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We discuss a special geometry of impurity superlattices that may produce wavelength and frequency
doubling through a second-order nonlinear wave mixing. According to the band theory of impurity su-

perlattices, the corresponding nonlinear susceptibility may become comparable to those found in ordi-

nary crystals.

I. INTRGDUCTION

The present crystal growth techniques can control im-
purity distributions in individual atomic layers. ' With
these techniques, it is possible to grow superlattices that
have nearly wavelike impurity distributions. Figure 1 il-
lustrates the wavelike donor and acceptor distributions,
pD(r) and p„(r), respectively, given by

pD(r) =No(1 —cosqo r),
p„(r}=NO(1+cosqo r} .

Here, No is half the amplitude of the impurity-density
modulation. It is equal to the spatial averages of the
donor and acceptor densities. pD (r ) /(2N0 )

Ip„(r)/(2N0) ] is the probability of finding a donor Iac-
ceptor] impurity at position r. qo is along the superlattice
axis. Its magnitude is given by q0 =2m'/Ao, where Ao is
the superlattice period. The band theory of such super-
lattices indicates that either the wavelength or the fre-
quency of a coherent 1ight beam may be doubled if an ap-
propriate Ao is chosen for a given pump frequency co,
and that this nonlinear wave mixing involves a second-
order susceptibility. If performed, such nonlinear wave-
mixing experiments may clarify the band theory of im-

purity superlattices. They may also lead to practically
useful devices for frequency down and up conversion. In
this paper we derive the relevant nonlinear susceptibility
using the Brillouin-zone (BZ} folding theory of Ref. 2 for
the impurity distribution. ' This calculation shows that
the nonlinear susceptibility is second order. For ap-
propriate superlattice parameters, its magnitude may be-
come comparable to the magnitude of the nonlinear sus-
ceptibility for homogeneous crystals that are used in
two-wave mixing devices.

The theory of Ref. 2 takes into account the atomic na-
ture of impurity charges. In this theory superlattice sub-
bands arise from the broken symmetry of the original
pure crystal. To the lowest order, it obtains energy-
dispersion curves of subbands from the folding of the
original BZ according to the superlattice period. The BZ
folding, in conjunction with the screened impurity poten-
tial, also yields a hierarchy of selection rules for photon-
induced transitions between conduction and valence sub-
bands. In contrast, the only other theory of impurity su-
perlattices is based on a continuous jellium model (CJM)

of impurity charges that does not yield any simple
method for obtaining superlattice subband structures.
Furthermore, in the CJM theory, photon-induced transi-
tions are described by means of harmonic approximations
and overlaps of harmonic oscillator wave functions that
do not yield any rigorous or approximate selection rules.
The calculations of the present paper are exclusively
based on the BZ folding theory of Ref. 2. Experimental
verification of the theoretical results presented here
would, therefore, be verification of the BZ folding theory.

Let us assume that we have a cubic crystal with the lat-
tice constant a. Ao and a are related by

AD=La, (2)

0

0

FIG. 1. Wavelike impurity distribution with period A0.

where L is an integer. The theory of Ref. 2 shows that
each band of the pure crystal produces L superlattice
subbands when it is doped according to the donor and ac-
ceptor distributions in (1). If L is an odd integer, then the
superlattice subbands of a band n may be labeled by an
index I that assumes the integer values in the interval

(L —1) ( ( (L —1)
2

( I &

If L is an even integer, the labeling of subbands is slightly
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conduction subbands at z =0 is approximately given by

/=0
E„,(0)—E„o(0)=

2m

2 2'
m, Ao

2

E
G
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co =2'
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Therefore, if one adjusts the superlattice period to the
value

1/2
2m A

m, EG

/=0

FIG. 2. Subband formation and wavelength doubling in an
impurity superlattice.

more complicated and is given in Ref. 2. We assume that
I. is odd in the rest of the discussion. Let the wave vector
k span the BZ of the pure crystal. In the superlattice
geometry, this zone is partitioned into I. subzones. The
subzone centered on I becomes the superlattice BZ. The
superlattice BZ is spanned by a wave vector ~ given by

]c=k—Iqo .

