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Quantum interference effects and spin-orbit interaction in quasi-one-dimensional wires and rings
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We study two kinds of quantum interference effects in transport —the Aharonov-Bohm effect and the
weak-localization effect—in quasi-one-dimensional wires and rings to address issues concerning the
phase-coherence length, spin-orbit scattering, and the Aux cancellation mechanism which is predicted to
be present when the elastic mean free path exceeds the sample width. Our devices are fabricated on

GaAs/Al„Gal „As and pseudomorphic Ga„Inl As/Al„ In, As heterostructure materials and the ex-

periments carried out at 0.4—20 K temperatures. In the GaAs/Al„Ga~, As devices which exhibit no
significant spin-orbit scattering, we were able to extract a phase-coherence length I& from the amplitude
of the Aharonov-Bohm magnetoresistance oscillations in different sized rings. We find it to be in agree-
ment with l& deduced from the weak-localization data in parallel wires when the one-dimensional weak-

localization theory including thegux cancellation mechttnism is used to fit the data. We therefore unam-

biguously establish that the same l& governs the behavior of the two quantum interference phenomena of
Aharonov-Bohm oscillations and weak localization, and that the Aux cancellation is in force. In the

pseudomorphic Ga„In, „As/Al„In, „As heterostructure devices which exhibit strong spin-orbit in-

teraction effects, l& exceeds the spin-orbit-scattering length at low temperatures. The amplitude of
Aharonov-Bohm oscillations can only be explained by introducing reduction factors due to spin-orbit

scattering.

I. INTRODUCTION

There has been increasing interest in the study of very
small conductors which exhibit a large variety of new
physics at very low temperatures. These effects are main-

ly due to quantum-mechanical interference of electron
wave functions; therefore they are known as quantum in-
terference effects. These include the familiar weak-
localization (WL) effect which is manifested in the nega-
tive magnetoresistance peak around zero magnetic field,
the Aharonov-Bohm (AB) effect in doubly connected
geometries, and the universal conductance fluctuations
(UCF) in mesoscopic devices. The length scale relevant
for observing these effects is the phase coherence length

lt, =')/Drt„where D is the diffusion constant and rt, is

the time between phase breaking collisions. Quantum in-

terference effects are reduced in size at high temperatures
due to the decrease in I&. In most experiments I& is ob-
tained from weak-localization magnetoresistance and,
more recently, from universal conductance fluctuations. '

In principle, since all these effects arise from quantum in-

terference, they should be governed by the same I&. To
date, however, this hypothesis has yet to be experimental-

ly established. It is the aim of this work to establish the
consistency of I@ independently deduced from the AB
and WL effects. To this end, we extract the phase-
coherence length I

&
independently from AB magne-

toresistance oscillations and from weak localization and
show that the values deduced are in close agreement. In
addition, we study the infIuence of spin-orbit scattering
on these effects. We find a reduction in the amplitude of

AB oscillations in rings and positive magnetoresistance in
wires.

The system we study is the quasi-one-dimensional III-
V semiconductor heterostructure wires and rings. We
chose semiconductors instead of metal wires because of
the long elastic-scattering length I, which readily exceeds
the width 8'of the wire. This allows us to address the is-
sue of the presence of the fIux cancellation mechanism
due to multiple reflection off specular sidewalls not
present in diffusive wires. ' To address the issue of
spin-orbit scattering, we compare effects in

GaAs/Al„Ga, „As and pseudomorphic Ga„In, ,As/
Al„ In, As heterostructure devises. The GaAs/
Ga Al&, As heterostructure devices typically have
lower carrier densities and do not exhibit significant
spin-orbit scattering effects. In contrast, the pseu-
domorphic Ga„In, As/Al„In, „As heterostructure
devices show strong spin-orbit interaction as a result of
the significantly higher carrier density exceeding 10'
cm, ' and positive magnetoresistance is clearly visible
in two- or one-dimensional samples. This material also
exhibits a long I&,

' we have observed AB magnetoresis-
tance oscillations up to 20 K in temperature in a ring of
5.2 pm perimeter.

Effects in quasi-one-dimensional wires can be quite
different from those in two- or one-dimensional diffusive

wires. ' In this regime, the boundary scatterings be-
come extremely important and the one-dimensional
weak-localization theory for diffusive wires given by
Al'tshuler and Aronov" (AA) for which 1, «w would

not be applicable. For the case I, »w, Dugaev and
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Khmel nitskii investigated the weak-localization conduc-
tance of a thin metal film in a magnetic field parallel to
the boundary. Their idea of flux cancellation was then
extended by Beenakker and van Houten (BvH) to explain
weak-localization experiments in ballistic wires, such as
ours. So far, nearly all low-field magnetoresistance mea-
surements in ballistic wires have been fitted equally well

by the AA and BvH theories, mainly because there
are too many unknown parameters involved in the char-
acterization of these wires. Recent work by Greene
et al. agreed only with the AA theory, putting the im-

portance of the flux cancellation mechanism in doubt.
The discrepancy observed between their experiment and
the BvH theory is explained by small-angle scattering. In
our work the weak-localization data obtained from the
GaAs/Al„Ga, „As narrow wires also fitted well with
both the AA and BvH theories. However, the phase-
coherence length I& deduced from the BvH theory is in

close agreement with that deduced from the AB effect,
while the values deduced from the AA theory is about a
factor of 2 lower.

