed that the stability of a
stoichiometric A38 A15 transition-metal alloy (TMA)
was primarily related to its electronic structure and more
precisely, to the structure of its d bands. Within this
basic assumption and an appropriate tight-binding
description of its electronic structure, we have shown
that the ordering energy, b,E( Ip„j) of an A15 TMA, i.e.,
the energy difference between the totally ordered and
disordered configurations, could be well described, in the
context of the generalized perturbation method (GPM)
by the following expression:

b E( Ip„]) =—g h„(p„—c )
1

n

1 V„(p„—c )(p —c )+, (1)
nm

num

FIG. 2. Ordering energy (in canonical units, see text) as a
function of N, the average number of d electrons, for an
A3BA15-based transition metal alloy: full band calculation
(solid curve) and GPM (dashed curve) results, from Ref. 19.

where N is the total number of sites, the p„arethe occu-
pation numbers (p„=1 or 0 depending on whether or not
site n is occupied by an A species), h„refers to an on-site

energy (specific of any complex structure defined by a set
of geometrically inequivalent sites as well as for sur-
faces, ' and V„represents an effective pair interaction
between sites n and m, given by V„=V„""
+V„—2V„". These interactions depend on the dis-

tance between sites n and m, and also on the alloy param-
eters, i.e., the number of valence electrons of both alloy
components and the concentration.

This expansion (1) of the configurational contribution
to the internal energy is obtained in the GPM context by
a proper perturbation treatment about a state of complete
disorder to take into account fluctuations of local concen-
tration. In Fig. 2, we recall the results of a comparison
between a full band calculation and the GPM expression
(1) of the ordering energy as a function of the average
number of d-valence electrons, in the context of the
tight-binding —coherent potential approximation descrip-
tion of the electronic structure of the random alloy. '

Note that the canonical units used to express the order-
ing energy displayed in Fig. 2 are of the order of 0.37 eV,
as discussed in Ref. 19. The agreement is rather satisfac-
tory and quite similar to that obtained in previously re-
ported studies for alloys based on fcc and bcc crystalline
structures. ' In addition, expansion (1) is, in most
cases, rapidly convergent, and usually multisite interac-

TABLE I. Number of atoms n, and their type, at distance d, (in units of the lattice parameter of the A 15 structure) in A 15 crys-
talline structure. A and B refer to sites belonging to sublattices I and II (see text), respectively. The last line indicates the pair types
by numbers, located in Fig. 1(a).

10 13 14

d,
Site A

origin
Site B
origin
Pair
type

8B 12A

2,3 1,2 3,4 1,9 1,5 4,5
3,5
3,6

9,10

0.500 0.559 0.612 0.866 0.901 0.935 1.000
2A 4B 8A 4B 16A 6A

1.118 1.145
8A 8B

1.173
8A

1.346 1.369
12B 16A

36A

1.414 1.500
12 A 10A
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TABLE II. Compilation of A 15-based alloys (after Refs. 9 and 17). The homogeneity range (indicat-
ed in parentheses) is given in atomic percent of the majority element listed as the first element.

TiHg(75)
TiT1(80)
TiSb(75)
TiIr(73 —75 )

TiPd(80)
TiPt(72 —77)
TiAu(75)
Zr Tl(80)
ZrSn(80)
ZrAu(75)

VGa(69 —82)
VSi(74 —81)
VGe(76)
VSn(79 —80)
Vos(52)
VCo(75)
VRh(63 —74)
VIr(61 —76)
VNi(77 —79)
Vpd(74 —76)
Vpt(67 —81)
VAU(78 —81)

NbA1( 68—82)
NbGa(75)
NbIn(75)
NbSi(81.2)
NbGe( 80—82)
NbSn( 74—82)
Nbsb(73-76)
NbOs(71 —75)
NbRh(75)
NbIr(71 —79)
NbPt(74-79)
NbAu(72 —83)

TaRh(72 —78)
TaPt(84-87)
TaAu(82 —85)
CrGa(77)
CrSi(74 —78)
CrGe(75 —80)
CrRu(75)
CrOs(75)
CrRh(77 —78)
CrIr(73-82)

MoA1(72 —78 )

MoGa(75)
MoSi(75)
MoGe(75)
MoSn(75)
MoTc(54)
MoOs(74 —77)
MoIr(74 —79)
MoPt(82)

tions are negligible compared with pair interactions.
One should note that the GPM provides a proper con-

nection between electronic structure calculations and
thermodynamical properties, and above all, a formal
justification of the validity of the three-dimensional gen-
eralized Ising model when dealing with ordering process-
es in substitutional alloys. Such a model was used suc-
cessfully to search for the most probable ground states
(i.e., at T=O K) as a function of the magnitude of the
pair (and eventually multisite) interactions which build

up the ordering energy. Finally, at TAO K, this Ising
model allows the calculation of equilibrium thermo-
dynamical properties when combined with a variational
method such as the cluster-variation-method approxima-
tion, ' or with Monte Carlo simulations. ' We will
see that such ordering theory applied to nonsymmorphic
complex structures, i.e., to lattices characterized by
several crystallographically nonequivalent sites, as is the
case for A 15, produces a number of peculiarities.

Thus, the study of ordering processes in A 15-based al-

loys will be performed by using the following Hamiltoni-
an:

H = g J„cr„cr—h g cr„,
(nm) n

where o
„

is a spinlike variable related to p„by
0.„=2p„—1, h is the chemical potential, andJ„=V„ /4. The first sum runs over the pair nm of
sites. Any configuration of an alloy, at T=O K, is
specified by the set I o

„
I.

Rigorously, because of the existence of two
inequivalent sites [denoted (a) and (c)] in the 3 15 struc-
ture, the last term on the right-hand side (rhs) of expres-
sion (2) should be rewritten as g h g„o„,where cc

a a
refers to sublattices I and II. These single-site terms h

cannot be ignored for an accurate determination of stabil-
ity energies although their contribution was shown to be
small. ' Furthermore, as apparent in expression (2), they
will have little inAuence on order-disorder phenomena
taking place in A 15-based alloys, phenomena dominantly
accounted for by the first term of the rhs of expression
(2).

For these reasons, we will omit in what follows this ex-
tra complication. Moreover, we will assume that the

effective pair interactions J„in (2) are concentration in-

dependent, for simplicity and without altering the con-
clusions of the present study.

The rest of the paper is organized as follows. In Sec.
II, we present the ground-state analysis of the Ising mod-
el applied to the 315 structure with first-, second- and
weak third- and seventh-neighbor pair interactions. In
Sec. III, we perform low-temperature expansions and
give an accurate description, in both the canonical and
grand-canonical ensembles, of phase stability properties
at low temperature. In Sec. IV, we discuss these proper-
ties at any temperature and concentration (or chemical
potential) by using a variational method, namely the clus-
ter variation method, for various regimes of pair interac-
tions. The results will be compared with those obtained
in the Bragg-Williams approximation and by the Monte
Carlo method. Finally, in Sec. V, the resulting prototype
3 15-based order-disorder phase diagrams are discussed
in relation to calculated short-range-order diffuse-
scattering-intensity maps and experiment, before adding
some concluding remarks on the electronic structure
properties of the most promising A 15-based ground
states.

II. GROUND-STATE ANALYSIS

In the following analysis, we will consider successive
groups of pair interactions, in agreement with the hierar-
chy deduced from electronic structure calculations, ' that
is,

~ J, ~, ~ Jz ~
&

~ J3 ~
&&

~ J,&4~. Note that, from now on, J,
refers to a pair interaction between a site located at the
origin and the other in the sth-neighbor shell.

A. I J&,Jz] ground-state analysis

The first- and second-neighbor pair interactions, J&

and Jz, which are considered here, couple, for example,
sites 2 and 3, and 1 and 2 in Fig. 1(a), respectively. The
simplest cluster yielding the configurational polyhed-
ron ' ' is the isosceles triangle which connects a site
of sublattice II to two neighboring sites of sublattice I
[see triangle {1,2, 3) of Fig. 1(a)]. This polyhedron has
six vertices associated with the six possible configurations
on a triangle. After the symmetry A ~B is taken into ac-
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TABLE III. Summary of the ground-state analysis within the isosceles triangle polyhedron of
configuration. x; (p;) refers to a correlation function (degeneracy or multiplicity) associated with an i-

point cluster. Full or empty circles (sites of sublattice I) and squares (sites of sublattice II) refer to A or
B species.