The superlattice subband energies are given by

E„,(K)=E„'(K+1q, )+5E„,(K), (5)

where E„(k) is the band energy of the pure crystal and
5E„&(K) is a small correction term arising from the im-
purity potential. Equation (5) shows that the separation
of subbands may be adjusted to a desired value by vary-
ing the superlattice period Ao. Let us consider the band
structure illustrated in Fig. 2. Assume that the conduc-
tion and valence bands are parabolic near the center of
the BZ, with the band energies

$2/2 AkE, (k)=EG+; Eo(k)=-
2m 2m

(6)

where EG is the band gap, and m, and m, are the
effective masses. In the figure we assumed that m, & m„.
This assumption is made for the algebraic convenience of
excluding the valence subband 1=1 from the nonlinear
wave-mixing process. If the crystal is doped according to
the distributions in (1}, then these bands are split into
subbands whose states are labeled by ~clK) and ~vlK).
The figure shows only two subbands, I =0 and 1=1,for c
and U. Other subbands, such as those corresponding to
1=—1 and ~1~ ) 1, are not shown in order not to clutter
the figure. According to (5) and (6), the separation of the

then the states ~vO, K=O), ~cO, K=O), and ~cl, K=O)
compose a three-level system such that the energy separa-
tion of ~cl, K=O) and ~cO, K=O) equals the energy sepa-
ration of ~cO, K=O) and ~vO, K=O), which is EG. If K is
sufficiently small, the same is true for the states ~vO, K),
~cO, K), and ~ci, K). Clearly, if the optical-transition ma-
trix elements between the pairs of the states

~
v 0,K) and

~cO, K), ~cO, K) and ~cI,K), and ~vO, K) and ~cl, K) are
finite, then one can use this three-level system for either
wavelength doubling or frequency doubling. The theory
of Ref. 2 shows that these matrix elements are indeed
finite. The optical coupling between ~vO, K) and ~cO, K) is
the strongest; it is determined by the interband coupling
of the original pure crystal. The couplings between the
pairs ~cO, K) and ~cl, K), and (vO, K) and ~cl, K) are
weaker, since they are related to light absorption or emis-
sion by an electron in an impurity potential. Note that if
EG=0. 1 eV, m, =0.1 m, where m is the bare electron

0

mass, then Ao= 78 A, which is a reasonable value for the
growing of a superlattice with the wavelike distribution,
since impurity distributions are controlled in individual

0
atomic layers whose widths are in the range 2-5 A.

In Sec. II, we derive the nonlinear susceptibility for the
wavelength doubling from the subband geometry shown
in Fig. 2 and show that it is a second-order quantity. For
Xo-10' cm, its value may be quite large, comparable
to y' ' observed in homogeneous crystals of GaAs, InSb,
InAs, and GaSb. In contrast to this result of the BZ fold-
ing theory, the CJM theory predicts a value which is at
least 16 orders of magnitude smaller. In Sec. III, we
derive the nonlinear susceptibility for the second-
harmonic generation from the subband structure of Fig.
2. In the concluding section we briefly discuss other
geometries and possible experimental observation.

II. %'AVELENGTH DQUBLING

Let us assume that a pump wave of frequency
co -2EG is applied on the sample and a signal wave of
frequency co, =co /2-EG is generated. In the rotating-
wave approximation, the electron-photon coupling Ham-
iltonian for the superlattice may be written as

H, r =g[g,'„(K)C O„C„O~,+g,'„'(N)C O„C,O~, +G,', (K)C„„C,O~, +G,';(K}CO„C„~,

+G~„(K)C„„C,O~ +G '( ~)C„tK„~t) .
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Here a, (a, ) and a (az) are the annihilation (creation)
operators for the signal and pump-wave photons. C lnlrb

(C„l ) is the electron annihilation (creation) operator.
The coupling coeScients g„"„.and G„"„.are given by

p„„(a) =5„„fia+ P„„(a),
P„„(a, )=QAGQ„'(a+ G)4 „(a, +G ),

G

(13)

eA„
gnn'( ) &/ 'Pnn (&) ~

PlC

„{a)g"„,(a )
G„"„(a)= IVog

E„(tr+qo) —E „(tr)

g" „(a+qo)4 „,(a. )

E„.(tr) —E „(tr+qo)

(10)

where P„are the momentum Bloch functions and G are
the reciprocal-lattice vectors. 8'p is a constant related to
the average density No:

4miYpe
8'O =

&o(qo+q. )
(14)

where E'p is the static dielectric constant and q, is the
screening wave vector (that is, q, is the screening
length) for charged carriers. 4„„(a)represents an over-
lap of two momentum Bloch functions:

4„„(tt)=g(tl„'(tt+ qo+G)$„(tt+ G) .
G

2C2

2V,)n „a)„
(12)

Here, e„ is the polarization vector for the mode p. 3 isP
a constant given by

In order to calculate the nonlinear susceptibility for the
wavelength doubling from the superlattice subbands of
Fig. 2, we need to calculate the relevant second-order
current density at time t, hence the second-order density
matrix at time t. We transform H, &

to the interaction
representation and split K, ~(t) into two parts:

where n„ is the index of refraction and V„ is the quanti-
zation volume. p„„.is the matrix element of the momen-
tum operator given by

K, (t)=V, (t)+V (t),
where

(16)

(17a)

(17b)

The second-order density matrix in the interaction representation is given by

p',"(t)=—,f dt'f dt"[V, (t')+ V, (t'), [V,(t")+V,(t"),p, ]],

where po is the initial density matrix at t = —~, given by

PO Peq XPF . (19)

p,q
describes electrons in thermal equilibrium and PF de-

scribes the electromagnetic field that has its two modes in
coherent states. Therefore,

where E, and E are the electric-field amplitudes of the
signal and pump waves.

The terms that give rise to the wavelength doubling
from the superlattice subbands of Fig. 2 come from the
portion of the current-density operator which is propor-
tional to —(e /m )p and is given by

nlzCn'l'a'peq] ~nn'~ll'~kk' pg[1+e nlrb F
]

&..~ll &..f{E.l.»— (20)

JPt)= ——g P.l.;.l.
nl x; n 'l'tt, "

I[E (z)—E,l,(K )]t/A
X e ~la ~ 'l'a.

(22a)

1

to„A„Tr[a„pF]=E—„ for p=s or p,
C

(21)

where P=(k&T) ' is the inverse temperature and EF is
the Fermi energy. Similarly,

in the interaction representation. Here,

p I; 'I' ' ~ "t)ll'[A{K+1qo)6 „+P„„(lt+Iqo)]
Consider

(22b)

Tr[C„l„C„l~t '(t)]= — f dt'f dt "Tr([[C„l„C„l„,V, (t')+ V (t')], V, (t")+V (t")]po) .
00

(23)
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We rearranged the double commutator in the integrand for easier algebraic manipulation. The components of the
current density oscillating at the signal frequency, that is, those proportional to exp[ —i(co~ —co, )t]=exp[ i—co, t],
come from the combination V, V . Therefore, we need to evaluate only the portion of (23) given by

f dt' f dt "(Tr[[[C&„C„.&„,V(t'}],V (t")]po]+Tr[[[C&„C„.&„,V~(t')], V(t")]pa]) . (24)

Taking the indicated commutators, using (20) and (21), and picking those terms proportional to exp[ i—(co —co, )t ], one
finds

ITr[C t„C„,t&t '(t)] j«
n, n VI c 1 co s

t' » —i [E (K)-E (K)-Ato )t'/A

2 Tfl Qco~cop

i[E &(K)—E„p(K)—fico )t"/A
Xe

XE,'E [f[E„o(ic)]—f(E,)(a')] . (25)

Before we can proceed with the time integrals, we need
to assign finite lifetimes to the states involved in the tran-
sitions in (25). Denote the linewidths associated with the
transitions ~cia. )~~UOic) and ~elec)~~eOic) by I and I":

E„(ic)~E„(tc) i—
2+c1K

E„o(ic)~E„O(ic)+i
fi

2+vOK

(27b)

r= — +1 1

2 Pc 1K 7 ~K
(26)

in the second one. The exponential factors become

&[Eg](K~ Egp(K] ~toy+&~ jt /~ &[Eg](K~ Ettp(K] &~jt

I"=— +1 1

+clK +cOK

where r„&„is the lifetime of the state
~

nil). We now add
appropriate imaginary parts to the band energies in order
to take into account finite lifetimes of the states. This
causes the exponential factors to vanish as t ~—~. We
make the replacements

(27c)