The influence of spin-orbit scattering on weak localiza-
tion is well known and leads to the familiar positive mag-
netoresistance peak superimposed on the negative magne-
toresistance background. ' ' We observed this behavior
in our narrow wires fabricated on the pseudomorphic
Ga„In, „As/Al„In, „As heterostructure, and the data
are only fitted reasonably with the modified one-
dimensional BvH theory which includes the flux cancella-
tion mechanism and spin-orbit interaction. Recent atten-
tion has focused on reduction in the amplitude of UCF
fluctuations [5] and the AB oscillations. ' In our experi-
ment on pseudomorphic Ga„ln& „As/Al„ln& „As rings,
we also observe a reduction in the AB oscillation ampli-
tude compared to that expected in the absence of spin-
orbit scattering. However, we are in a regime where l&

and ls& are comparable and therefore cannot compare
our results directly with the existing theories on strong or
weak spin-orbit scattering. Nevertheless, the best fit is
achieved by introducing a spin-orbit relaxation factor
into the scaling equation for the amplitude of AB oscilla-
tions.

II. THEORETICAL BACKGROUND

A. Weak localization

Quantum-mechanical corrections to the Boltzmann
conductivity in dirty metals are present at low tempera-
tures due to the coherent interference of electrons from
time-reversal paths. These corrections have been studied
under the name of weak localization. Application of a
magnetic field destroys the time-reversal symmetry and,
therefore, the coherent interference of electrons. From
the experimental point of view, the magnetic field is a
very powerful tool to study weak localization. The ob-
served negative magnetoresistance behavior in dirty met-
als has been fitted extremely well with the weak-
localization theories.

The weak-localization correction to the conductance of
a wire in the presence of a magnetic field can be written
as

2 DEG(8)=-
L

1 1

Tg
(2)

Al'tshuler and Aronov have shown" that for a diffusive

(l, « w) wire in a perpendicular magnetic field, rs can be
written as

6'
7g

w Uf 'Tq

(3)

where w is the width of the wire and l~ =&A/e8 is the
magnetic length. In ballistic (l, »w) wires Eq. (3) is not
valid any more, mainly because the specular boundary
scatterings become extremely important. Dugaev and
Khmel'nitskii showed that, when the magnetic field is
parallel to the surface of a thin metal film, a closed path
of an electron scattering only from the surface of the
walls encloses zero flux, an effect known as flux cancella-
tion. Such paths thus do not contribute to the magne-
toresistance. Later, using flux cancellation, Beenakker
and van Houten modified Eq. (3) to extend weak-
localization theory to ballistic wires, as

+
K, w vf K2w

(4)

The coefficients K, and K2 depend on the nature of
boundary scatterings: E& =0.11 and K2 =0.23 for specu-
lar scatterings, and K& =

—,'m and K& =
—,
' for diffusive

scatterings. As far as magnetoresistance data are con-
cerned, the contribution of flux cancellation is equivalent
to a reduction in effective area of the wire. Furthermore,
they pointed out that C(t) used in the AA theory is only
valid in the long-time regime, therefore they used
C(t)=(4nDt) '~ (I —e ') in order to take into ac-
count short-time corrections. Thus, they modified Eq. (2)
as

2 D
b, G(8)=-

L
1 1

7f 7 g

—1/2

1 1 1

Tp T~ Tg

—1/2

(5)

Note that b G (8) is reduced with the addition of this new
term. In the limit when r&»r, Eqs. (2) and (5) are
essentially identical.

B. Aharonov-Bohm efFect

At very low temperatures, the resistance of small dou-
bly connected rings exhibit periodic oscillations in a mag-

b,G (B)= — —f dt C (t)e '~e
L o

where D is the diffusion constant and L is the length of
the sample. ' The function C(t) is the probability density
for an electron to return to the origin. The exponentials
in the integrand are the phase and magnetic relaxation
factors. C(t) =&4m.Dt is known from the solution of the
one-dimensional diffusion equation. Thus, by taking the
integral in Eq. (I) we obtain
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netic field; this is known as the Aharonov-Bohm effect.
The oscillations come from the interference of propaga-
ting electron waves which split up into two partial waves
and recombine after acquiring different phases. The
phase difference arises from the different path lengths and
the magnetic flux encircled by the path of the electron
wave function. The magnetic field that causes a phase
difference of 2m. should be the period of the AB oscilla-
tions. For a ring of area A the period is 68AB =h /e A.

There are two important characteristic lengths, name-

ly, thermal length Lr=&Dfi/kT and phase-coherence
length 1&, which contribute to the size of the Aharonov-
Bohm oscillations. When both of these length scales are
much longer than the perimeter of the ring (as tempera-
ture goes to zero), the root mean square (rms) of the AB
oscillations in conductance hgAB is expected to be on the
order of the universal value e /h, which was originally
predicted for universal conductance fluctuations. ' The
scaling of the amplitude of the AB oscillations with these
characteristic lengths is experimentally studied by look-
ing at the temperature dependence of these oscillations.
In small noble-metal rings the amplitude of the AB oscil-
lations in magnetoresistance showed a temperature
dependence of T ', which is explained by the energy
averaging of conduction channels. ' Later, Milliken
et al. performed experiments on Sb rings, and they ob-
served an exponential drop in the amplitude of the AB
oscillations exp( L/l&) w—here L is the length of the
sample. ' By combining the energy averaging factor and
the exponential drop, the amplitude of the AB oscilla-
tions can be written as follows:

1/2
e @AD

~g AB
p

exp( —ap /I
& ), (6)

where D is the diffusion coefficient, p is the perimeter of
the ring, and y is a number on the order of unity. This
equation is essentially the same as the one given by Mil-
liken et al. , but to be more general we preferred to write
exp( L/I&) as exp—( —ap/I&) where a is the decay ex-

ponent which should be a universal number for a given
ring geometry.

