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It has been argued that, in systems that have disorder too large to be described by a Gaussian, x-ray-
absorption fine-structure (XAFS) spectroscopy alone cannot define the radial distribution function
(RDF) because of the lack of low-k data. We show that the low-k data can, under certain conditions, be
reconstructed using cumulant expansions, which give the correct functional form. This allows XAFS to
determine unbiased single-shell RDF’s in cases of moderate disorder, without assuming a particular
model for the RDF. Some examples are given to illustrate the technique and its limitations.

I. INTRODUCTION

The extended x-ray-absorption fine-structure (EXAFS)
technique has been widely used in recent years to obtain
the atomic arrangement of atoms in various classes of
materials whose structures are not amenable to deter-
mination by more standard techniques such as
diffraction.’? The fine structure past x-ray-absorption
edges is produced by interference effects on the photo-
electron wave function as it is backscattered by surround-
ing atoms.

Traditionally, it has been convenient to separate this
fine structure into a region within ~30 eV of the edge,
called the x-ray-absorption near-edge structure
(XANES), and the region beyond, the EXAFS region.>
The original motivation for this separation was the belief
that multiple scatterings of the photoelectron wave func-
tion from the surrounding atoms was dominant in the
XANES region, while single scattering was dominant in
the EXAFS regions. Recent experimental* and theoreti-
cal>® investigations have shown that multiple scatterings
are not as important as first believed and by taking ac-
count of the spherical nature of the photoelectron wave
function the region where single scattering is dominant
extends much closer to the absorption edge. In addition,
as discussed in Sec. II, only single scattering contributes
to the Fourier transform isolated first coordination shell
fine structure for all energies, and in some cases the same
is true for the second shell. Thus, the distinction between
XANES and EXAFS no longer has a justification for the
fine structure when discussing the first coordination shell
and in the second shell in some cases. When we are just
interested in those cases we will not distinguish between
XANES and EXAFS and will use the phrase x-ray-
absorption fine structure® (XAFS) to describe the fine
structure.

It is well known that XAFS contains the structural in-
formation of average distances to near-neighboring atoms
and the types of neighbors about a specific atom type.
The simple expression for XAFS also contains the mean-
square variation of distances o about the average in a
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Debye-Waller factor of the form exp(—2k20?). This
Debye-Waller factor is valid for small disorder or a
Gaussian distribution of distances. It had also been ap-
preciated from the very start® that, for more general dis-
order, the radial distribution function (RDF) enters into
determining the EXAFS spectra. The RDF of interest is
the spatial distribution of neighboring atoms relative to
the specific type of center atom; that is, it is the partial
pair correlation function about that type of atom.

It is usual to display the Fourier transform (and/or its
magnitude) of Y(k), which is the normalized XAFS in k
space. Here k is the wave number of the photoelectron
knocked out of the atom by the absorbed photon. This
Fourier transform is the convolution of the RDF and,
among other factors, the backscattering ¢ matrix of the
neighboring atoms. Because of the convolution the
Fourier transform is not readily related to the RDF, and
further analysis has to be performed to obtain an RDF
from the data. When the RDF is more complex than a
simple Gaussian, there are difficulties in separating out
the RDF from the XAFS. The difficulties are related to
the fact that low-k information is inherently missing in
the XAFS. The problems introduced by this lack of low-
k information have been shown to make the determina-
tion of the RDF an ill-posed problem’ in the sense that
small errors in the XAFS and its analysis produce large
errors in the RDF.

A standard method to determine the RDF is to assume
a model with some variable parameters and to determine
these parameters by finding the best fit between the model
and the XAFS data.’? If the assumed model is a poor
one for the actual RDF, then large errors can ensue even
though a reasonably good fit to the data can be obtained.
For example, assuming a Gaussian distribution for an
RDF that differs greatly from a Gaussian because it is
significantly skewed about its peak will cause significant
errors in the average distance and the total coordination
number,® 1% in addition to an incorrect shape to the
RDF.