Correlation
Function

Configurstion

Kl
Energy

-Sh + 6Jq +24Jp

Ordered State
and

Composition

F (A}

Degeneracy g 24 12

-4h+ 6Jq - 24J)

-2h- Jq

A15 (QB}

X(A5B3)

count, we are left with three vertices, as defined in Table
III [if one assumes that the on-site terms of (2) are the
same, and equal to /i, for both inequivalent sites]. The
configurations attached to each vertex are constructible
and correspond to: pure metal A, 238 (the so-called
215 configuration, of Cr3Si type), and A583, named
hereafter F, A 15, and X, respectively. The new
configuration X is described by sublattice II fully occu-
pied by A species and alternation of A and 8 species
along each individual chain of sublattice I (see Fig. 3).
The order along each chain corresponds to the magnetic
analog of the antiferromagnetic order. At this point, no
coupling between the chains exists, but it is anticipated,
for configurational entropy reason, that the most symme-
trical configuration will remain at TAO K. The zero-
temperature phase diagram in the (Ei,Ez) representa-
tion, where Ei =6Ji //i and Ez =24Jz/Ii, and the result-
ing ordering map in (Ji,Jz) are given in Figs. 4(a} and
4(b), respectively. Each sector in Fig. 4(b) is associated
with a sequence of ordered structures when the concen-
tration in 8 species increases. For intermediate concen-
tration, the ground state is given by an appropriate mix-
ture of the neighboring ordered configurations. From
this simple analysis, we conclude that the three

configurations F, A 15, and X may exist provided
—,
' ~az=Jz/J, ~

—,'.
A natural step towards a better understanding of phase

stability at finite temperature and before performing
low-temperature expansions, whenever it is possible, is to
study the degeneracy (d) and the residual entropy (S) of
each configuration. Obviously F and A 15 are nondegen-
erate phases, i.e., d = 1 with zero residual entropy. In the
case of the X phase, if L is the size of the lattice (in units
of the lattice parameter) along the three directions of the
cubic unit cell, the number of chains is 3L and the only
constraint is the antiferromagnetic order along the
chains, therefore

d=2 and S= lnd,3L2 1

8L

that is, d = ~ and S=0 in the thermodynamic limit.
For the phase equilibria, let us first examine the case

F-A15. The two allowed configurations of the isosceles
triangle leave the 2L sites of sublattice II free of con-
straint, hence:

d=2 and S= ln2 =—ln2 y

3 1 3 1

8L' 4

0
II

e' .r'

~ ~
II

0
I$ ~ ~

e' +

which gives, in the thermodynamic limit, d=~ and
S=

—,'ln2. In the case A 15-X, the constraint imposed by
the coexistence of the two configurations of the isosceles
triangle leads to d =dx infinite and S =0. Finally for the
F-X equilibrium, the sites of infinite sublattice II are pure
A, whereas a choice exists for the chains: each first-
neighbor pair along a chain may be either pure A or A8.

F (A) Y (A r B) (a)
Kg ii (+2)

II

0

o

II

cP

A15 (d = 1, S = O)

d, S = 1/4 In 2 2

F(d=1, S=O)

, S=O)

K1

F, A15
(+1/2)

A15, X
(+1/4)

1

(-1/2)

A15{As B} X(As Bs)
FIG. 3. Ground states based on the 315 crystalline struc-

ture. Each configuration is referred to by its name and its com-
position (in parentheses).

(-2)

FIG. 4. (a) Ground-state phase diagram in (KI,Ez), where
I(

&
=6J&/h and Ez=24Jz/h, with degeneracy d and residual

entropy S for each configuration and phase equilibrium. (b) Or-
dering Inap in (JI,J~ ).
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Therefore d= ~ and S=—,'lnv. , where ~ is the golden
number r = (1++5)/2, as shown in Appendix A.

These results, reported in Fig. 4(a), show that the only
possible low-temperature expansion which can be per-
formed concerns the A 15-X phase equilibrium. In the
next section, we will examine the effect of introducing a
third-neighbor pair interaction, J3, which connects two
sites belonging to two orthogonal chains, such as the pair
{2,4] in Fig. 1(a).

(a) (b)
J3/&Jqi "

F, A15

J2/Jg

~r
&/4 J, OO

~ /
Jq&O

FIG. 5. Ordering map in (J2/J&, J3/J& ) for (a) J& ~ 0 and (b)

Jl (0.

B. {J„J2,Jg ) ground-state analysis

For physical reasons, we restrict our study to the case
J3~ &&

~ J& ~, ~ J2~. Then, the following questions can be
answered exactly: (i) Does J3 stabilize other ground
states than the ones previously obtained? (ii) How does
J3 modify the previous equilibria? In order for the phase
diagram in (J&,Jz) to change discontinuously with the in-

troduction of J3, which would, in that case, give rise to
an additional ordered state, this state must already exist,
being degenerate with one of the three configurations F,
A 15, X of the {J&,J2 I analysis. Therefore, each sector of
the phase diagram in (J&,Jz) should be reviewed, and two
cases should be examined: Either the sector corresponds
to a nondegenerate situation, which implies it should
transform continuously with J3, i.e., an additional or-
dered state cannot appear in a single-phase domain, or
the sector corresponds to a degenerate situation, and in
that case, J3 can favor one of the degenerate ground state
of the {J„J2}analysis. The degeneracy will be removed
if the ground states do not have the same correlation
function associated with the third-neighbor pair, y3.

It is clear that the only possible ground state which can
be a priori destabilized by the introduction of J3 is the X
phase. It is also obvious that all phases possessing the X
type of order have the same y3,y3 =0. Hence, the degen-

eracy of X is unchanged with J3, i.e., d= ~ and S=O,
because any translation of each individual antiferromag-
netically ordered linear chain does not cost any addition-
al energy.

To conclude this section, we need to examine the three
equilibria. For F-A15, d is infinite but only concerns
sublattice II, therefore y3 is the same for all the degen-
erate states. Moreover, because F and A15 have the
same y3, y3 =1, a vertical limit exists with respect to the

(J&,Jz) plane. For A 15-X and FX, because -X is not
affected by J3 (y3=0), no extra domain exists but the
limits F Xand A 15-Xare -not vertical (y3"' =y3&y3 ).

Hence, we have shown that the introduction of the
third-neighbor pair interaction J3 does not introduce any
extra configuration and preserves the topology of the or-
dering map, as illustrated in Fig. 5, provided J3 is small

compared with J, and J2.
From what has been studied so far, it is anticipated

that the phase diagram at finite temperature will show
peculiarities associated with nonzero residual entropy
and infinite degeneracy (see Sec. IV). The F A15 equilib--
rium corresponds to a so-called superdegenerate situa-
tion ' ' and from the hard-sphere analysis presented in

Appendix 8, it is shown that no transition exists at finite
angle and that a standard Bragg-Williams treatment is
exact at low temperature. Moreover, if one considers the
X phase at its composition A 5B3 and X at A 3B5, the X
and X superstructures have the same symmetry and only
differ by the bcc sublattice occupancy (mainly A atoms
for X and B atoms for X), as it is the case for A 15 and F.
Therefore, what was said for the F- A 15 equilibrium also
applies to the X-X one. Finally, up to and including J3,
at T strictly different from 0 K, the chains of the X phase
will disorder and the symmetry of the overall underlying
lattice will be restored. Indeed, the low-energy excitation
spectrum of the X phase is associated with a change of
order A~B along any semi-infinite linear chain. In oth-
er words, a phase diagram at nonzero temperature will

not exhibit the long-range order (LRO) of X type (except
at T strictly equal to 0 K). Thus, in order to stabilize the
X phase at finite temperature, it is necessary to introduce
longer-range interactions.

C. IJ, ,J~,J3 J7] ground-state analysis

It is easy to realize that the first pair interaction which
lifts the degeneracy of the X phase and stabilizes it at
finite temperature is the seventh pair interaction which
connects, in particular, two parallel chains through, for
example, sites 3 and 6 of Fig. 1(a), referred to as J'-, 'I.

One should note that two other types of pair, at the same
distance, exist and, in principle, should be differentiated
from J7" for geometrical and electronic reasons [see sites
5 and 3, and 9 and 10 of Fig. 1(a)]. For the sake of sim-

plicity, we assume that the seventh pair interaction along
the chains [such as the one involving the pair 5-3 of Fig.
1(a)] is equal to the one between parallel chains, namely
J7, and we note J7

' the seventh pair interaction which

pertain to the bcc sublattice [e.g. , the interaction between
sites 9 and 10 of Fig. 1(a)].

F and A 15 are nondegenerate phases and J7 (small in

magnitude) does not destabilize them. For the X phase,
the degeneracy associated with the chains of sublattice I
is removed by J7" and, according to the sign of J7, the
chains, parallel to each cubic direction, will be in phase
(superstructure X, for J7 &0) or in antiphase (superstruc-
ture Xz for J7 )0), as illustrated in Fig. 6, and for both
cases the degeneracy is d =2 . With respect to the equili-

bria, the infinite degeneracy of F-A15 is removed and
sublattice II orders. For J7 (0, a "ferromagnetic" order
on the bcc sublattice takes place and d =4. This type of
order characterizes both A15 and I', and consequently
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~ E

0
l) ~ I)

~ ~

Xg (J7 «0)

IFC ~l
43

I) ~ (I
0

~ ~ n ~ aa
~ ~ %/ V ~I

X2 (J7 ~0)
A 15

Linear chain
14
3

26
4

TABLE IV. Correspondence between neighbor shells as de-

scribed on an A 15 crystalline structure and on the linear chain
or the bcc lattice.