The prefactor (m. AD/p kT)' in Eq. (6) is due to ener-

gy averaging and is only valid for the asymptotic case in
which the thermal length LT is much smaller than the
perimeter of the ring. In the other limit, when LT is
much bigger than the perimeter, the prefactor should be
replaced by 1.

DiVincenzo and Kane calculated numerically the scal-
ing of AB oscillations for the geometry of Fig. 1(a).
They predict that the nonlocal resistance R12.4 3 where
the four-point resistance R; .k &

is defined as the ratio of
voltage measured between leads k and l to the current
passed through leads i and j, would decay with an ex-
ponent of +=0.63. On the other hand, they could not
describe the decay of the local resistance R1 4.2 3 as a sin-

gle exponent. Their calculation suggests that for most of
the experiments in which p/l& is restricted to a small

range of 1.5&p/I& &3, the effective decay of the local
resistance is slightly faster than the nonlocal one. Fur-
thermore, they pointed out that the energy averaging pre-

FIG. 1. (a) The doubly connected Aharonov-Bohm ring used
in the calculations of DiVincenzo and Kane. (b) The ring pat-
tern used in our experiments.

factor, introduced by Milliken et al. , in Eq. (6) is not
quite right and should be replaced by (fiD/p 1& kT)'~'
which would lead to a new scaling expression as

1/2
e

hgAB =y, exp( ap/I&—) .
0.7l1.3kT

(7)

P(t)=e 'e

where the first and the second exponents are the probabil-
ities, in a time interval t, that the electron will diffuse
around the ring and retain its phase memory. The ampli-
tude of AB oscillations should be proportional to the in-

tegral of P(t) over t For the e. lectrons which contribute
to the AB effect the most, the interference time

t;„,=p/&/D is obtained by maximizing P(t) This would.

give us an energy averaging factor of (A'D/pl&kT)'~

which is closer to the numerical calculation of DiVincen-
zo and Kane.

Since Eqs. (6) and (7) only diff'er in the prefactor, exper-
imentally it is very difficult to resolve the difference of
these theories. Following the above argument which cap-
tures the basic physics of the AB effect, we believe that
Eq. (7) is a more correct scaling equation for the size of
the AB oscillations, although we will use both of these
equations for comparison. We would expect for our

Note that this equation also explains the T ' depen-
dence of hgAB observed in metal rings where l& saturates
at very low temperatures. In order to clarify the physics
behind these prefactors, we would like to review the ener-

gy averaging of conduction channels and a somewhat
simplified picture of the AB effect given by DiVincenzo
et al. Later, we will modify this picture to explain the
influence of the spin-orbit interaction on the AB effect.

Electrons which are separated in energy by more than
the correlation energy E, do not contribute to AB con-
ductance with the same phase. At high temperatures,
when kT & E„one has to average out the contribution of
electrons within kT of the Fermi energy, which would
give an energy averaging factor of (E, /kT)'~2. For an

AB ring geometry E, =A/t;„, where t;„, is the interfer-
ence time. Now, let us define P(t) as the probability den-

sity that an electron will interfere with itself after
diffusing around the ring after some time interval t. If
the perimeter of the ring is bigger than the scattering
length, P (t) can be approximately written as
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four-point resistance R, 4.z 3 [Fig. 1(b)] the effective ex-

ponent a to be in between the exponents of the local and
nonlocal resistances discussed above. In analyzing our
data we will take o, =0.63.

C. Spin-orbit interaction

3 1 4 + 1 1

2 7p 3 Tsp Te TB

—1/2

1 1 1

2 7p 7e 7B

' —1/2

(10)

which is very similar to the equation given by
Santhanam, Wind, and Prober. ' In the strong spin-orbit
interaction limit the exponential term in the spin-orbit re-
laxation factor is suppressed, and the reduction factor be-
comes —

—,
' which is the same as the two-dimensional re-

sult. Also, similar to the two-dimensional case, magne-
toresistance starts out positive but changes sign at higher
magnetic fields when 7B becomes smaller than 7sp. In
the presence of flux cancellation, when Eq. (4} is used,
resistance maxima occur at a higher magnetic field.