A good example of the problems of assuming a specific
model is a disagreement over two physically distinct in-
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terpretations of EXAFS data of Al-Mn quasi-crystals
based on different assumed models, each of which gives a
reasonable fit to the data.!*!> This illustrates how model-
ing assumptions bias the results of data analysis.

Using various theoretical developments'é™"  of
multiple-scattering calculations, an EXAFS data analysis
program has been developed® that includes multiple
scattering and thus can fit the full EXAFS spectrum.
This then obviates the need to use a Fourier transform to
isolate particular coordination shells and fits can be made
to the whole spectrum at once. Although such a scheme
eliminates distortions that may be introduced by Fourier
filtering of particular shells, the need to include multiple
scattering requires the introduction of other approxima-
tions and additional parameters whose effects have not
been fully investigated and documented. Care must be
exercised to limit the number of additional parameters so
as not to exceed the actual amount of information present
in the XAFS spectrum.?! The approximations made, e.g.,
in calculating the effects of thermal vibrations on the
multiple-scattering contributions, are crude and give un-
certainties in the final result for the RDF that have not
been fully assessed, but obviously degrade the accuracy.

In this paper we present a way to overcome the prob-
lems described above and obtain directly the RDF
without biases introduced by an assumed model for the
RDF. Preliminary descriptions of the method have been
presented.?? The technique at present is applicable only
when one type of atom occupies the region covered by
the RDF. This technique overcomes in this case one of
the major criticisms of XAFS: namely, that for RDF’s
greatly distorted from a Gaussian, wrong answers for the
RDF may be obtained if the wrong model is assumed.
The analysis changes XAFS from a technique that can
produce bias in the RDF by wrong assumed functional
forms to one that determines the RDF with assessable er-
rors.

II. PROBLEM

The basic expression we employ to describe the XAFS
for a single shell with one type of backscatterer is!

X' =TImB(k) [ expli2kr+8(k)]g (r)dr . (1)
Here
_t(2k) m
Bh)="—
@

g (r)=exp( —2r/)»)L('2‘-)— s
r

where Im is the imaginary part, p(r) is the RDF defined
as the probability of finding an atom in the range of radi-
al distances from r —r +dr, A is the mean free path, and
t(2k) is the effective backscattering amplitude of the
atoms in the shell and 8(k) the effective phase introduced
by both center and backscattering atoms. Both #(2k) and
8(k) have in general a weak dependence on r~! because
of thée spherical nature of the photoelectron wave func-

tion.
This expression contains certain simplifying assump-

tions. These are the independent particle model with sin-
gle scattering and the small atom approximation. It has
been shown? that the independent particle model is accu-
rate to only about 20%. Multiple-scattering effects!®
could be dominant for both more distant neighbors and
for near-edge structure, and the small atom or plane-
wave approximation is not valid near the edge>%!® where
the lowest k values of the XAFS data occur.

Fortunately, by a judicious use of existing standards,
these inadequacies of Eq. (1) can be canceled out.”® The
x(k) consists of an amplitude and phase. Using a stan-
dard with the same center atom and backscattering
atoms and dividing its amplitude into that of the un-
known and subtracting its phase from the unknown will
eliminate, to a good approximation, the errors of the in-
dependent particle approximation. If the distances in the
standard are approximately the same as the unknown,
then the errors of the small atom approximation are
closely canceled. The multiple-scattering effects are more
subtle. When one isolates the first shell by Fourier trans-
forming, one eliminates all multiple-scattering effects.! !¢
They manifest themselves only in more distant shells at
least a distance R /2 further than the first shell where R
is the nearest-neighbor distance. In close-packed struc-
ture, such as fcc crystals, the second shell already has
significant multiple-scattering contributions.”> However,
in open structures such as the diamond structure,
significant multiple scatterings do not occur until past the
second shell. This is a most important advantage of our
method. If an isolation of the first shell were not made
but one chose to fit the total XAFS spectra, the multiple
scatterings of many orders could contribute near the edge
and the reliability of any fit would have the added uncer-
tainty of the accuracy of multiple-scattering calculations
(which are significantly less reliable than the single-
scattering calculations). The effect of any distortions in-
troduced in isolating the first shell by Fourier transform-
ing have been shown to be very small if properly account-
ed for. The advantages of eliminating multiple scatter-
ings from consideration more than compensate for any
small uncertainties introduced by Fourier transforming.