FIG. 6. Projection along the [001] direction of the ground
states Xi and X2 at the composition A, B3 (Xi corresponds to X
of Fig. 3). Full and empty circles or squares refer to A and B
species, respectively.

A 15
bcc

13
3

17
4

20
5

the equilibrium F-A15 is not perturbed. On the con-
trary, for J7(0, an additional ground state, called Y at
the composition 318 (see Fig. 3) is stabilized, with d =4.
This state is defined by sublattice I occupied by pure
species A, in addition to an "antiferromagnetic" order
among sites of each simple cubic skeleton which forms
sublattice II. This order on the bcc sublattice corre-
sponds to 832 of NaT1 type. One should note that Y sim-

ply results from the approximative treatment which only
includes the second pair interaction of the bcc lattice,
J7 '. More generally, the interactions of the A 15 struc-
ture which only couple sites of sublattice II would give
the known ground state of the bcc lattice. ' Similarly,
the interactions connecting sites of individual chains
would generate the ground states of the linear chain "'

(see Table IV for a list of correspondence). The energies
of the ground states, per unit cell, are given by

EP = 8A +6J& +24J2+24J3 + 18J7 +6J7

Ey= 6A +6J& +24J3+ 18J7 6J7

E~]5= 4A +6J] 24J~+24J3+ 18J7 +6J

Eg = 2Q 6J] + 18J7 +6J

E~ = —2h —6J) —6J7"+6J7 ' .

Neglecting J3 and setting up J~7" =J~7 '=J7 in the follow-
ing analysis, for representation purposes, we obtain, near
h =h,'"=12J2, the ground-state diagram of Fig. 7(a) for
the F-A 15 equilibrium. For A 15-X, the degeneracy in-
herited from the X phase is removed and d =8. The re-
sulting ground-state phase diagram is displayed in Fig.
7(b) near h =h,' '=6J, —12J2. Finally, for F-X, because
of the two possible configurations of the isosceles triangle
(sites 1, 2, and 3 of Fig. 1(a)] and the additional constraint

that for J7 & 0 (J1 & 0), the linear chains couple
"(anti)ferromagnetically, " it is easily seen that the degen-
eracy of each set of parallel chains is d=r . In other
words, a configuration along an individual chain imposes
the configuration of all parallel chains. Hence, as the
three sets of parallel chains, building up sublattice I, are
independent (with J3 =0), the total degeneracy is
d =(r ~)3, and S =0. The ground-state diagram is given
in Fig. 7(c}around h =h,' '=6J& —12J2.

From now on, we will assume the following hierarchy:
J, ,J,»J3 J7 and J7 & 0, which can be justified on physi-
cal ground from electronic structure calculations. ' '

Because a small J3 does not generate any additional
ground state or change the topology of the ordering
maps, this interaction will be ignored and the only pur-
pose of retaining J1 (especially J7") is twofold: first to sta-
bilize the X phase at finite temperature, and second, to al-
low low-temperature expansions to be performed.

III. LOW-TEMPERATURE EXPANSIONS

With the previous assumptions, the three phases F,
A 15, X can be stable at finite temperature for az= Jz/Jt
such that —,

' ~ a2~ —,
' [see Fig. 4(b)]. Moreover because at

T=O K, the degeneracies and residual entropies of the
three most important equilibria are d =8, S =0 for X-
A 15, d =4, S =0 for F-A 15, and d =16,S =0 for X—X,
low-temperature expansions can be performed. These
series expansions are based on the intuitive idea that the
equilibrium state of a system, at sufficiently low tempera-
ture, corresponds to a small perturbation of its ground
state. It is obvious that such will be the case for a nonde-
generate ground state, and low-temperature expansion is
estimated by taking successively into account excitation
energies in increasing order from the ground-state ener-
gy. The problem is more complex when dealing with de-

(c}

(-1/6)

Y
(d =4}

h/Jq(~)
C

A'j 5
(d 1) g. (d =1)

X2
(d = 8)

8 (+1/1 2)
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A)5x
co (d=1)

(d =8)

X2
(d =8)
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F
Xg g (d- q)

(d =8)

+1 /1 2)

FIG. 7. Ground-state phase diagram in (h/Jl J7/Ji) around (a) h,"'=12J2, (b) h,' '=6J, —12J2, and (c) h,"'=h,' '. d refers to the
degeneracy.
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generate ground states, especially when d is infinite. The
theory of Pirogov and Sinai, which deals with finite de-
generacy, was extended to infinite degeneracy and zero
residual entropy, provided that the energy of an excita-
tion increases with the number of occupied sites, the so-
called regularity condition. ' Such calculations allow
an accurate determination, at low temperature, of the
zone boundaries between the existing phases, in both the
canonical (temperature versus concentration) and grand-
canonical (temperature versus chemical potential) ensem-
bles. We will first consider the A 15-X (implicitly X„be-
cause J7 &0) phase equilibrium, the only case which can
be studied within the first and second pair interaction
analysis, before considering the three most important
phase equilibria in the J„J2,and J7 ( J7 &0) analysis.

A. Low-temperature expansion with J& and J2

Let us call AE', the excitation energy per unit cell of
superstructure a relative to site i, i being located by a
number as in Fig. 1(a) and occupied, in the ground-state
configuration a, as in Fig. 3. For A 15 and X, we obtain
the following set of equations, where p' indicates the
multiplicity of site i for the ground state a:

pancy of half the chain has been flipped; this energy is
equal to EE~=2J„with p&=12. From Fig. 8, the
lowest-excitation-energy spectrum implies that for

4 a2 —'„Xbecomes more stable than 315 at low tem-

perature, whereas the contrary is true for —,'az ~
—,'. As

was discussed in Sec. IIB, the X phase disorders at T
strictly different from 0 K, in this simple analysis in

I J„J2). Therefore, one should refer to the X phase more
appropriately as an 3 15 phase with the short-range or-
der of X type, as it will be demonstrated in Sec. IV B. We
will call this configuration 315'. The grand-canonical
results are schematically illustrated in Figs. 9(a) and 9(b).
If hE ~ is the energy difference between the two super-
structures a and p, and hh =h —h„ then
AE ' = —2hh and the equations which describe the
phase boundaries follow. Thus, we define the three re-
gimes:

3
—phd

—,
' ~ a2 ~

—,', . —AE =kTp~e
/3

—+
2 )

/3~Exa2~ —', . —EE=kTpze or Ah -6kTe

(5)

LE~15 = 2A +24J2~ p~1~ =2

5E~ 15 2A 4J1 +8J2~ p~ 14):6

hE,' =2h, p~ =2,
AE~ =2h +4J1 —8J2, p~ =3,
AE~ = —2h +4J1+8J2 pX

(4)

—/35E—gE =kTp
8

— 2 —
2 A15

—p( 8 —16a2)
or b h ——3kTe

where P=J, /kT, and k is the Boltzmann's constant.
In order to define similar equations in the canonical

representation, one has to evaluate the concentration c of
the alloy A,B1,as a function of T and h, according to

From (3), the A 15-X equilibrium is realized for
h, /J, =6—12az and —,

' &a2& —,
' (see, also, Sec. IIA). At

this particular value of the chemical potential, the excita-
tion energies (4) vary with a2 (=Jz/J, ) as indicated in

Fig. 8. One should mention that an additional energy rel-
ative to the X phase has to be considered. It corresponds
to the excitation, from the ground-state configuration, of
a chain of the X phase to a configuration where the occu-

1 F
2c —1=—

8 Bh

where the factor 8 is the total point degeneracy in the
unit cell and F is the free energy per unit cell. For a

(b)
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C

FIG. 8. Excitation energies (per unit cell) of the 315 and X
superstructures, at h, /J, =6—12a2, as a function of n, . Each
line is associated with a configuration and a site number or a +
for the half-chain excitation (see text).

FIG. 9. Schematic representation of phase diagrams in the

grand-canonical [(a) and (b)] and in the canonical [(c) and (d))

ensembles, for the two regimes of interactions: —,
' ~ a, ~ —'„[(a)

and (c)], and —„'~a, ~ —' [(b) and (d)].
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given superstructure a and values of T and h, F takes the
form

phE' (h, J& J2)

dE+ 12 Jy ii

Jq 12-
A15, 2

Along the phase boundary and in the first-order approxi-
mation of the low-temperature expansion, the concentra-
tion associated with the highest hE is constant as a func-
tion of temperature, whereas the concentration of the su-
perstructure possessing the lowest excitation energy
varies as e P (if bE varies with h). Hence,

' &a2~ C

0

1/4

F, 2

A15, 1; F, 1

.3 .4 .5

5 ( +3.
16 2 8' 315 4 a X 8

3 a 5

—p(8 —16a&)
—', ~ a2 ~

—,'. c„,5-3[1—e 2 ]/4

and cx

as illustrated in Figs. 9(c) and 9(d).
Regarding the other equilibria, F(B)-A 15( AB3 ),

X( A 88 8 )-X( A &88 ), and A 15( A 88 )-E( A ), their respec-
tive two phase boundaries, if they exist„should not reach
their standard limits c =0 and 4, c =—,'and —'„and c =

4

and 1, respectively, due to the nonzero value of their re-
sidual entropy S= —,'ln2 (see Sec. II A). In fact, the hard-

sphere treatment presented in Appendix B shows that no
transition line exists at finite angle, i.e., for any value of h.
Therefore these phase boundaries simply do not show up
in this [J1,J2 J analysis.