Scaling of the amplitude of the AB oscillations has not
been studied in the presence of spin-orbit scattering. We
will modify the simple picture of the AB effect given
above to illustrate the influence of spin-orbit interaction.
By adding the same spin-orbit relaxation factor, we can
rewrite Eq (8) as.

p(r) p /Dt tt —
t (3 so I)2

The spin-orbit reduction factor can significantly suppress
the amplitude of the AB oscillations. It is not even clear
to us that a simple scaling expression can be written for
the amplitude of the AB oscillations when 7& and 7so are

Hikami, Larkin, and Nagaoka studied the quantum
conductance of two-dimensional disordered systems in
the presence of spin-orbit scattering. ' The main predic-
tion of their theory was the change in sign of the weak-
localization term, which was later experimentally
confirmed by the observation of positive magnetoresis-
tance. '

We would like to extend the theory given above for the
weak-localization correction to the conductance of a
one-dimensional wire to include spin-orbit scattering.
This can be done by simply adding a spin-orbit relaxation
factor' to Eq. (1) as

2e2 D
b,G(8)= — —f dt C(t)e

M L 0

4t /3t—so
—tire

2

Here, we assume that the spin-orbit scattering time 7sp 1s

isotropic. Thus by taking the above integral we obtain
—1/2

e D 3 1 4 1

L 2 7& 37so 7B
' —1/2

1 1 +'
2 7P 7B

X exp( —ap/l~) . (13)

The correlation energy used by Milliken et al. ,
E, =AD/p2, does not depend on temperature, so for a
given ring the spin-orbit reduction factor can be absorbed
in the prefactor y. However, if we use E, =AD/p ~l&,
the temperature dependence of AB oscillations with or
without the spin-orbit reduction factor can be quite
different. It is important to realize that in this asymptot-
ic limit, the spin-orbit reduction factor gets smaller with
decreasing spin-orbit coupling.

III. EXPERIMENT

A. Material and device characteristics

Quantum interference effects in quasi-one-dimensional
wires are studied in five different samples. The starting
materials were GaAs/Alo 3Ga07As and pseudomorphic
Gap plno sAs/Ala 48Ino 5&As modulation-doped hetero-
structures grown by molecular-beam epitaxy (MBE}. The
details of the growth process for the pseudomorphic
Ga„ln& „As/Al„lnt „As heterostructure are given else-

where. We measured the two-dimensional electron gas
densities and the Hall mobilities of these materials at 4 K
using standard Hall bar geometry. The
GaAs/Al„Ga, „As was uniform with an average two-
dimensional electron density n, and Hall mobility p of
5.6X10" cm 2 and 420000 cm2/Vsec, respectively.
The pseudomorphic Ga„In, As/Al„In, „As was very
nonuniform, especially near the edges of the wafer where
the two-dimensional electron densities changed from
1.7X1012 to 0.7X10 cm; correspondingly the Hall
mobilities changed from 160000 to 70000 cm /V sec.

The materials on which the samples were fabricated,
the patterns used in these samples, and the carrier densi-
ties n, obtained from Shubnikov —de Haas (SdH} oscilla-
tions are shown in Table I. Two of the samples had an
AB pattern which consisted of rings with perimeters of
5.2, 6.7, 7.8, and 8.8 pm, and the other three samples had
a WL pattern which consisted of 16 parallel 45-pm wires
on them. The width of the wires used in both patterns
was 0.45 pm. The patterns were defined by using

comparable. We will only consider strong and weak
spin-orbit interaction limits.

For weak spin-orbit interaction the reduction factor is—2t /~so
roughly e ' . We can use the same scaling equation
by replacing 7& by 7+ff, where 7&,ff is defined by

' ='+' . (12)
off 7f Tsp

This equation is valid for other quantum interference
effects as well.

On the other hand, in the strong spin-orbit interaction
limit, the spin-orbit relaxation factor can be approximat-

4'tnt /3~so
ed as —,'(3e '"' ' —1} which would lead to a general-

ized scaling equation of
1/2

c
&

4A/3E SO
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TABLE I. Materials on which our samples were fabricated, the patterns used in these samples, and
the carrier densities n, obtained from SdH oscillations.

Sample 1

Sample 2
Sample 3
Sample 4
Sample 5

Material

GaAs/Al„Ga, As
pseudo. Ga„In, „As/A1„In, As

GaAs/Al„Ga& „As
pseudo. Ga„In& „As/A1„In& „As
pseudo. Ga„ In& „As/Al„Ga& „As

Pattern

AB
AB
WL
WL
WL

Carrier
density

(1/cm )

0.5 x10"
1.5 x10"
O.5X 1O"
0.8 X 10'
1.5 X 10'

electron-beam lithography, followed by metalization,
photolithography, and wet etching. The details of the fa-
brication process are described elsewhere.

B. Data presentation

We made four terminal magnetoresistance measure-
ments between 0.4 and 20 K in a He refrigerator where
the magnetic field was perpendicular to the sample. The
data were taken using a lock-in amplifier at 23 Hz and
the current levels kept low enough to avoid self-heating.
We studied quantum interference effects only at low mag-
netic fields (B &1 kG). At high magnetic fields we ob-
served Shubnikov —de Haas oscillations which we used to
obtain carrier densities. Typically, the electron densities
of the narrow wires were about 10%%uo lower than the two-
dimensional electron densities of the starting material.