In summary, then, when good standards are used and
their amplitudes are divided into and their phases are
subtracted from the unknown, all of the failings of Eq. (1)
are compensated for in the first shell always, and in the
second shell in many cases. The resulting expression be-
comes

exp(2k?a?)y (k) ,
where

X (k)=Im [ H(Ar)exp(i2k Ar)dAr . (3)

Here

(r) R!
H(Ar)=L;—S—exp[ —2Ar/A],

r? N;
Ar=r—R,_, and R, is the average distance and N is the
coordination number of the atoms in the standard. It is
assumed that the standard has small enough disorder that
its distribution about R, is given by the Debye-Waller
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factor exp[ —2k%02].

Because of the similarity between the standard and the
unknown, A will be closely the same in the two. Except
for the A term, this reduced y'(k) contains only structural
RDF information. Since typically A~8A and Ar <0.5A,
not knowing the precise value of A introduces only small
errors.

To this point, what we have written is simply a stan-
dard XAFS analysis procedure for the first shell. The
term y'(k) is the oscillatory quantity that is due only to
structure which is left once the atomic backscattering
phase and amplitude terms are eliminated. In the case of
small disorder, the XAFS phase and amplitude are not
usually recombined into an oscillatory term, Y'(k), be-
cause the phase contains distance information while the
amplitude contains the coordination number and Debye-
Waller factor. In the case of small disorder it is therefore
advantageous to treat phase and amplitude separately
after atomic functions are removed. However, in the
large disorder case, recombining the purely structural
parts of the phase and amplitude into y'(k) allows us to
produce formally the desired p(r) by the Fourier trans-
form:

r2N,
plr)= Y exp

s

Ar

2
A

J7x (sin(2k Arydk . @

The inversion of Eq. (4) is a formal result. The main
limitation on this procedure is that we do not have avail-
able the k range from 0— oo. In actuality, the available k
range is limited by the experiment. The upper limit &, is
set by the backscattering amplitude decreasing at high
photoelectron energy into the noise. The lower limit k,
is set by various factors. As mentioned above, for the
first shell in all cases and for the second shell in open
structures, multiple scattering does not limit k,. It is
limited by the lifetime of the excited state, experimental
difficulties of separating the atomic absorption from the
XAFS near the edge, and the Pauli exclusion principle.

The Pauli exclusion principle sets the edge at the first
unoccupied state. For a metal this occurs at a value of
ky=kp, the Fermi wave number, which is typically
1-1.6 A™! For nonmetals, the relevant quantity is the
energy of the edge above the muffin-tin zero, which
translates to similar values of k,. The lifetime of the ex-
cited state for a 10-keV K edge corresponds to a 3-eV
broadening of energy levels, which corresponds to a
k,~0.9A7"

The y(k) is defined by
=2 (s)
Ko

where p is the measured absorption coefficient in the con-
densed state with its XAFS and y, is the atomic value.
Usually, u, is not known experimentally, and it is as-
sumed that it is smoothly varying. However, near the
edge, the atomic y, is also rapidly varying as it initially
increases and possibly reaches a single maximum or
several maxima (e.g., making transitions to bound atomic
levels). Thus, it is not usually possible to separate u,

from p very near the edge, though in the case of the K
edge of Pb metal, this separation has been accom-
plished.?* This separation becomes possible typically 10
or more eV past the edge where the p, variation becomes
smooth. Adding this energy to the Fermi energy of 5-10
eV gives a value of k, =2 A~ .

The dominant factors in determining k; are the Pauli
exclusion principle and the experimental difficulties of
separating u, from p, giving a typical value of k=2
A~!. The maximum value k, depends on the atomic
number Z of the neighboring atoms. Low-Z atoms have
a backscattering amplitude that drops off rapidly at high
k, so that k,~=10 A~! before the noise in the XAFS
starts obscuring the signal. High-Z atoms such as Pt, Ta
have significant backscattering amplitudes even to values
of k,=20 A1 but can be attenuated to lower k, values
by disorder.