(J)(t)=Tr[Jp(t) ]=Tr[J,(t)p, (t) ]= ap
at

' (28a}

When (J ) and P are transformed to the frequency space,
one obtains

Finally, in order to determine the nonlinear susceptibili-
ty, we need to relate the current density to the polariza-
tion vector. This relation is given by

E,)(tc) +E,i(tc)+i-' A'

27 c1K

E,o(ic ) +E,o(ic ) i— —
2TcpK

in the first exponential and

(27a)

( J)(co)= i coP(co) .— (28b)

Substituting (27c) for the exponentials in (25), perform-
ing the indicated time integrations, using the result for
the trace of Jf with pt ', one finds that the nonlinear po-
larization vector relevant to the down conversion
co ~co, +co, is given by

—I'(~ —to )t
P + (t)=e

I',e E*E
S P

m , co(cop
—coco, )

[f[E„o(ic)]—f[E,i(a)]]
Xgp (tc)Ep~~ (tc)&p p~'„(&)

[E„(ic) E„(ic) A'co —iI—][E, (tc—) E, (tc)+Aco, —fico i (r+r')]——'

(29a)

where

@„',(a)p„,(a+qo)
E, (a.) —E„(a+qo)

'4 „(K)p„,„(K) p „(K+qo)4„„(K)
E,(~+qo) —E„.(a ) E„(a.) —E„.(a+qo)

(sL) p~"p„(ic)= IVo
Eo(rc+qo) —E„(a)

The nonlinear susceptibility corresponding to P in (29a) is then given by

(29b)
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~(SL—2)( )
se

m co, co&(co —cp, ) V,i

[E„(cc) E—„(cc} Ac—p —iI ][E, (K} E„,(~) +ecp, —Xcp, —i(r+r')]
(30)

Let us reconsider the transitions described by (30).
They are analogous to the following transitions in a pure
crystal. Consider the band structure in Fig. 3 and sup-
pose that a valence-band electron absorbs a co photon
and goes to a high-momentum state in the conduction
band. Next, suppose that the electron simultaneously
emits an co, photon and a phonon of momentum q (or ab-
sorbs a phonon of momentum —q) and goes to the bot-
tom of the conduction band. This second stage is simply
the inverse of the free-carrier absorption. The electron
at the bottom of the conduction band then emits a co,

photon and goes to the top of the valence band. Finally,
it emits (or absorbs) a phonon and goes back to the
valence-band state from which it started. Normally such
a set of transitions would not produce the down conver-
sion of the pump wave, since the phonon-momentum q in
the emission or absorption is not restricted to a well-
defined value in thermal equilibrium. If, however, a
well-defined sound wave of momentum q exists in the
crystal, which means that the phonon field has a
coherently excited mode, then the nonlinear wave mixing
and the consequent wavelength doubling is possible.
Indeed, such transitions constitute the Brillouin scatter-
ing of light. It follows that the periodic distribution of
impurities takes the place of a coherent excitation of the
phonon field. The superlattice acts as a coherent source
of momentum qo and allows the nonlinear wave mixing to
take place. The impurity superlattice has an advantage
over the phonon field in that it is static and does not ex-
change energy with the electron during the wave-mixing
process.

The homogeneous crystal band structure chosen in Fig.
2 assumes that the conduction and valence bands are well
separated in energy from the other bands. Clearly, when
the homogeneous crystal bands are folded onto the super-
lattice BZ and one obtains the illustrated subband struc-
ture, the conduction and valence subbands must still be
well separated in energy from the subbands of the other
bands. This means that the sums over the bands in p'„"'
and P'„' may be restricted to the conduction and valence
bands alone. p'„"' becomes

p,„(»}@,*,(cc)
p,","'(~)= W,

E, (cc+qp}—E, (a )

where X„„.is the part of the position operator given by

X „„(k) =ipse ('„k —G) P„(k—G) .a

G

Note that X,„and P,„are related by

—iRP,„(k)
X,„(k)=

m [E,(k) —E„(k)]

Using (32) and (34), as well as the approximations

E, (K+qp) E (cc)+EG,

E,(cc) E, (cc+—
qp) =EG, E, (sc) E„(cc)=—EG,

P,„(~+qp) =P,„(~)=P„(0),
we find

(33)

(34)

(35)

2rnEG

Next, consider p',„"'.