Weak-localization measurements were made in an ar-
ray of 16 parallel wires. The length of the wires was
chosen to be much longer than the phase-coherence
length in order to suppress the contribution of universal
conductance fluctuations. Figures 2(a) and 2(b) show the
four-point resistance of the narrow wires of the
GaAs/Al„Ga& „As and the pseudomorphic
Ga„ln& „As/Al„In, „As samples as a function of mag-
netic field at 0.5 K. Several typical features of low-field
magnetoresistance data can be identified in this plot.
First, the data is very symmetric under magnetic Geld

reversal. Second, in the pseudomorphic
Ga„In, „As/Al„ In, „As data there is a small
magnetic-field region around zero magnetic field where
the magnetoresistance is positive, and at higher magnetic
fields the magnetoresistance changes sign. Last, there is a
parabolic background resistance which is a slowly vary-
ing function of magnetic field. The positive magne-
toresistance behavior was only present in the samples
fabricated on the pseudomorphic Ga In, As/
A1„In, As heterostructure. With increasing tempera-
ture the positive magnetoresistance behavior around zero
magnetic field disappeared, and later the negative magne-
toresistance peak decreased in size. On the other hand,
the background resistance was independent of tempera-
ture. In the calculation of the weak-localization contri-
bution to conductance b, G(B) we subtracted this para-
bolic background resistance, even though in the
magnetic-field range of our analysis the contribution of
the parabolic background was not significant.

In Figs. 3 and 4, we show the magnetoresistance data
for a 7.8-pm ring of GaAs/AI„Ga& „As and a 5.2-pm
ring of pseudomorphic Ga„In, „As/Al„In, „As sam-
ples at different temperatures. The four-point resistance
shows periodic AB oscillations in a magnetic field with
the expected period of h/eA. In the pseudomorphic
Ga„ln& „As/Al„ln& As sample AB oscillations are ob-
servable at 19 K which is much higher compared to 4 K
in GaAs/Al„Ga& „As. This indicates a longer I& in this
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FIG. 2. Low-field magnetoresistance of the narrow wires of
the (a) GaAs/A1GaAs and (b) pseudo morphic
Ga„In& „As/Al„In& „As samples in a perpendicular magnetic
field. Dashed lines are the temperature-independent parabolic
background resistances.
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FIG. 3. The four-point resistance R

& 2 3 4 vs magnetic field at
different temperatures for the 7.8-pm perimeter ring of sample 1

(GaAs/Al„Ga& „As). The leads 1, 2, 3, and 4 are shown at the
upper side of the figure. The y axis is given for the 4.2 K data;
all the others are displaced by 10Q from each other.

FIG. 5. Root-mean-square AB magnetoconductance hgA& vs

temperature for all four rings of GaAs/Al„Ga& „As sample.
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FIG. 4. Same as Fig. 3 for the 5.2-pm perimeter ring of sam-
ple 2 (pseudomorphic Ga„In& „As/Al„In& „As). The y axis is
given for the 19 K data; the others are displaced by 5Q from
each other. AB oscillations are resolved up to 19 K in this sam-
ple. The dashed line shows the 19-K data after the background
resistance is subtracted.

material. The data of different temperatures are very
correlated, and the peak positions in a magnetic field do
not move even though the sizes of the oscillations are at-
tenuated with increasing temperature. The background
resistance is due to universal conductance fluctuations
and is easily separable from the AB oscillations in the
Fourier spectra even at the highest temperature.

In order to get a better temperature range for each
ring, we focused our four-point resistance measurements
in a magnetic-field range which showed the largest AB
oscillations. Typically, the chosen magnetic-field range
would include 15 to 20 periods of AB oscillations. An
unnormalized root mean square of AB conductances

AgA& is obtained from this limited magnetic-field range.
To normalize hgA~, first magnetoresistance data are tak-
en in a much wider magnetic-field range at 0.4 K. Next
AgA& is scaled by a number such that AgAB at 0.4 K
would be the same as the rms AB conductance of the
wider magnetic-field range. Figure 5 shows the rms AB
conductances b,gA& which are scaled in this manner
versus temperature for all four rings of the
GaAs/Al„Ga& As sample. As expected from the ex-
ponential term exp( —ap/I&) in the AB scaling equation,
the amplitudes of the AB oscillations are smaller for
bigger perimeter rings and get smaller with increasing
temperature due to the decrease in l&.

Our ring geometry, schematically shown in Fig. 1(b),
has the advantage of having a higher relative amplitude
of AB oscillations in conductance, hg&z = ERA&/R, in
comparison to the commonly used double connected ring
geometry of Fig. 1(a). The background resistance R of
our geometry is expected to be four times smaller than
the background resistance of the doubly connected ring
geometry, therefore in order to compare our results with
similar experiments, we further scaled in Fig. 5 our AB
amplitudes in conductance, hg~a =b,RAa/R, by a fac-
tor of —,', . Here we assumed that hRAz's are not very
different for different geometries, which is experimentally
supported by the observed correlations in the four-point
AB resistance oscillations.