B. Low-temperature expansion with J&,J2 & 0 and J7 &0

With the introduction of J7, the half-chain excitation
of the X phase is no longer aBowed and therefore we have
the following results for the A15(A38)-X (or X1 at
A 583) equilibrium:

h ——'kT p( —8+32a&—12a7)
4 —Q2 —3' e

3
CA 15 4

—p( —8+ 32a2 —
12a7)

FIG. 10. Same as in Fig. 8 for the A 15 and F configurations,
at h, =12J2.

0, cx — c- (10)

The results (7), (9), and (10) are summarized in Fig. 11.
One should note that the X(A888) and X(A883) super-
structures share the same group of symmetry, and there-
fore the X-X line corresponds to a particular transition
between the two possible "ferromagnetically ordered"
bcc sublattices. A similar comment applies to the F-A 15
line.

IV. PHASE STABILITY PROPERTIES
AT FINITE TEMPERATURE

A. Generalities

The low-temperature expansion study presented in the
previous section leads to a detailed description of the rel-

ergy spectrum, given in Fig. 10, shows that I' is more
stable than A 15 for any value of a2 in the range [—,', —,

' ],
and the phase boundaries are given by

3 p( a2 12a2
2

3
—p( —4+ 16a2 12a2

cF 1 —e
-3

CA15 4

where bh =h —/I, and h, /J, =12a2.
Finally, for the X(A888)-X(A285) equilibrium, we

obtain

—P(8 —16a&—12a71
(b)

CX

where b,h =it —h, and h, /J, =6—12a2, and a7=J7/J, .
For the I'-A 15 equilibrium, we define the lowest exci-

tation energies per unit ce11 as

r
F A15
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E~ )5
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At equilibrium, h, = 12J2, and the resulting excitation en-
FIG. 11. Same as in Fig. 9 for the two regimes of interac-

tions: —' ~ a2 ~
—,
' [(a) and (c)], and —,

' ~ a2 ~
2 [(b) and (d)]; J7 (0.
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atively low-temperature part of the phase diagram. In
order to extend this knowledge to any temperature and
concentration, the calculation of the equilibrium free en-
ergy is required. This quantity can be obtained either by
a variational method such as the cluster variation
method (CVM), after a maximum cluster or set of
maximum clusters has been selected to approximate the
configurational entropy, or by performing Monte Carlo
(MC) simulations. ' Because the pair interactions
which build up the ordering energy are assumed to be
concentration independent, for the sake of simplicity, the
calculations can be carried out either at constant concen-
tration, i.e., in the canonical representation, or at con-
stant chemical potential, i.e., in the grand-canonical rep-
resentation, at any given temperature.

For practical reasons, let us first recall the free-energy-
functional form in a way consistent with the basic CVM
equations, and discuss the possible CVM approxima-
tions which can be applied to the present A 15 case, be-
fore commenting on the characteristics of our MC
scheme.

1. Cluster variation method

Retaining only pair interactions, the configurational
part of the internal energy will be written as

U (c, T)= g g y, „J,P„(c,T),

S = —k g y „a Trp „(g)lnp „(g),
m, . (13)

where the summation runs over all clusters of type r of m

lattice sites included in the maximum cluster or set of
maximum clusters which defines the order of the CVM
approximation. The y „represent a generalization of
the ones introduced in the expression of U and specify the
number of clusters per lattice point in superstructure a.
The a are the Kikuchi-Barker coefficients ' whose
algebra is discussed elsewhere, and the trace Tr is taken
over all configurations (g) of the partial density matrix:

p „(g)= 1+1
(14)

where s is the coordination shell index and r denotes a
type of pair. The latter index specifies the various in-
equivalent s-neighbor pairs which may exist for a particu-
lar ordered structure a. y, „stands for the number per
unit cell of s-neighbor pairs of type r in the superstruc-
ture a (for a completely random configuration, these
coefficients correspond to half the coordination numbers
at their respective shell s).

As usual, the pair correlation functions are given by

g„=(0„0„+,)„,
where ( ) denotes a statistical ensemble average.
These functions are determined by the symmetry of the
superstructure a and calculated by minimizing the CVM
free-energy functional. This functional is constructed by
adding to U the term —TS, where the CVM
configurational entropy takes the form

where the 8 are elements of the so-called "8-matrix" or
"configuration matrix" expressed as sums of products of
the a~. In Eq. (14) the summation is over all subclus-
ters (m', r') of the cluster (m, r) considered, and P ~

„

is
a multisite correlation function defined as the ensemble
average of the product of m' spinlike variables associated
with the m' points of the cluster of type r' of the super-
structure a. The main interest of the CVM is to provide
a functional form for the configurational free energy that
allows a level of approximation for each selected max-
imum cluster or set of maximum clusters, keeping in
mind that questions may arise about the convergence of
the CVM free energy towards the exact result when the
size of the basic cluster(s) is increased.

When applied to A 15, the first intuitive approximation
which can be considered, besides the single site (or
Bragg-Williams) and pair (or Bethe) approximations,
makes use of the isosceles triangle which connects sites

I 1,2, 3 I of Fig. 1(a). This cluster can be used in the CVM
context without further approximation with pair interac-
tions extending up to the second-neighbor shell. For the
A 15 symmetry, only five correlation functions are neces-
sary to describe the configurational free energy of the or-
dered state as well as of the disordered state. Indeed, be-
cause of the assimilation of the inequivalent sites with site
occupancies for this particular superstructure, no distinc-
tion is made between complete order and total disorder as
far as correlation functions and symmetries are con-
cerned. This remark will remain valid at any level of
CVM approximation.

In order to improve the CVM form of the free energy
and also to include the e6'ect of further distant pair in-

teractions, one can design a series of approximations
based on the analogy between the simple cubic and the
A15 crystalline structures, as shown in Appendix C.
The simplest approximation of this kind corresponds to
the analog of the pair approximation on a simple cubic
lattice and is defined by the combination of three max-
imum clusters: the two three-point clusters which con-
nect sites I 1,2, 3 ) and t 5, 2, 3I, and the four-point cluster

[2,3,7, 8I with reference to Fig. 1(a).
The two previous approximations will be called T (for

triangle) and PSC (for pair simple cubic) CVM approxi-
mations for future references. We give in Table V the list
of correlation functions and the coefficients required to
calculate the two contributions (11) and (13) to the free

energy of the particular A 15 configuration, for these two
CVM approximations.

For completeness, we mention a more general prescrip-
tion for selecting higher-order approximations based
upon a recently developed series of three-dimensional
cluster approximations, called the C and T hierar-
chies. ' This procedure presents the advantage over
standard CVM of insuring automatically a convergence
of the free energy towards the exact results, with the size
of the basic clusters, thus avoiding the possibility of get-
ting unphysica1 results with conventional CVM approxi-
mations. In the present study, the T and PSC-CVM will

be compared with the MC results to control the level of
accuracy of our CVM results.

Finally, it is of some interest to point out that, within
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TABLE V. Parameters required to describe the T and PSC clusters in the A 15 ordered

configuration. For each approximation, the first column gives the list of subclusters. The m and r in-

dices specify the correlation functions g „andstand for the number of lattice points in the cluster and

the type of cluster, respectively. As in Fig. 1(a), the circles and squares refer to sites of the set of chains
and of the bcc which form sublattices I and II, respectively; full or empty symbols refer to 3 or 8
species. The length of each edge is specified by conventional bar symbols taken from elementary

geometry.

PSG-GYM

Cluster m

1 1 2

~ 2 2 6

-5 1 1 2

2 2 6 0

3 6 3 1 6 -5

C = 4 24 0

12

4 1 24 0
Nl ~ 5

6

24 0

6 0

7 1 12

24 0

9 1 6 1

10 1 6 1

the CVM context, an increase in the size of the basic clus-
ters may become necessary if one wants to introduce fur-
ther distant interactions. Unfortunately, this can be done
to the expense of a dramatic increase in the number of
correlation functions (especially for ordered config-
urations). This problem can be overcome by using a so-
called mixed CVM where the correlation functions asso-
ciated with interactions excluded from the basic clusters
are treated in the Bragg-Williams (BW) approxima-
tion. ' This procedure will be valid provided the mag-
nitude of the interactions treated in the BW approxima-
tion is small compared with the one of interactions taken
into account by the basic CVM clusters. In the follow-
ing, this particular mixed CVM will be referred to as
CVM-BW.