(36)

(K)p,„(~) p,„(a+qp)4„„(K)

E, (cc+qp) E, (z) E—z(cc) E, (cc+—qp)

4,„(z)
E, (cc+qp) E„(cc)—

X [p„(~+qp)+p„„(a)] ' . (37)

Note that the energy denominator

[E„(x) —E„(z+qp) ]

in (37) cannot be made smaller than Wp. The theory of

p.*.(&+qp)e.",(

E( ) —E( +q) (31)

If we expand the momentum Bloch function
P„(a+qp+G) around qp=0, we find

4„*„(~)=5„„. i qp X„„(cc)+O—(qp )., (32)
FIG. 3. A possible phonon-assisted frequency down conver-

sion in a homogeneous crystal.
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Ref. 2, in particular, Eq. (11), is derived under the as-
sumption that the zeroth-order subband energies
E„(K+iqp) are not degenerate. Thus, one must have

Wp & (E, (K+qp) E—„(K)a, (E, (K+qp) —E, ( K)a . (38)

If aqpa is decreased (hence, Ap is increased} to a value that
violates (38), one may not use Eq. (11). Instead, one must
calculate G„"„ from a degenerate perturbation theory,
along the lines suggested in Ref. (2). Actually we will as-
sume that

IE„'(K)—E.'(K+qp) I

is of the same order of magnitude as EG, even though
m„) m„and approximate the first two terms of (37} by
(2Wp/EG )P,„. Although this yields an underestimate of
p,'„', it is sufficient for an order-of-magnitude calcula-
tion. We should add that the assumption of nondegen-
eracy puts a restriction on the use of the parabolic-band
approximation, since this approximation may give rise to
degeneracy as one approaches the boundaries of the su-
perlattice BZ. Consider, for example, E, (K+qp) and

E, (K). set K= —qp/2. E, (qp/2) and E, ( qp/2) —are de-

generate in the parabolic-band approximation. In order
to avoid such degeneracies, the parabolic-band approxi-
mation Eq. (6) must be restricted to the center of the su-

I

8'p( E, „
qp o—E

C, V
(39)

For the last group of terms in (37), we note that the in-

traband momentum matrix elements are given by'

i(i(K+ qp }
P„(K+qp) =

m,
P„„(K)=— (40}

Taking the leading terms for 4„„., we finally obtain

2$'p i 8'pqp P

2mEG

a

X
m,

A'qp

2$'p

E cv
G

(41}

Using (36}and (41), the nonlinear susceptibility becomes

perlattice BZ. We assume that actual zeroth-order sub-
band energies are not parabolic and that E, „(qp/2)
differs from E, „(—qpl2). In fact, we assume that

~(SL-2)( )pvA. p s

'2
8'p ie Aqp'P, „

P,„"P,"„P„
ill co~cp&(cp&

—
co& )Ea V0(

jf[E„p(K)]—f[E„(K)]]
X „[E„(K)—E„(K)—A'cp il ][E, (K—) E„(K)+Pi—cg, —fico —i(I +I")] (42)

N„p=(U i) Xf[E„p(K)] .

N„p is on the order of (a Ap) ', where a is the lattice
constant of the pure crystal and Ao is the superlattice

0 0
period. For a —5 A and Ao- 100 A, one has
X„p-3X10 cm . Thus, we find

e3 2' 4
( „,, e Wph' qpN„pP, „

Ig I
=

4m4E4 I 2

=10 cgs units . (43)

This value is on the order of y' ' for homogeneous crys-
tals of GaAs, InSb, InAs, and GaSb. "

In order to get a feeling about the magnitude of y'
let us assume that EG -0.1 eV, ep-20, qo-q, -2~X 10
cm ', and Np-10' cm . This yields 8'p-10 eV
and (Wp/Ea)-10 . Let the linewidths I and I" be on
the order of 10 eV. This corresponds to a lifetime of
about 10 ' sec. Let us take P,„/A-10 crn '. Let us
also approximate the energy denominators in (42) at their
resonance values and pull them out of the integral.
Neglecting the higher conduction subband occupation,
the remaining integral over z yields the total density of
electrons in the highest valence subband:

The order-of-magnitude estimate in (43) must be
viewed as generic. In Sec. IV, we consider specific serni-
conductors in conjunction with proposed experiments.
Because of degeneracy, or near degeneracy, the subband
structure of common semiconductors may become con-
siderably more complicated than the structure illustrated
in Fig. 2.