IV. DATA ANALYSIS

Typically, in quasi-one-dimensional wires the material
parameters can be quite different than the two-
dimensional ones due to boundary scattering effects and
reduced dimensionality. In the absence of spin-orbit
scattering the weak-localization formula [Eq. (5)] con-
tains three parameters: ~&, ~„and w. In the presence of
spin-orbit scattering Eq. (10) contains the additional pa-
rameter rsp. For a given sample ~& and in principle 7sp
are temperature dependent whereas ~, and m remain con-
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stant for the entire temperature study range. Similar to
other groups, ' by using the equation for background
conductance G,1=me Dw/M L where D =vf~, /2 and
the measured G,&, we reduce the number of unknown pa-
rameters by eliminating either w or ~, . Due to sidewall
depletion the electrical width of the wires can be
significantly smaller than the pattern width which was
0.45 pm in our wires. In some samples, independent in-
formation about the eleetrieal width of the wires ean be
obtained from Shubnikov —de Haas oscillations. In two
dimensions, a plot of the filling factor n versus the re-
ciprocal of the SdH peak position in magnetic field would
give a straight line. Figure 6 shows such a plot for the
narrow wires of sample 4. There is a deviation from the
straight-line behavior (shown by the solid line) at low
magnetic fields where the width of the wire is comparable
to the cyclotron radius. The data can be fitted by the an-
alytic expression given by Berggren et al. which assumes
a parabolic confinement potential. From this fit we ob-
tain the width of the wires of sample 4 as 0.21 pm. Thus,
knowing the carrier density and the width of the wires,
we get D and z, directly from the background conduc-
tance G,l of this sample. However, in similar plots of
SdH peak positions for the narrow wires of the other
samples, we could not resolve significant deviations from
the straight-line behavior. Therefore, we had to take v,
or w as an extra parameter in the analysis of the weak-
1ocalization data of these samples.

The phase-coherence length 1& (or r&), which is the key
material parameter in all quantum interference effects,
has always been taken as an adjustable parameter. We
aimed to demonstrate consistency of the I&'s obtained
from the weak-localization and AB effects.

We will first present the analysis of the data obtained
from the GaAs/AI, Gat, As samples which did not
show significant spin-orbit interaction. Then, we will

20

continue with the data of the pseudornorphie
Ga In& As/Al In, As samples, and focus on the
modifications in quantum interference effects due to
spin-orbit interaction. Last, we will compare the I&'s ob-
tained from our data with the theoretically expected
ones.

A. GaAs/Al Ga& „As samples

1. Weak localization

Low-field magnetoconductance data of the WL sample
fabricated on the GaAs/Al Ga, „As heterostructure
can be analyzed by both AA [Eqs. (2) and (2)] and BvH
[Eqs. (4) and (5)) theories which do not include spin-orbit
coupling. We assumed that the boundary scatterings
were specular, and therefore used E, =0. 11 and
@2=0.23. Even though our wires were ballistic, by tak-
ing ~& and ~, as our fitting parameters and by only allow-
ing ~& to change as a function of temperature, both
theories fit the experiment successfully (Fig. 7). Howev-
er, the main fitting parameters v.

&
obtained from the two

theories were quite different in magnitude. For instance,
we obtained a ~& of 51 and 10 psec from the BvH and AA
fits of the magnetoconductanee data at 0.41 K, respec-
tively. The AA theory gave an I, of 3.2 pm, much bigger
than the width of the wires which violates the applicabili-
ty of this theory. So, even though both of the theories fit
the experiment equally well, the BvH theory appears to
be physically more meaningful.

2. Ab egect

We also studied the AB effect in this material on four
different-sized rings. The phase-coherence length 14,(T)
can be obtained just from the amplitude of the AB oscil-
lations by using either Eqs. (6) or (7), if the numerical pre-
factor y is known. Since different rings have the same
geometry, we assume that the prefactor y and the phase-
coherence length 1&( T) in the scaling equations (6) and (7)
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FIG. 6. Filling factor n vs the reciprocal of the SdH peak po-
sition obtained from the four-point magnetoresistance of the
narrow wires of sample 4 (pseudomorphic
Ga In, As/Al„In, As). The solid line represents the ex-

pected behavior in two-dimensional systems. The dashed line is
the theoretical fit which assumes a parabolic confinement poten-
tial. The fit gives a width of 0.21 pm and a carrier density of
0.8X10' cm
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Magnetic Field (Gauss)

250 300

FIG. 7. Low-field magnetoconductance EG(8) of the narrow
wires of the GaAs/Al Ga, As sample in units of e /vrh at
different temperatures. The data is fitted using BvH (Ref. 3)

[Eqs. (4) and (5)] and AA (Ref. 11) [Eqs. (2) and (3)] theories.
The fitting parameters are ~& and ~, .
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are the same for the different-sized rings of the same sam-

ple. At each temperature, we estimate y by fitting 5 ~&
versus p using the scaling equations. We performed this
fitting by using both of the scaling equations at eight
different temperatures to obtain an average of y's, and
used this y,„ to obtain 1&(T). As expected from the
theory, y,„obtained from either Eqs. (6) or (7) (1.2 and
0.9, respectively) were on the order of unity. Figure 8

shows the phase-coherence lengths extracted in this
manner. In the temperature range of our experiment,

l&~a (1.5—4 )um} was smaller than the perimeters of the
rings, so the exponential terms in the AB scaling equa-
tions were dominant. The error bars are obtained from
the deviation in y, and they get smaller at higher temper-
atures, since the exponential term of the scaling equation
becomes more dominant, and therefore the error in y be-
comes less important. Since the difference between Eqs.
(6) and (7) is only in the prefactors, the phase-coherence
lengths obtained using these equations did not differ
much from each other, and both are in close agreement
to within 15%%uo with the independently extracted phase-
coherence lengths from weak-localization data using BvH
theory. This observation indicates that these two
different quantum interference effects are governed by the
same l&. On the other hand, the AA theory gives values
which are substantially smaller for l& which strongly sug-
gests, as we anticipated earlier, that this theory is not
applicable to our wires. We conclude that the BvH
theory gives the right physics in ballistic wires and indeed
flux cancellation mechanisms are in effect.