Thus, in practice, the experimental data permit one to
integrate Eq. (4) over the range k;— k, to obtain an ap-
proximation to p(r) given by

r2N,
R2

2Ar
A

plr)= exp

k
[ x(ksin(2k Ar)dk . (©)
1

The main difference between Egs. (4) and (6) is that, in
reality, we can only measure y'(k) over a finite range in
k. The high-k limit, k,, is not a serious limitation since
its main effect is to limit the spatial resolution of p(r) to

1

8r~2_k2 N (7)

where the factor of 2 in Eq. (7) comes from the variable in
the sine function of (6) being 2k instead of k. However,
the lower limit k, causes problems. It introduces spuri-
ous variations in p(r) that obscure its true variation. It is
lack of the low-k information that has led to the belief
that inversion of Eq. (6) is not possible. However, we
give below a prescription to recover the low-k informa-
tion so that the inversion process can be carried out.

III. SOLUTION

As shown above, it is the lack of low-k information
that precludes inversion of x'(k) to yield what we want,
p(r). To carry out the inversion indicated in Eq. (6) will
always involve some type of extrapolation of y'(k) to
k=0 in order to “restore” the missing data at low k.
However, there are constraints that rule out a large num-
ber of possible RDF’s, because not all extrapolations of
the data to k=0 are physically consistent with the data
at higher k.

The physical basis for this argument is that for small
enough k, all possible RDF’s look Gaussian. The reason
for this is that, at such low k, the width of the distribu-
tion becomes small compared to the photoelectron wave
number, and the photoelectron scattering process can
only sense that the distribution is, to first order, per-
turbed from a & function. The first-order correction, as
shown below, is a Gaussian term, which guarantees that
near k=0, the behavior of the natural logarithm of the
amplitude of y’(k) goes as k2. We are sufficiently near
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k=0 when ko << 1.

As k becomes larger the photoelectron wave number
can begin to resolve more structure in the distribution
and this increased resolution leads to corrections to the
Gaussian distribution that are described by the cumulant
expansion. From the definition of cumulants!2%26

X'(k)=Im [ H(Ar)exp(i2k Ar)d Ar
_ z (2ik)"
=Imexp 3, ——n—!—C,,

n=1
=ImQ(k)exp[iP(k)]=Q(k)sind(k) , (8)

where C, is the nth-order cumulant average. In terms of
ordinary moments, the leading cumulants are

C,=(Ar)=R-R,, C;=((r—R))=o?,
C;=((r—R)’), C,=((r—R)*)—30*.

The average over H(Ar) is denoted by { ). Both Q (k)
and ®(k) are real and are given by

_ B . n(2k)2n
Qk)=exp ,Eo( b (2n) Con | »
9)
_ © B n(zk)2n+1
P(k)= n§0( 1) 2nFiy Cmtre

Note that the natural logarithm of the amplitude of the
reduced y'(k) is even in powers of k while the phase ®(k)
is odd in powers of k.

We will next find the conditions that make such an ex-
pansion a good approximation when only the first few
terms are kept. In determining the RDF by diffuse
scattering of X rays or neutrons, it is possible to obtain
much lower values of k, than is possible by XAFS, espe-
cially using small-angle scattering. The wave number
used in that case is ¢ =2k, and the quantity correspond-
ing to x'(k) typically shows large variations below
k,=2 A~'. These variations cannot be described by the
first few terms of (9) but require the full expansion. In
that case the data below k; cannot be reconstructed from
the data above k. It can only be reconstructed if it is
known that the data below k, can be accurately de-
scribed by just the first few terms of Eq. (9). Then a
smooth fit of such an expansion for the data above k, can
be extrapolated below k; to reconstruct the data in the
range.