It is important to note that the result in Eq. (43) is to-
tally at variance with the CJM theory of Ref. 4. In that
theory, spatially separated electrons and holes are as-
sumed to feel nearly harmonic potentials. The matrix
elements between the conduction and valence harmonic
levels are reduced relative to the pure crystal by an ex-
ponential factor:

(44}

where co
&

is the plasma frequency of the free carriers.
Dohler and Ruden estimate that for the relatively
stronger transitions from the lowest conduction subband
to the highest light-hole subband in III—V semiconduc-
tors, the exponential factor has the magnitude 10 . For
the heavy-hole subbands, the same factor becomes 10
Thus, the CJM predicts, on the basis of the reduction of
the matrix element alone, a y' ' on the order of 10
cgs units or less.
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III. FREQUENCY DOUBLING

We now assume that a pump wave of frequency
co -EG is incident on the superlattice sample and a sig-

I

nal wave of frequency u, =2' is generated. The transi-
tions involved in this second harmonic generation are
shown in Fig. 4. If we interchange s and p indices in Eq.
(9), we obtain the interaction Hamiltonian for the
frequency-doubling process in Fig. 3:

I, r=g[gP, (K)C,0„C„0~ +g,„*(K)CO„C,o~p+G„(K)C„„C,0~ +G„'(K)C,0„C„~

+Gc'„(K)Cc)„C„O»(2,+Gc'„'(K)C,O„C«ra, ] . (45)

In order to calculate the nonlinear susceptibility, we need to calculate the component of the polarization oscillating as
exp[ —

i(cop+cop )t ]=exp[ i co, t—]. It is clear from Fig. 4 that the nonlinear current density yielding this component of
the polarization arises from the matrix element of the superlattice momentum operator connecting the subbands c 1 and
vO. We infer from Eq. (11) that this matrix element is given by

4,„(K)P„„(K) P,„(K+qO)q)„„(K)

E, (K+qo) E„(K—) E, (K) —E„(a+qo)
(46)

The corresponding current-density operator in the interaction representation is given by

JSH, , e (SL) '[,o " " ] Ct
777

UOK C 1K (47)

Using (18), we see that the second-harmonic current density is associated with the (apap ) terms in the integral of the
double commutator

, f dt' f dt "Tr([[C„,„C„„,V, (t')], V, (t")])oO)
SH

—2i~ ( ([E,)(r) E„o(r)]t/tl—

[E„(K)—E„(K)—2fico —i I —i I"]

f[E.O(K) l
—f[E,O(K)] f[Eco«)]—f[Ecl«)]

X +
E (K) E„ (K) fico— iI —E„(—K) E, (K) fico— iI"—— (48)

where I 0 is the linewidth associated with the transition ~cOK) ~j vOK ). The polarization is given by

P +„=e
p p s

~ 3
2;~ ]re E,E,

p

2m coP

(SL)r ~. K~. (SL)K 1
MPclr;u0» p Pcu p Pcc

f[E„()(K)]—f[E,()(K)] f[E„(a)]—f[E„(K)]
X +

E, (K) E„(K) fico —i I ——E„(K) E, (K) fico —i I"—— (49)

The nonlinear susceptibility for frequency doubling becomes

(SL-2) + — — (SL) ~ (SL)A ~Xpvx p p s 3 3 Xpc lr'uorpcu pcc r E ( ) E ( ) 2f p pI ]2m co V,I

f[E„O(K)]—f[E,O(K)] f [E„(a.)]—f[E„(K)]
X +

,
E, (a. ) E, (a) fico i —I E„——(K) E, (a) f—ico i I."—— (50)

Comparing (50) with (30), one sees that

+(SL-2)(
P P

is of the same order of magnitude as

+(SL-2)(

Thus, the proposed impurity superlattice geometry would
be an extremely efticient second-harmonic generator.

IV. CQNCLUDING REMARKS

As far as the frequency tunability of the proposed two-
wave mixing process is concerned, the geometry of Fig. 2
has a slight disadvantage in that it uses a transition
across the band gap of the crystal for the mixing of two
waves. This allows the nonlinear susceptibilities (30) and
(50) to be quite large, but restricts either the pump fre-

quency or the signal frequency to a small neighborhood
around EG/A. If one is willing to tolerate smaller non-
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FIG. 4. Second-harmonic generation from the superlattice
subbands.