As shown in Fig. 8, in the temperature range of the ex-
periment, the thermal length Lz. is much smaller than the
perimeters of the AB rings, which was the necessary con-
dition for using energy averaging prefactors in scaling
Eqs. (6) and (7).

B.Pseudomorphic Ga„ In& „As/Al In& „As samples

$Veak localization
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Four-point magnetoresistance data of the pseu-
domorphic Ga„In, „As/A1 In, „As narrow wire sam-

ples are fitted using the one-dimensional weak-
localization theory modified to include spin-orbit interac-
tion [Eq. (10)]. Again, we assumed specular boundary
scatterings. For sample 4, since the width of the wires
was known from SdH peak positions (Fig. 6), we had only
two fitting parameters, ~& and ~$Q furthermore we did
not allow ~sQ to change as a function of temperature. As
shown in Fig. 9(a), the agreement between the experiment
and theory is much better when the BvH theory [Eq. (4}]
is used, especially at the lowest temperature where the
AA theory failed to give the right magnetic-field scale.
This is direct evidence that the flux cancellation mecha-
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FIG. 8. Phase-coherence lengths obtained from the weak-
localization (using BvH () and AA 6 theories) and AB data [us-
ing Eq. (6) (C3) and (7) (o)] vs temperature for the narrow wires
fabricated on the GaAs/Al Ga& As heterostructure. Theoret-
ical I& and thermal length LT are also shown in the figure.
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FIG. 9. Low-field magnetoconductance AG(B) of the narrow
wires of the pseudomorphic Ga Ini As/Al Ini „As samples
after the parabolic background resistance is subtracted in units
of e /mA ar different temperatures. The data is fitted using the
modified BvH and AA theories which take into account spin-
orbit interactions (Ref. 21). The fits for sample 4 are shown in
(a) where the fitting parameters are ~& and esp (for T =0.55 K
data: ~&=50 psec, ~so=46 psec from the BvH fit; ~4, =32 psec,
esp 26 psec from the AA fit). The fits for sample 5 are shown
in (b) where the fitting parameters are 7y esp and ~, (for
T=0.4 K data: ~&=48 psec, esp 13 psec, and ~, =2.4 psec
from the BvH fit; ~&=20 psec, ~&Q=3 psec, and ~, =2.5 psec
from the AA fit) ~
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TABLE II. Elastic and spin-orbit scattering times obtained from BvH fits, widths of the wires,
diffusion constants, and zero-magnetic-field background resistances for all weak-localization samples.

Sample 3
Sample 4
Sample 5

~, (psec)

5.1

1.3
2.4

so (psec)

46
13

w (pm)

0.24
0.21
0.26

D (m /sec)

0.24
0.18
0.65

Rbg (kQ)

F 1
2.3
0.52

nism occurs in our narrow wires. We got ~so=46 psec
and a range of ~&'s from 8 to 54 psec from the BvH fit of
the weak-localization data of this sample. Similarly, for
sample 5 the magnetoresistance data are only fitted
reasonably [Fig. 9(b)] with the modified one-dimensional
BvH theory which includes spin-orbit interaction and the
flux cancellation mechanism. In this sample, spin-orbit
interaction (iso = 13 psec) was even stronger due to
higher carrier concentration. This sample is also more
ballistic (higher I, /m) compared to sample 4, therefore
the conductance minima occurred at a higher magnetic
field. Unlike two-dimensional systems, in one-
dimensional ballistic wires the magnetic-field position of
the conductance minima is not just determined by iso.
We roughly estimated this position, using ~g 'Tso as 50
and 100 0 for samples 4 and 5, respectively.

Elastic and spin-orbit scattering times obtained from
BvH fits, widths of the wires, diffusion constants, and
zero-magnetic-field background resistances for all weak-
localization samples are summarized in Table II.

2. AB eQect

It is diScult to extract phase-coherence length from
the amplitude of the AB oscillations of the pseudomorph-
ic Ga„In, „As/Al, in& „As sample due to the strong
spin-orbit interaction in this material: first, there is a new
unknown parameter, spin-orbit scattering length iso in-

volved in the scaling theory of AB oscillations, and
second, the analytical form of the amplitude of the AB
oscillations in the presence of spin-orbit scattering is not
known. Therefore, instead of trying to extract I& from
the AB data of this sample we fitted the amplitudes of the
AB oscillations with the different AB scaling equations
discussed earlier. This way we can compare our data
with the AB theories which do and do not take into ac-
count spin-orbit scatterings.

The amplitudes of the AB oscillations kg A~ of
different-perimeter rings are fitted by taking y as an ad-

justable parameter and using the phase-coherence lengths
and the spin-orbit scattering length obtained from the
weak-localization fitting of the magnetoconductance of
the narrow wires of sample 5 which has the same carrier
density as the AB sample. The fits by using different scal-
ing equations for the 5.2 and 7.8-pm perimeter rings of
this sample are shown in Fig. 10.