Examples of the latter behavior occur frequently in
XAFS. If an isolated shell has a disorder that can be de-
scribed by a Debye-Waller factor, then only the first term
in ® and the first two terms in Q are present in the expan-
sion and the extrapolation is easily performed. A natural
logarithm plot of Q versus k2 is a straight line! that is
easily extrapolated to the origin while the plot of ®
versus k is also a straight line! that is also easily extrapo-
lated to the origin.

The difference between the case of diffuse scattering
and the XAFS example is the range of r described by
Y'(k). In the XAFS case only a single shell is being con-
sidered while in the diffuse scattering case the RDF from

the origin out to many angstroms is being measured. By
limiting the range in r space to a sufficient degree, the
variation in k space can be made as smooth as desired. A
conservative estimate is?’

Drbk=m/2, (10)

where Dr is the range over which p(r) varies significantly
and 8k is the spacing between points in k space where
Q (k) and ®(k) can vary significantly. Thus, if

Dr<m/2k, , (11)

both Q(k) and ®(k) vary smoothly between 0 <k <k,
and their expansion in terms of the first few cumulants is
valid.

From Eq. (11) and the value of k; =2 A7 the range of
p(r) that can be determined is

Dr<0.8 A . (12)

In practice this limit is too conservative since it applies to
the extreme case of p(r) equal to two & functions a dis-
tance Dr apart which cause a beat minimum to occur in
x'(k) at the k value of Dk given by Eq. (12). In the more
usual case of a smoother distribution in p(r) the behavior
in x'(k) will also be smoother, and it is possible to extend
the range of Dr beyond that given by Eq. (12) to typically
1-1.2 A. A numerical example illustrating this is given
in the next section.

Using the extrapolation to k=0 it is now possible to
calculate

) N,r?

p(r R? exp

2 Ar
A

k
J ) thsink anak (13

which is now a faithful presentation of p(r) with a limited
spatial resolution given by Eq. (7). However, using a
sharp cutoff in the integral in Eq. (13) at kK =k, can intro-
duce spurious wiggles in p(7) if the integrand has an ap-
preciable magnitude at k =k,. In that case the cutoff
wiggles can be decreased by adding a Gaussian factor exp
(—2k20?) such that exp(—2k302)<<1. In such a case
the spatial resolution, from Rayleigh’s criterion, is deter-
mined by this convergence factor, and it is given by

&r=2.50, . (14)

The important insight obtained from this discussion is
that lack of low-k data does not prevent the determina-
tion of an RDF, as is sometimes claimed,? but simply lim-
its the range Dr over which the RDF can be obtained at
any one analysis. Within this range Dr the RDF can be
accurately defined. By treating each shell separately,
several coordination shells can be analyzed even when
their separation is greater than the Dr of Eq. (11) as long
as each shell is localized within Dr.

The three major limitations of this procedure are the
following: (1) The region over which p(r) can be deter-
mined is limited by multiple-scattering effects. Multiple
scattering limits the determination of p(r) to within 15
times the average of the nearest-neighbor shell distance in
close-packed structures and to the first and second shells
in open structures. (2) The process only works when



46 RADIAL DISTRIBUTION FUNCTION IN X-RAY-ABSORPTION . .. 691

there is a single type of atom in the shell that is being an-
alyzed. (3) The analysis method will fail if the spread Dr
is too great, so that the cumulant expansion at k; re-
quires a large number of terms. However, in a number of
systems with moderate to surprisingly high disorder, this
process can produce an unbiased extraction of p(r). Ex-
amples are given below.

IV. EXAMPLES OF APPLICATION

In this section we first show an example of p(r) deter-
mined by the method described in the previous section.
This example will illustrate more clearly the problem in-
volved and accuracy with which p(r) can be obtained.
The example we present is the first coordination shell of
atoms about Mn atoms in the crystalline @ phase of Mn-
Al-Si, whose structure is known?® and whose RDF about
the Mn atoms is complicated enough that it does not fit a
simple modeling function. The a phase also will test the
requirement of having only one type of atom in the shell,
because the first shell contains a small fraction of Si
atoms mixed with the Al atoms. The details of the XAFS
measurements are presented elsewhere.” The standard
employed for the Mn-Al scattering is the crystalline-
phase orthorhombic MnAl;. The Al atoms do not have a
simple Gaussian distribution about the Mn atoms in the
orthorhombic phase. However, the phase has only one
Mn site with a known?® narrow distribution, whose effect
can be corrected for by dividing its y,(k) by

exp(i kr

mz ————exp[ —i2(r;—R;)/A] .