FIG. 5. A different subband structure for second-order wave

mixing.

linear susceptibilities, one may achieve a greater frequen-
cy tunability with impurity superlattices. As an example,
let us assume that the crystal is doped only with donors
with a superlattice period Ap 300 A. All other parame-
ters for the pure crystal remaining the same as before,
one has the subband structure illustrated in Fig. 5. One
may therefore use 1=0, 1, and 2 subbands of the conduc-
tion band for two-wave mixing. The matrix elements for
the transitions

ic, l =0,z)~ic, l= 1,~)

and

ic, l =1,~)~ic, l =2,K)

are essentially the same as before, given by G,", of Eq.
(11}. The theory of Ref. 2 indicates that the matrix ele-
ment connecting the states ic, 1=2,e) and ic, l=O, rc) is
on the order of (Wo/EG)G,",. Thus, the magnitude of a
second-order nonlinear susceptibility using only the con-
duction subbands for two-wave mixing is reduced com-
pared to (30}and (50) by a factor (W0/EG ) —10 . Note'
that this would still yield a substantial second-order non-
linear susceptibility which is on the order of 10 Xy' '

for potassium dihydrogen phosphate.
The preceding calculations indicate that the proposed

two-wave mixing mechanism of Fig. 2 may be readily ob-

servable in impurity superlattices of III—V semiconduc-
tors, for example, in InSb. When doped according to (1),
the actual subband structure of InSb would be much
more complicated than the simple structure illustrated in

Fig. 2. There are three sources of this complexity. The
multiple folding of the BZ is one. As L becomes a larger
integer, more subzones are created. The pieces of the
original energy-dispersion curves of the conduction and
valence bands that fall into the additional subzones pro-
duce more subbands. The spin-orbit coupling is the
second source of the complexity. In InSb and in similar
semiconductors, the spin-orbit coupling is significant and
determines the main features of the band structure of
pure crystals. The use of an appropriate Kane model for
the original homogeneous bands in the preceding calcula-
tions may ameliorate the neglect of the spin-orbit cou-
pling in the theory of Ref. 2 to some extent. Neverthe-
less, one should keep in mind that the spin-orbit coupling
may afFect selection rules as the original BZ is fo1ded.
The third source of the complexity is the near-spherical
symmetry of the bands of InSb in the neighborhood of I .
This symmetry leads to the crossing of the folded bands
for +ili as illustrated on the left-hand side of Fig. 6 for
l =+ 1 and l =—1. Without the coupling induced by the
impurity potential, these two subbands cross each other.
Within the circled region, the two subbands may be treat-
ed as degenerate. If the coupling induced by the impurity
potential is taken into account, the two subband energies
are approximately given by

E„~(a)=—,
' [E„(z+qo)+E„(z—qo) ]k—+[E„(x+qo)—E„(z—qo) ]2+4' 8'„,„.„,„]

1
(51)

where O'„I „I ~ is the matrix element associated with the impurity potential and is given by

8'„i~„~z =5„z8'Og j 5i p+ &P„'(x+lqo G)P„[e+(l——1)qo—G]
G

+5I+1,l'0„'(a'+lq, —G)p„[~+(I+1)q,—G)] (52)
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I= -1

0 ,

'

FIG. 6. The left-hand figure shows the pure BZ folding and
the crossing of two subbands. The right-hand figure shows the
subbands avoiding the crossing due to the impurity potential.

figure of Fig. 6, beginning from I and extending in the
directions +~ and —a, are mostly the contributions of
the subzones spanned by sc —qo and z+qo, respectively.

We should add that these complications do not affect
the order-of-magnitude estimates obtained in the preced-
ing sections. They simply require some fine tuning of
theoretical calculations for specific semiconductors.
Indeed, in some cases they may actually increase the
magnitude of g' ' by multiplying (30) and (50) with
appropriate degeneracy factors.

With the avoided crossing as illustrated on the right-hand
side of Fig. 6, a subband is no longer exclusively related
to just one of the subzones of the original BZ. For exam-
ple, the two pieces of the highest subband in the right
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