As mentioned before, the energy averaging prefactor
used in Eq. (6) is not quite correct. For this equation,
spin-orbit reduction factors are temperature independent,
and therefore, the scaling equation does not change with
the introduction of spin-orbit interaction. Equation (7),
which we believe has a more realistic energy averaging

C. Phase-coherence length

The main dimensional scales in quantum interference
effects are set by phase relaxation mechanisms. At low

temperatures, it is believe that electron-electron interac-
tions are the dominant mechanism for the phase relaxa-
tion of electrons. In one-dimensional wires, when
w & ALT, phase-coherence time is given by

' 2/3
1 m (kT) E~

2 AEf kT
(14)

The first term in this equation is due to momentum con-
serving processes and becomes dominant at relatively
higher temperatures, whereas the second term, also

0.1

0.01

Temperature (K)
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FIG. 10. Root-mean-square AB rnagnetoconductance b,«B
vs temperature for the rings with perirneters of 5.2 and 7.8 pm
of sample 2. The data is fitted using Eqs. (6), (7), and (13) which

are shown by dotted, solid, and dashed lines, respectively. In
equation (13) E, =(AD/p . I &') is used and y is taken as an ad-

justable parameter.

prefactor, did not agree with the experimentally rnea-
sured amplitudes of the AB magnetoresistance oscilla-
tions. However, by the introduction of spin-orbit reduc-
tion factors to Eq. (7) [Eq. (13)], we get the best agree-
ment with the experiment. Even though we could not ex-
actly fit the amplitudes of the AB oscillations, the
significant improvement of the fit from Eq. (7) to Eq. (13)
is an evidence for the presence of spin-orbit interaction
related reductions in the amplitude of the AB oscilla-
tions. A more realistic scaling equation is necessary to
have a better analysis of the size of the AB oscillations of
this experiment.
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known as Nyquist time, is due to momentum nonconserv-
ing processes which leads to a T ' behavior of I& at
very low temperatures. The Nyquist time has been ob-
served in various one-dimensional systems. ' However,
two groups recently measured, one using weak localiza-
tion and the other using universal conductance fluctua-
tions, ' a temperature-independent l& at low temperatures
in quasi-one-dimensional wires fabricated on
GaAs/Al„Ga& „As heterostructure.

For our wires, we calculated the theoretical I& (T) us-

ing Eq. (14) and the material parameters obtained from
BvH fitting of the weak-localization data. In the
GaAs/Al„Gat „As heterostructure, theoretical 1& is in

good agreement with the experimental l&'s either from
the amplitude of the AB oscillations or from weak-
localization data when the BvH theory is used (Fig. 8).
On the other hand, in the pseudomorphic
Ga„In, „As/A1„In, „As heterostructure experimental
l&'s, especially at high temperatures, were about a factor
2 higher than the theoretically predicted ones [Figs. 11(a)
and 11(b)]. Since no adjustable parameters were used in
the calculation of l&, the order-of-magnitude agreement
between the experimental and theoretical l&'s is accept-
able. However, the increase in measured l&'s as tempera-
ture goes to zero was slower than the theoretically ex-

pected T ' dependence. The origin of such deviations
has not yet been understood.

V. CONCLUSIONS

In summary, we studied quantum interference effects
in very narrow wires where the width is much smaller
than the elastic-scattering length. We verified directly
that flux cancellation mechanisms are present in these
quasi-one-dimensional wires. The weak-localization data
were in good agreement with the theories that included
flux cance11ation mechanisms.

The systematic study of the Aharonov-Bohm effect in
different-sized rings fabricated on the GaAs/
Al Ga& „As heterostructure which did not show
significant spin-orbit coupling made it possible to extract
useful information, phase-coherence length, from the size
of the AB magneto resistance oscillations. Phase-
coherence lengths obtained from the AB magnetoresis-
tance oscillations were in close agreement with the l& in-
dependently obtained from weak localization.

The pseudomorphic Ga„In, „As/A1„In& „As hetero-
structure showed strong spin-orbit interaction which
modifies quantum interference effects significantly. Ex-
perimentally, the influence of spin-orbit coupling on weak
localization is identified easily, since there is a change in
the sign of magnetoresistance. We modified the BvH
theory of weak localization by including spin-orbit
scatterings which fitted the magnetoresistance data of our
narrow wires which are fabricated on the pseudomorphic
Ga„In& As/Al In, „As heterostructure. On the other
hand, the influence of spin-orbit coupling on the
Aharonov-Bohm effect is more difficult to observe, since
in the strong spin-orbit-scattering limit the correction
factor is —, and it is inevitably mixed with the sample-
dependent prefactor y. Our asymptotic analysis of the
AB scaling equation in the strong spin-orbit-scattering
regime suggests reduction factors for the amplitude of the
AB oscillations which gets smaller with increasing tem-
perature. With the introduction of the spin-orbit reduc-
tion factors, there was less discrepancy between the mea-
sured amplitudes of the AB oscillations and the expected
amplitudes obtained by using the phase-coherence
lengths extracted from weak-localization data. This is
the first observation of the influence of spin-orbit interac-
tion on the AB effect.

Phase relaxation mechanisms in quasi-one-dimensional
wires are not well understood. Similar to few other
groups, we observed deviations in l& from the theoretical-
ly expected T ' behavior at low T, however saturation
has not been observed down to T=0.35 K. Further
work needs to be done at lower temperatures T &0.35 K
to elucidate the mechanism for phase relaxation in semi-
conductor narrow wires.
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