]

Here 7; is the position of the jth Al atom and R; is the
average position of the Al atoms. After the division the
resulting Y, (k) has a simple Gaussian distribution due to
vibrations, and it is used as the standard. In this case, the
temperature dependence of its o2 is the same as the o2 of
the a phase and thus the Debye-Waller factor (DWF) of

exp(i2kr,, )
S—— expl
J

jm

2
Xok)= %exp( —2k%3)Im 3

m=1

Equation (15) contains the same convergence factor as
was used for the experimental curve. There are two Mn
sites in the a phase, and Tm is the position of the jth
neighbor about the mth Mn site. R,, is the average dis-
tance between the mth site of Mn and its neighbors. The
transform of (15) gives the calculated RDF with the same
spatial resolution as was used for the experimental deter-
mination and is plotted as the dashed curve in Fig. 1.
Note several features of the results shown in Fig. 1.
The negative values of the experimental RDF are very
small. Nothing in the procedure inherently prohibits
negative contributions, and their absence is an indepen-
dent measure of how well the procedure is working and
how well the nonstructural factors ¢(2k) and 8(k) have
been eliminated. This indicates that the mixture of a

16 T T T T T

1.5 2.0 2.5 3.0 3.5 4.0 45
R (R)

FIG. 1. Measured (solid) and calculated (dashed) radial dis-
tribution function of the nearest-neighbor atoms about Mn
atoms in a-(Mn-Al-Si). In all curves the resolution is 0.063 A.
The two solid curves are independently measured, indicating ex-
perimental uncertainties.

the standard approximately cancels the DWF of the a
phase.

The resultmg p(r) of Eq. (13 usmg a convergence fac-
tor with 02=0.004 A? and 02=0 is shown in Fig. 1 by
the two sohd curves. Each curve is an independent deter-
mination of p(r) using independently measured scans of
the XAFS of a-(Mn-Al-Si). The variations are a measure
of the uncertainties in the measured RDF. The spatial
resolution is given by o, =0.063 A. The r-space window
employed to define the 11m1ts of p(r) is between 1.4 and
2.7 A in the Fourier transform of y(k), which is dis-
placed from the true values"? by shifts introduced by
O(k). This experimental result is compared with the
RDF calculated from the published structure?® of the «
phase. This calculated RDF is obtained by performing a
sin(2kr) transform of

~2(Fjm—Rpp)/A] . (15)

[

small number of Si atoms introduces insignificant errors.
The experimentally determined RDF after eliminating
t(2k) and 8(k) is qualitatively similar to the calculated
one. They both show a large peak around 2.5 A, with a
shoulder at the low-r part. They also both show a
separated double-peaked structure centered around 3 A.

The validity of keeping only the first few terms in the
cumulant expansion [Eq. (9)] can be checked by this mod-
el. In Fig. 2 is shown the plot of the calculated amplitude
and phase of x,(k) of Eq. (15). There is a spread in
distances in the first shell of a-(Mn-Al-Si) of
Dr=3.07-2.27 A=0.80 A, as determined by
diffraction. According to criterion (11), the amplitude
and phase can be approximated by the first few terms of
the cumulant expansion for
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As can be noted from Fig. 2, where the first two k-
dependent terms of the cumulant expansion are plotted as
the dashed curves and compared with the amplitude and
phase of y,(k), this criterion is valid. In fact, it is at least
a factor of 1.3 too conservative, as the expansion is valid
to k;=4.0 A~! for the phase and k; ~2.5 A" for the
amplitude.