2. Monte Carlo simulations

Based upon the model Hamiltonian given by Eq. (2),
Monte Carlo simulations can be performed to calculate
equilibrium thermodynamical properties and ultimately
phase diagrams. ' ' ' In the present study, a model
crystal of the 315 lattice, with a rigid overall cubic
shape, was built and helical boundary conditions were
applied to it. A sample of 15 X 8 atoms has been treated.
This size was considered large enough to avoid finite-size
efFects and to take into account the infIuence of pair in-
teractions extending around one elementary cubic ce11.
Computations were performed in the grand-canonical en-
semble with optimized Monte Carlo codes which operate
at about 3X106 Monte Carlo steps per site (MCS) per
second on a Cray XMP computer. At each temperature
and chemical potential, times of 1500 MCS were found
sufhcient to reach equilibrium. In order to achieve accu-
rate results based on averaging over configurations and to
let the system relax in order to prevent the infIuence of

the initial condition, the first 300 MCS were discarded.
Standard therrnodynamical integration was applied to
calculate the configurational free energy and deduce the
entropy contribution, making use of the properties of the
system either at infinite temperature or at T=O K by
reference to the ground-state properties presented in Sec.
II (see, also, Sec. III).

B. Phase diagram results with Srst
and second pair interactions

2.0

1.5—

1.0—

A15' A15 A15'

Qi
0

I I

0.5 1.0 1 2 1.5 2.0 0.5
h/J&

0.6 5/8 0.7 3/4 0.8
Concentration

FIG. 12. Prototype phase diagrams in the grand-canonical (a)
and the canonical (b) representations, for a2 =0.4 and
a, 2=0.0. Comparison between BW (dashed curve), T-CVM
(dotted curve), and Monte Carlo (solid curve) results.

We present in Fig. 12 typical A 15-based order-
disorder phase diagrams for a2=0.4 and a, &2=0.0, in
both (a) T versus chemical potential h and (b) T versus
concentration c, representations. The value of a2 was
chosen in order to be in a region of the ordering map of
Fig. 4(b) where the three phases I', A 15, and X exist at
T=O K. Because the pair interactions which enter the
statistical model [see Eq. (2)] are concentration indepen-
dent, the phase diagram is symmetric, in both representa-
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tions around h =0 or c=—,'. In IJi,J2I, both T and
PSC-CVM approximations produce almost undistin-
guishable results in satisfactorily overall agreement with
the MC results. As observed for simple lattices, the
CVM overestimates the maximum temperature of the

two-phase region. Although the Bragg-Williams treat-
ment is not quantitatively correct (except at low tempera-
ture, see Appendix B), it provides a qualitative picture in
good agreement with the ones deduced from higher-order
approximations. In Fig. 13, we summarize this compara-
tive study by plotting the configurational energy, the free
energy, and the entropy as a function of temperature, at
h =0 (c=—,') and h =3, where A15' (of X-type short-

range order) and A 15, respectively, are stable. In the T
versus h representation [see Fig. 12(a)j, the first-order line
ends at a critical second-order point. Because the chains
of the X phase disorder at TAO K, the disordered X
phase (or A 15') shares the same symmetry as the A 15
phase and therefore the A 15 -A 15 equilibrium is similar
to a "liquid-gas" transition on the A 15 lattice, quite com-
parable to the F(B)-F(A) line of the fcc-Ising model
with ferromagnetic first pair interactions (J, (0). One
can also remark that there is no order-disorder transition
at the composition A3B. Stated another way, any long-
range-order (LRO) parameter il (and more generally any
correlation function) which can be defined for the A 15
superstructure tends smoothly towards the value it
should have when complete disorder takes place at
infinite temperature. This property is illustrated in Fig.
14 where the LRO parameter given by
=

2
((0'i ') —(a'ii') ) is plotted as a function of tempera-

ture for various values of az, at c =—', . (o.") stands for

an ensemble average value of the point correlation func-
tion of site (i), by reference to Fig. 1(a), on sublattice a.

Although the phase diagram only exhibits A 15, the
short-range order (SRO) is expected to vary dramatically
with composition. Indeed, around c=—,

' and c=—,', the

SRO will reAect the existence at zero temperature of the
X and A 15 phases, respectively (see Sec. V A). This effect
can be seen theoretically if one plots some typical cluster
probabilities, as expressed by Eq. (14), as a function of
concentration. Indeed, by contrast to BW calculations,
the minimization of the CVM free-energy functional
gives values for the multiplet correlation functions, up to
the size of the maximum cluster(s) of the CVM approxi-
mation, hence providing a real space picture of SRO.

-1.5—D

1.0

-2.0

0.6—

0.4—
0)

0.2—

0.0
0

kTiJ&

0
0

FICs. 13. Free energy (top), internal energy (middle), and en-

tropy (bottom) vs temperature, at (a) h =0 and (b) h =3, for
a2=0.4 and e, ,=0.0. Comparison between BW (dashed

curve), T-CVM (dotted curve), and Monte Carlo (solid curve)

results.

FIG. 14. Long-range order parameter vs temperature, of the

A 15 configuration (see text for a definition of g», ), at c = 4, for

various values of a, : —0.4 (dotted curve), +0.4 (solid curve),
+0.5 (long-dashed curve), +0.6 (dashed curve) ~ Results ob-

tained from T-CVM, with a, 2=0.0.
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Results for the isosceles triangle cluster probabilities, to-
gether with the LRO parameter gz &5 defined above, are
plotted in Fig. 15 as a function of concentration for
a&=0.4, at low and relatively high temperatures (where
A 15 and X exists at T =0 K), and for a&=0.6 (where
only A 15 is stable) for comparison.

Monte Carlo simulations, supposedly leading to exact
results, show that the hard-sphere description presented
in Appendix B is correct, i.e., no transition line exists for
the F ( A )- A 15( A 38 ) equilibrium around h, = 12Jz
(h, =4.8 for a&=0.4). We display in Fig. 16, the internal
energy and the specific heat C in the low-temperature re-

gime, at h =4.7 (a2=0.4). As analyzed in Appendix D,
the maximum in C( T) is not related to any particular
transition but instead, to a Schottky anomaly. This be-
havior is the natural consequence of the saturation of
very low-energy excitations, well isolated from higher-
energy ones, whose existence is intimately related to the
presence of a superdegenerate point at h, =12J2. Pre-
cisely at h„these excitations have zero energy (they al-
ready exist at T=O K) and the heat capacity does not
show a local maximum at low temperature. This situa-
tion compares with the one encountered for the superde-
generate points at h, =4J& and 12J& for an fcc lattice
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F&G. 15. Concentration dependence of the most significant cluster probabilities [isosceles triangle 1 1,2, 3 I of Fig. 1(a)] for a.2=0.4,
a, 2=0.0, and kT/J, =0.5 (a), kT/Jl =1.2 (b); for a2=0.6, a, 2=0.0, and kT/Jl =0.85 (c). The top part of each figure indicates
the evolution of the long-range order parameter g»5 with concentration. Results obtained from T-CVM.
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FIG. 16. Internal energy (solid curve) and heat capacity
(dashed curve) vs temperature, for a2=0.4 and o.„2=0.0, as
computed from Monte Carlo simulations at h =4.7.
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with antiferromagnetic first pair interactions. ' Note
that the location of the maximum of the specific heat in
Fig. 16 compares satisfactorily with the estimated value
given in Appendix D.

For completeness, prototype phase diagrams for
a&=0.3 are presented in Fig. 17. These results confirm
and complete the low-temperature analysis performed in
Sec. III A.
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FIG. 18. Prototype phase diagrams in the grand-canonical (a)
and the canonical (b) representations for a2 =0.4 and
a7= —0.01, as obtained from PSC-CVM-BW.