The second example we present is a more critical test
of the need to have a single backscatterer in the shell in
order to obtain an accurate RDF. The RDF will be cal-
culated about the Fe atoms in the metalloprotein of the
azidomet form of hemerythrin, which contains a mixture
of three oxygen and three nitrogen atoms. Oxygen and
nitrogen differ by one atomic number and therefore have
reasonably small differences in their ¢(2k) and 8(k) but a
larger difference than between Al and Si. We will com-
pare the RDF determined by eliminating the ¢(2k) and
8(k) using, in turn, those of oxygen and nitrogen.

The biological protein hemerythrin serves an oxygen
transfer and storage function in some marine worms.’' It
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FIG. 2. (a) The natural logarithm of the amplitude and (b)
the phase ®(k) of the calculated x,(k) of a-(Mn-Al-Si) plotted
on an expanded scale vs k2 and k, respectively (solid curves).
The first two k-dependent terms in the cumulant expansion are
plotted as the dashed lines for the two.

serves the analogous function to hemoglobin in mam-
mals. The active site of the azidomet form of hemeryth-
rin contains two Fe atoms coupled by sharing a common
oxygen atom as a nearest neighbor,’? called a p-oxo
bridge. The other first-neighbor atoms are all oxygens
and nitrogens. Because the first shell consists of two
types of atoms, the RDF of this shell traditionally has
been determined by fitting to a model containing overlap-
ping shells of oxygen and nitrogen atoms. However, be-
cause the 7(2k) for oxygen and nitrogen are similar (their
atomic numbers only differ by one) the modeling usually
cannot distinguish between the nitrogen and oxygen
atoms.

The RDF is determined using two different standards,
one representing the 7(2k) and 8(k) for Fe-O and the
other representing the ¢(2k) and 8(k) for Fe-N. Since
the first shell is a mixture of the O and N atoms, the two
RDF’s determined by the two standards represent two
extremes.

The standard for the Fe-O backscattering is Tri-us-
oxo-triaquo-hexakis(glycine)triiron(III)perchlorate. Its
first-neighbor shell about the Fe consists of six oxygens at
an average distance of 2.02 A with a structural mean-
squared disorder of 0.0031 A?, which can be well approx-
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FIG. 3. (a) Natural logarithm of amplitude and (b) phase of
X'(k) for the iron site in azidomethemerythrin using a Fe-O
standard. The solid curve is obtained from the measurement,
and the reconstructed low-k data is shown by the dashed curve.
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FIG. 4. The RDF’s of azidomethemerythrin obtained by us-
ing a Fe-O standard (solid) and a Fe-N standard (dashed) and
calculated using the results obtained by fitting a model to
EXAFS data (dot-dashed). The latter is the correct RDF.

imated by a simple Gaussian. The standard for the Fe-N
backscattering is bis(acetonitrile)-(2,3,9,10-tetramethyl-
1,4,8,11-tetraaza-cyclotetradeca-1,3,8,10-tetranene)
iron(IDhexafluorophosphate. The first-neighbor shell
about the Fe consists of six nitrogens at an average dis-
tance of 1.94 A, with a structural mean-squared disorder
of 0.0001 A2, which is also small enough to be approxi-
mated by a simple Gaussian.

The phase and natural logarithm of the amplitude of
the resulting x'(k) using the Fe-O standard is shown in
Fig. 3 with the reconstructed low-k data. Some problem
already is evident because the intercept at k=0 for the
natural logarithm of the amplitude is too low. From the
known structure the predicted intercept is —0.16, while
the actual one is —0.3. Figure 4 shows the RDF’s ob-
tained by using the Fe-O standard, the Fe-N standard,
and the one obtained by simulating the structure deter-
mined by a fitting routine to the XAFS data.’? Note that
the two RDF’s plotted in Fig. 4 using the method of this
paper have large negative values, indicating that the
t(2k) and 8(k) factors have not been completely eliminat-
ed. It is of interest that the differences between N and O
backscatterers produce such large effects which were not
present in the first example. Also, note that the
differences between the measured RDF’s and the calcu-
lated RDF is about the same as the magnitude of the neg-
ative values, suggesting that the negative values are a
good measure of the errors in the RDF.

V. DISCUSSION AND CONCLUSIONS

The procedure for calculating RDF’s from XAFS data
has the virtue of giving an answer without introducing
biases by assuming a model for the RDF. This over-
comes one of the major criticisms of XAFS, namely, that
it gives wrong answers when the disorder is large. The
new procedure gives an answer with assessable errors.

The absence of low-k data limits the range in r space, Dr,
over which the RDF p(r) can be determined to around 1
A. This procedure extends the type of disordered sys-
tems that can be analyzed by XAFS. If the p(r) of a sin-
gle shell is broader than 1 A, then the EXAFS analysis
misses this contribution. This is because there is not
sufficient XAFS data above k, to allow a meaningful ex-
trapolation of the data from k =k, to k=0. Therefore,
this analysis method will not allow XAFS to handle as
extremely disordered systems as can be handled by x-ray
scattering, where much lower k data can be determined.
However, we do obtain an accurate reconstruction of p(r)
in cases of moderate to reasonably high disorder.

The procedure was not invalidated by the mixture of a
small fraction of Si atoms with Al, but it was invalidated
by equal numbers of N and O atoms. This difference is
caused by two factors. Though the atomic number
difference in the atoms mixed in the shell is unity in both
cases, the difference in ¢ (2k) and 6(k) is larger for the N
and O pair than for the Al and Si pair because the per-
centage difference in atomic number is smaller in the
latter case. Also, the fraction of Si is only about 10%,
while equal numbers of N and O atoms are present in the
second example. The procedure can always be applied to
the nearest-neighbor atoms and to next-nearest-
neighboring shells of atoms in open structures and
perhaps to more distant atoms, but the perturbations in-
troduced by multiple scatterings at these larger distances
need to be assessed further to determine how serious are
the inaccuracies they introduce.

Besides inaccuracies introduced by multiple scattering
at the large distances, other inaccuracies are introduced
at shorter distances by deviations from the plane-wave
approximation and uncertainties in the value of the mean
free path. Fortunately, the latter two effects are small.
The assumption employed in the procedure is that the
backscattering amplitude B (k) is only weakly dependent
on the distance r of the backscattering atom from the ori-
gin. Because of the breakdown of the plane-wave approx-
imation there is a weak r dependence in #(2k) and 8(k),
which is approximately linear in 1/ within a shell, and
even a good standard with the same average distance be-
tween the center atom and the backscatterer as the un-
known would not completely cancel this dependence be-
cause, in general, their p(r) are different. Fortunately,
this r dependence is quite small and can generally be
neglected for ranges of Dr where the cumulant expansion
is effective.

Although multiple-scattering effects may be present at
larger values of 7, this by itself does not mean that it is
not possible to obtain p(r) by the procedure described
here. It is possible by using a good standard that has
similar multiple-scattering effects at similar distances that
the ratio of amplitudes and differences of phases will be
dominated by changes in the RDF and the analysis will
give reasonably accurate results for p(r). Further investi-
gations are necessary to test the limitations at larger dis-
tances and to determine how to account for multiple-
scattering effects if they are important.

One measure of success of the procedure is the size of
the negative values of p(r) in the examples of the previous
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section. Any inconsistency or errors in the procedure
would not eliminate completely the large negative values
that are obtained in the standard Fourier transform of
x(k). One has, thus, an inherent check on the accuracy
and correctness of the procedure by looking at the final
p(r) and noting the size of the negative regions.

When the atoms in the nearest coordination shell are
an overlapping mixture of ones with quite different atom-
ic numbers, the procedure described here does not apply.
In that case modeling can be used but with the attendant
possibility of adding biases that may give wrong answers.
It may be possible to obtain partial RDF’s for each type
of atom by judiciously taking natural-logarithmic ratios

of amplitudes and differences of phases separately with
standards that contain only one type of the backscatter-
ing atoms. Further investigations of these cases should
be pursued.
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