C. Phase diagram results in JI, J2, and J7 (0

The PSC-CVM approximation was used to take prop-
erly into account the effect of first and second pair in-
teractions and was combined with a BW treatment of the
seventh pair interactions (PSC-CVM-BW; see discussion
in Sec. IVA1). The resulting prototype phase diagram
for +2=0.4 and a7= —0.01 is displayed in Fig. 18. The
set of interactions was selected to stabilize the X phase
(i.e., X„because J7 (0; see Sec. IIC) at finite tempera-
ture and to remove the degeneracies associated with the
I'-315 and X-X phase equilibria. About the remarkable
features of this phase diagram [see Fig. 18(a)j, one can
note the existence of three first-order lines which end at
critical second-order points. The X( A ~B3)-X(A3Bq )

line can be viewed as a "liquid-gas" transition on sublat-
tice II, i.e., there is no real difference between the X and

X phases. In other words, following a path which goes
around the X-X line, one of the phases transforms con-
tinuously into the other, hence the notation X' hereafter.
The height of this line goes continuously towards zero
with J7, as illustrated in Fig. 19. Similar comments apply
for the F( A )- A 15( A 3B ) line. Finally for the
A15(A3B)-X(A5B3) equilibrium, we have a standard
first-order line up to a tricritical point denoted I in Fig.
18(a). This point terminates a second-order line associat-
ed with the disorder of the "antiferromagnetically" or-
dered linear chains of the X' phase. This second-order
transformation is illustrated in Fig. 20 where the LRO
parameter of the X phase, given by g~ =

—,
'

( ( o,' ' )
—( o I") ) (see definition of the (o") in previous sec-
tion), is plotted as a function of temperature, at c= —,

'

(h =0), with qz&5(T), at c =—', for comparison. One

should notice in Fig. 20 that sublattice II of A 15 disor-
ders at a faster rate, as a function of temperature, than

1.5,
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0.5—
A15'
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FIG. 17. Prototype phase diagrams in the grand-canonical (a)
and the canonical (b) representations, for o;,=0.3 and
o., &=0.0. Comparison between BW (dashed curve) and T-

CVM (solid curve) results.

0.00
.00 -.01

O, 7

-.02

FIG. 19. Transition temperature T, associated with the
transformation X' to 215' (see Fig. 18) as a function of a7, for
a, =0.4, and as obtained from PSC-CVM-BW.
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FIG. 20. Long-range order parameter g& (short-dashed
curve) at c= z, and q„„(solidcurve), (crI ') (dotted curve),

and —(o'„")(long dashed curve) at c = 4, vs temperature for

a2=0.4 and a7= —0.01, as obtained from PSC-CVM-BW.

from electronic structure calculations, ' ' leads to a
value of the critical temperature of the mixed A 15'(X)-
A15 region of the order of 700 K, which may explain

why the X phase has not yet been identified experimental-

ly.

V. DISCUSSION

First, we present further details about the crystallo-
graphic characterization of the X phase, by comparison
with the A15 phase, in terms of typical as-computed
diffraction patterns and SRO diffuse scattering intensities.
We also briefly discuss the electronic structure properties
of transition-metal alloys possessing the X type of order
in a tight-binding framework. Then we present a list of
the possible candidates which may show the X phase, and
comment on the other complex phases which may com-
pete around the composition A 583 with the predicted X
phase, before summarizing our results.

sublattice I, and that (oI ') =(oII))=2c —1 (=—,') at
infinite temperature.

From our study, which has proved the fundamental
richness in examining phase stability properties of alloys
based on nonsymmorphic complex lattices, we can draw
the following conclusions. Below the stoichiometric com-
position c =

—,', a two-phase field involving the X and A 15
superstructures may exist until c =—,'where the X phase is

found stable, for a regime of interactions such that
—,
' ~a2~ —,

' and a7%0. Meanwhile our findings suggest
that the X phase should be stable at relative low tempera-
ture. Indeed, a J& of the order of 50 meV, as estimated

A. Characterization of the Xphase

If a single variant of the X phase can exist, its
diffraction pattern must exhibit some typical (but possibly
weak) peaks at the (100), (001), (111),(221), (212), . . . po-
sitions (in units of 2n. /a, where a is the A 15 lattice pa-
rameter) which are not found for the A 15 ordered state.
Indeed, iffz and fs are the atomic factors of diffusion of
both species for the electrons, the kinematic structure
factors for the A 15 and X superstructures are given by

F (l?, k, l )=f (
1+eich+k+I))

+2f„[e'"cos(II/2)k+ "3 ],

(a)
44 O4 44 O4 44 O4l. LH

l( x ~ ~ )l:( 0 Q x )' ll Q x Q Il ~l x Q x

f. l ~ x ~ C) il Q x Q Il &l x & x &l il Q x Q II

o ~ x ~: ii x Q x Ii ii Q x 0 ii:~ x Q o

q=0 q=1 q =2 q =3

44 O4 44 O4 44

~ ~ ~

c~ ~ ~ ~ (i gg o o

o

0

q=0
Z q =1,3 q =2

7

FIG. 21. Typical diffraction patterns and their indexations for the X (a) and A 15 (b) configurations. The hierarchy of intensities
are(a) for X: 0 & 0 &G&&6 & o && X, and (b) for 215:0 & 0 && o &O.
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I'(g k /)=f [e'(nI2)(2h+k)+ g]
in(h+k+I)+ i(n/2)(2h —k) +~ AL e

where h, k and 1 are the components (in units of 2'/a) of
the reciprocal vector q. Thus, additional peaks with in-

tensity Ihki proportional to IF(h, k, l )
I

will result for the
X phase, as illustrated in Fig. 21. More suitable, SRO
diffuse-scattering-intensity measurements with x rays or
neutrons, above the domain of existence of the X phase
[see Fig. 18(b)] should show maxima of diffuse intensity,

Isgo at the aforementioned positions. These maxima
should be relatively easy to probe because of the second-
order character of the transition X' to A15' (see com-
ment in Sec. IV C). By definition, IsRQ is given by

Isao= & l~(q)l'& —
I &~(q) & I',

where (cr(q) & and (lcr(q)l & are the Fourier transforms
of the point (o(p) & and pair (cr(p)o(p') & correlation
functions. It is then easy to extend the known CVM ex-
pression of IsRQ (Ref. 43) to a nonsymmorphic lattice.
The results are presented in Fig. 22. The PSC-CVM-BW
approximation, with O,2=0.4 and a7= —0.01, has been

used to compute Is&o, at relatively high temperature
kT/J, =2.0 [see phase diagram of Fig. 18(b)], in the

(001) plane with q, =1.0, where the maximum difference
between the SRO's of X type [h = 1.0; Fig. 22(a)] and of
A15 type [h =3.5, Fig. 22(b)] becomes apparent. Quan-

titatively, these results are almost identical to the ones

obtained in the simple T-CVM approximation with only
first and second pair interactions. This fact, once again,
proves that J7 is only important to describe the LRO of
X type but has little effect on the existence of the SRO of
this type. It should be emphasized that because no real
order-disorder transformation takes place in the
A15( A3B) superstructure, the SRO diffuse peaks are lo-

cated at the Bragg positions of the 3 15 crystalline struc-
ture, as for an alloy which would have a tendency to
phase separate. As a consequence the SRO only mani-

fests itself as a diffuse broadening at the Bragg locations.

B. Electronic structure properties
of the X phase

The electronic structure and stability properties of the
X phase, at T=O K, are examined in the framework of
the tight-binding —coherent potential approximation—
generalized perturbation method (TB-CPA-GPM). ' '

This preliminary study primarily applies to transition-
metal alloys for which d-valence electrons play a major
role in explaining their stability properties. The TB
Hamiltonian and the electronic parameters have already
been discussed in a previous study. ' Typical densities of
states (DOS's) for both fully ordered configurations,
A15(A2B) and X(A5B2) (X„moreprecisely: see Fig. 6)
are displayed in Fig. 23 with their respective d-band
filling (or average number of d electrons). The DOS's
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FIG. 22. SRO diffuse scattering intensity in the (001) plane

with q, =1.0 as computed with the PSC-CVM-BW. a2=0.4,
a7= —0.01, kT/J, =2.0, and h/Jl =1.0 (a) A/Jl =3.5 (b).

FIG. 23. Total DOS (solid curve; in arbitrary units) and aver-

age band filling N (dashed curve) as computed in the tight-

binding framework with a diagonal disorder parameter of 0.8
(see text), for both fully ordered A 15 ( A3B ) and X ( A &B3, Xl
of Fig. 6) configurations.
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0
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FIG. 24. Theoretical structural map as obtained from tight-
binding calculations indicating the probable domains of stability
of the X phase within the solid lines, with the maximum of sta-
bility mentioned by dashed curves. Real transition-metal alloys
occur between the chain curves (corresponding to 2&)V&,
Xg + 10).

were calculated with the recursion technique from the
continued fraction expansion of the one-electron Green
function, exact up to the 18th level. This accuracy re-
quires clusters of 31445 and 31727 atoms centered
around sites of sublattice I and II, respectively. The diag-
onal disorder, fi = ( s z

—ez ) /F where s; is the on-site en-

ergy of species i and 8' is the mean half width of the d
bands of the pure metals, is equal to 0.8 to reproduce a
case of intermediate disorder effect. Figure 23 shows that
the total DOS of the X phase has some parentage with
the one of the A 15 phase, especially with regards to the
low-energy part of the DOS, in a region of band filling
less than five d-valence electrons. Meanwhile, distinc-
tions have to be made at high band filling in association,
particularly, with the chemical order which takes place
along the chains in the A 15 and X configurations. As for
the stoichiometric composition A 38, ' it has been
checked that the effective pair interactions, calculated in
the GPM approach at c =—'„converge rapidly with neigh-
bor distance, and multisite interactions are indeed negli-
gible when compared with pair interactions. These re-
sults support the basic assumptions made in the present
study. Finally, the band term contribution to various en-
ergetic properties, including mixing energies from TB-
CPA and ordering energies as expressed in the GPM
framework (see Ref. 19 for a definition of these quantities)
was estimated as a function of the diagonal disorder 5,
and of the average d-band filling N, at fixed concentration
c =—', . In practice, there is a relation between
AN =N~ —Nz and 5. In this work, we assume
cz —c&=KEN, with X =1 eV, which is known to be a
reasonable approximation, at least for elements belonging
to the same transition series. Therefore if 5 and the con-
centration are held fixed, N can be changed by varying
separately Nz and Nz while keeping AN constant. In ad-
dition, the regions of stability corresponding to small
values of 5, and therefore of hN, will be omitted since
they would correspond to very weak ordering tendencies,

presumably not observable experimentally. Including
these constraints, the domains of possible existence of the
X type of order are indicated by the hatched regions in
the ground-state structural map of Fig. 24. The physical
bounds due to the constraint 2~N&, N& 10 have been
indicated by the mixed lines, whereas the dashed lines lo-
cate the maximum value of the ordering energy of the X
phase, as a function of 5. More complete versions of its
counterpart at c =

—,
' have been discussed in detail in Ref.

19. This study confirms the potential existence of the X
phase for an average number of d electrons less than 6.
As for the case c =

—,', the stability of the X phase is pri-
marily driven by a structural effect. In otherwords, the
relative stability energy of the X phase does not drastical-
ly depend on the atomic configuration, i.e., on 5 as seen
in Fig. 24. It would be interesting to extend this corn-
parative study to include other competing complex
phases as the ones discussed in the next section.

C. Experimental implications

With regard to experiment, one might suggest some
systems which show an A 15 crystalline structure in a
broad range of concentration where the X phase could be
detected. From Table II, the following transition-metal
(TM) alloys are of potential interest: Ti-Pt, V-(Rh, Ir, or
Pt), Nb-(Os, Ir, or Au), Cr-Ir, and the special cases of
Mo-Tc (cM, -0.46) and V-Os (cv -0.52, at high temper-
ature). One might also consider among the TM —non-TM
alloys: V-Ga, Nb-A1, and Mo-Al. For all these alloys, a
secondary ion beam codeposition of metallic alloy thin
films seems to be the most appropriate technique to re-
veal the X phase in a metastable state, if not in a stable
state.

It is interesting to note that for c & 4, the A 15 crystal-

0
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FIG. 25. (a) Projection along the c axis of two unit cells of
the cr phase: 6,0,o,0,0 refer to sites of sublattices 3, B, C, D,
and E, respectively. The rhombi and the square
delimited by thin lines indicate the two kinds of building blocks
(Z and A 15, respectively) constituting the o. phase. (b) and (c)
specify the chemical order on various sites of the o. phase con-
strained by a local configuration of the A 15 ( A3B ) or X ( A 5B3)
type, respectively. Full or empty sites in (b) and (c) refer to A or
B species, respectively.
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TABLE VI. Site occupancy per sublattice of the O.-phase standard configuration (A+8 denotes a
random mixture of A and B species) to be compared with the ones associated with local order of A15
and X types. p and CN refer to sublattice multiplicity and coordination number, respectively.

Sublattice

B
C
D
E

12
15
14
12
14

occupancy

B

(A+B)
B

(A+B)

Local order; A 15
occupancy

Local order: X
occupancy

A &/2 +B&/2

A i/2+Bi/z

line structure competes with the D8& (or 0, of FeCr type)
for TM alloys, D8 (of W5Si3 type) or D8s (of Mn5Si3
type) for TM —non-TM alloys. ' It is well known that all
the Frank-Kasper phases based on tetrahedrally close-
packed structures can be described in terms of simple
building blocks (belonging themselves to this class of
structures), or prototiles, which are the A 15, Zr4A13 (or
Z) and one of the Laves phases (C14, C15, or C36)
units. ' In particular, the tetragonal structure (D4h or
P42/mnm) of the 0 phase, which possesses 30 atoms per
unit cell, can be described either by its five sublattices,
commonly named A to E, with respective coordination
number CN12, CN15, CN14, CN12, and CN14, ' or by
considering its two building blocks A 15 and Z. ' Be-
cause the 0. phase usually exists in a broad range of con-
centration, it would be interesting to examine in more de-
tail the chemical order which develops in particular on
the so-called C, D, and E sublattices which form the A 15
building blocks [see Fig. 25(a)]. If the local order in the 0.

phase resembles the one described either by the
A 15( A, B ) or the X( A ~B3 ) superstructures, then specific
site occupancies are expected, as illustrated in Figs. 25(b)

and 25(c). We give in the first column of Table VI, the
standard site occupancy for each sublattice of the o.

phase ' with, in the next two columns, the site occupan-
cies constrained by a local order of A15 or I type. In
the latter case, note that the chains of the E sublattice,
along the c axis, are alternatively occupied by A and B
species [see Fig. 25(c)], hence the notation A, &2+B,&z in

Table VI. If one assumes that the occupancy of the A

and B sublattices is not affected by a local order of A 15
or I type, then both configurations would lead to the
same alloy composition A2B. Alloys of interest include
V-Co, V-Ni, and Nb-Os ( A =V or Nb), which are found
stable in the 0. composition range: 46—72 at. % V, 44 —75
at. Fo V, and 55 —65 at. %%uoN b, respectively.

Contrary to the 0. phase, D8 and D88 usually exist as
line compounds, and geometrical factors cannot be ig-
nored. Meanwhile, in the case of D8 (of W5Si3 type), a
complex tetragonal structure (D4I, or I4/mcm) with 32
atoms per unit cell, a so-called Hyde rotation of II/4
(Refs. 48 and 49) transforms this structure back into an
A 15 one, as shown in Fig. 26. Hence, assuming that the
D8 configurational order is preserved during this col-

FIG. 26. (a) Projection along the c axis of the D8 crystalline structure (of W,Si3 type). One unit cell is specified within the thick

solid line. The full and empty circles and empty squares refer to the three inequivalent sites of the structure occupied by A (full sym-

bols) and B (empty symbols) species (final composition: A &B3). By applying a Hyde rotation, i.e., a collective rotation of the sites in-

scribed in each cylinder, of w/4 in a direction indicated by the arrow, the transformed structure represented in (b) is described by

four A 15 unit cells.
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lective atomic motion, an ordered configuration based on
four A 15 unit cells results [see Fig. 26(b)]. This super-
structure reveals an A 15 order except for a set of chains
along one cubic direction which are alternatively fully oc-
cupied by A or B species. This configuration, not found
in the present ground-state analysis, demonstrates that
more subtle interplay between geometrical factors and or-
dering mechanism can take place in nature.

VI. CONCLUSION

We have investigated order-disorder phenomena in
A15-based alloys on a theoretical ground and predicted
the possible existence of additional ordered
configurations. Prototypical phase diagrams were stud-
ied in detail. For those alloys which display an A15
structure in a broad range of concentration, our findings
suggest that it would be interesting to carry out a careful
study of SRO diffuse scattering intensities as obtained by
x rays or neutrons, in an attempt to reveal experimentally
the X phase which may exist at low temperature in a
metastable state, if not in a stable one. Experiments are
underway to substantiate such findings. Our analysis also
suggests experiments to be performed on competing
phases such as the cr phase where local order is expected
to mimic the one described on an A15 lattice. In the
meantime, we have shown that the existence of crystallo-
graphically inequivalent sites in a lattice produces a num-
ber of peculiarities, as far as thermodynamics is con-
cerned, a remark which should apply to similar cases
such as interstitial ordering in alloys.

Finally, the extension of this study to other
tetrahedrally close-packed structures which are stabilized
mostly for electronic reasons, should improve our under-
standing on the interplay between geometrical factors
and configurational effect and its significance in the for-
mation of complex phases.
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APPENDIX A

Let us consider the p„configurations on a linear chain
of length n with the only two possible pair occupancies
AA and AB. p„is given by the sum of p„and p„,the
number of these chains which end by an A and B species,
respectively:

A 8
Pn Pn+Pn .

By adding an extra atom, we have

pn, =2p„"+p~=p„+p„"
with p„"=p„",+p„&=pn &. Therefore we have the re-

curr ence:

Pn+1 Pn+Pn —1

The solution of the form pn -x" leads to the equation

x —x —1=0

and pn =~", where ~ is the golden number
r=(1+~5)/2.

Thus, for a chain of length L, there are 2L sites, and in
an A 15 structure, because the 3L chains are indepen-

L 3L 6Ldent, the degeneracy d is given by d=(2 ) =r and
the residual entropy S by

6LS= lim 1n~
~ 8L

that is, S=
—,'ln~-0. 3609.

APPENDIX B

Although standard low-temperature expansion analysis
does not apply in the neighborhood of a superdegenerate
point, it is still possible to establish an analogy with the
so-called hard-sphere problem to get information on the
topology of phase diagrams near this kind of point.

If h, is the chemical potential at this point, the Hamil-
tonian is rewritten as

H=H, —bh ger„,
where H, is the Hamiltonian associated with h, and
Ah =h —h, .

The partition function Z, near h„takes the form

Z=g'exp Pb, h go„
where the first summation is restrained to the ground-
state configurations of H, and the origin of energy is
readjusted to the ground-state energy of H, ~ As expected
for a superdegenerate point, Z and all the derived ther-
modynamical functions depend on T and h only through
e=phh. This problem can be reformulated in the
language of "lattice gas" by replacing the spinlike vari-
ables by their corresponding occupation numbers,
p„=(1 cr„)/2,—and Zbecomes

Z x/2~ —28~z, z e

where n is the number of occupied sites (i.e., associated
with nonzero occupation numbers) in a given
configuration.

This expression corresponds to a partition function of a
lattice gas with constraint (cf. prime in the summation)
and z acts as an activity. Therefore the limit of Z, when
T and h tend, respectively, towards 0 and h„ is
equivalent to the solution of a lattice-gas problem if e
remains constant. In other words, in the plane(T, h), the
limits T~O and h~h„along a line of slope 8 is
equivalent to a lattice-gas solution with activity z =e

Contrary to a nonsuperdegenerate point for which
T~O depends only on the sign of e, this limit depends
explicitly and uniquely on the angle e in the case of a su-
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perdegenerate point. Accordingly, the concentration
c(8) decreases continuously with 8 (except for specific
values 6, if first-order transition lines emerge from the
superdegenerate point), because an infinity of stable states
are available at h =h, . On the contrary c(8) takes two
values, those corresponding to the two ground states, in
the case of a non-superdegenerate point.

It is easy to show that the entropy s(8), in the limit
T~O, along a line of slope 6 is maximum when 6=0,
i.e., when the superdegenerate point is approached verti-
cally.

As an application, consider the case of the F( A )-
A 15(A38) equilibrium, with first- and second-nearest
pair interactions, J, and J2, only. The ground-state ener-
gies per unit cell are given by

EF= —8h +6J1+24J2,

EA15 4h +6J1 24J2,

and h, = 12J,.
As mentioned in Sec. II B, F and A 15 only differ by the

occupancy in A and B species on the bcc sublattice. If
2N is the total number of sites of this sublattice, we have
n and 2)V —n sites occupied by A and B, respectively, and
the energy of a given configuration, specified by n, is
given by

E„=2(N—n )bh+E, ,

where E, =N(6J, —72J2).
If E, is taken as zero of energy, then the partition func-

tion is expressed as

2N

Z = ~ e 2(N n)ecn
2N ~

n=o

that is,

Z = (2 coshe)

Let us introduce g(8):

g(8)= lnZ .
1

Then, from the definition of the entropy,

s(8) 1. S(T,hh )

k T-o k

we obtain

s(8) 1 6
k 4

=—ln(2 coshe) ——tanhe
4

and

s(e) e
k 4cosh 6

In order words, no transition exists at finite angle, and
the thermodynamical treatment is analytic for 6 between
0 and II. Finally it can be shown that the previous re-
sults are given exactly in the Bragg-Williams approxima-
tion. Indeed, assuming statistical independency of site
occupancies, each site n is associated with an effective
field given by

h„' =h — g J„(o.)
m (Wn)

and the partition function is simply expressed as

pp eff

Z n n

s(8) 1 1+tanhe
1

1+tanhe
k 4 2 2

1 —tanh6 1 —tanh6+ ln

that is,

s(e) 6=—ln(2 coshe) ——tanhe .
k 4 4

APPENDIX C

If one replaces each pair belonging to the set of linear
chains of the A 15 crystalline structure by its center of
gravity, then Fig. 1(a) is replaced by Fig. (Cl),

(Cl)

which represents a simple cubic (sc) lattice with a lattice
parameter equal to half the A 15 lattice parameter. Then,
one can work out the CVM clusters for the A 15 struc-
ture by analogy with the ones for the sc structure after
the reverse transformation is applied. Thus, the first-

neighbor pair of sc splits into three different clusters of
A 15 as illustrated in Fig. (C2) [with site numbers taken
from Fig. 1(a)]. The full (empty) circles refer to the sites
of the sc (A15) lattice; the dash lines indicate a max-
imum cluster (here a first-neighbor pair) of the sc lattice,
which leads, after transformation, to a corresponding
cluster of the A 15 lattice.

8
11

0
7 113

(C2)

For the sc lattice, the next best CVM approximation is
achieved by considering the unit square as basic cluster.

The ensemble average of cr„,near h„takes the form

(o„)=tanh(8+Ph„' ) .

Because, when T~O, h„' tends towards zero faster than
kT, we obtain in this limit

(a„)-tanhe .

Thus, in the Bragg-Williams approximation, the entropy
is given by
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(C3)

The cube cluster of sc is transformed into an 11-point
cluster of A 15 given in Fig. (C4).

IIrr
r

r

0

(C4)

Because the sequence of cluster approximations improves
the CVM results with the size of the basic cluster (from
pair to square to cube. . .) for the sc lattice, it is intui-

tively expected that the corresponding sequence defined
for A 15 will perform similarly.

APPENDIX D

By applying the reverse transformation, this cluster leads

to the definition of only one six-point cluster for A 15

given in Fig. (C3).

given by

EE=2h —24Jz=2hh, where b,h =h —h, .

The next excitations to consider are all multiple of hE,
but their number is more diScult to evaluate. Therefore,
we will only retain a subset of these excitations. Let us

consider one of the two simple cubic lattices occupied by
one type of "spins. " The sites of this lattice are connect-
ed by an interaction J7, not included in our analysis, so
that these sites are independent of each other. Thus, any
excitation which is associated with a spin flip of n sites of
each individual simple cubic lattice has an energy equal
to nhE. The approximation will consist in considering a
two-level system: the ground-state energy (taken as ori-
gin of energy) and b,E, the highest energy level being oc-
cupied by any number of "particles, "between 1 and N/8
(N is the total number of sites in the A 15 lattice). The
partition function, Z, of this system is simply given by

Z —
( 1 +e PhE

)
N /8—

The resulting heat capacity per site, C,

k
—P~E

C= (PbE)—
(1+e—PAE)2

will show a maximum for

We show that near a superdegener ate point, the
specific heat C exhibits a maximum in the low-
temperature regime which is not associated to any phase
transition but instead to a Schottky anomaly.

By definition, at a superdegenerate point, specified by a
chemical potential h„there exists an infinity of zero-

energy excitations (more precisely, if N is the number of
sites, the number of these excitations increases with N as
2', c)0). Near h„these excitation energies are very
weak and well separated from higher excitation energies.
Therefore, when T increases, C increases until this first

group of excitations is saturated at T, . Above this tem-
perature, C decreases until the next group of states of
higher energy is excited. This local maximum, at low
temperature, corresponds to a Schottky anomaly, and no
phase transition is involved. It is easy to obtain an ap-
proximate expression for C, at low temperature. Let us
consider the case of the F( A )- A 15( A 3B ) equilibrium,
with first- and second-neighbor pair interactions, J& and
J2. To this equilibrium corresponds a superdegenerate
point characterized by h, =12J2 (h, =4.8J, for a2=0.4).
F and A 15 differ by the occupation of the two simple cu-
bic lattices forming sublattices II. For h close to h„with
h )h, (the case h (h, can be treated similarly), the
lowest-energy excitations are associated with a "spin flip"
on a site of sublattice II. The corresponding energy is

PhE
h

Pb,E

With b,E =2hh and B=Pb,h, we then have

e=cothe, i.e. , e*—1.20 .

Near h„atlow temperature, C will depend on T and h

only through 8=PA h, as expected for any thermo-
dynamical function near a superdegenerate point. The
maxima of C will be found along two lines with slopes
given, in a first-order approximation, by e' —+1.20 for
h)h, and e' ——1.20 for h &h, . This behavior has
been confirmed with Monte Carlo simulations (cf. Sec.
IV B) and the calculated value of T, came close to the one
deduced from the approximate treatment, i.e.,
kT, =able-0. 83bh (see Fig. 16). Note that these max-
ima can only be observed at finite h, i.e., in the grand-
canonical ensemble. Indeed, near a superdegenerate
point, a study at fixed concentration would lead to an ex-
ploration, in the (h, T) plane, along a line of constant
slope e.

The same treatment would apply to the X(A5B3)-
X( A 3B5 ) equilibrium near h, =0. A similar situation
also occurs for an fcc lattice with antiferromagnetic first
pair interaction J&, near the two superdegenerate points
at h, =4J, and 12J,.
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