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Coherent efFects in dipole spin systems
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Here we present results of our investigation of coherent efFects in polarized spin systems on the basis
of a microscopic model but not using the phenomenological Bloch equations. A computer simulation is
realized for a system of nuclear or electron spins interacting with realistic dipole-dipole forces. Di6'erent
initial and external conditions are analyzed for a spin system coupled with a resonator or one without
the resonator and in the presence of an external oscillating field or without this pumping. Insofar as the
phenomenological equations presuppose the uniformity of a system, it requires a microscopic model to
show accurately when the coherence does appear. To this end, we introduce the coherence coefficients
and consider their time behavior in detail. Some peculiarities due to dipole spin interactions, which are
not present in the Bloch equations, are noted.

I. INTRODUCTION

The close analogy between optical and radiofrequency
superradiance is well known. Optical coherent superradi-
ance has been extensively studied both experimentally
and theoretically. For reviews, one may consult Refs.
1 —5. Although radiofrequency superradiance is slightly
less well known, it has been observed in a number of ex-
periments ' and theoretically considered in several pa-
pers 18 22

All theoretical considerations of radiofrequency super-
radiance have been done with use of the phenomenologi-
cal Bloch equations, which treat the whole system as a
uniform object having a unique total magnetization.
Therefore, the assumption of coherence is already incor-
porated into the Bloch approximation. Thus the Bloch
equations are not expected to be able to describe the on-
set of coherence and some peculiarities of coherence
effects occurring in real spin systems. It is the aim of the
present paper to consider these coherence effects latter
questions by using a microscopic spin model with realis-
tic dipole interactions.

II. DIPOLE SPIN MODEL

Let us consider a system of N spins whose sites in real
space are enumerated with the index i =1,2, . . . , N, and
which interact with one another through dipole forces.
The Hamiltonian of this system can be written in the
form

H,it=Hoe, +H, e,cos(cot )+H;„de„, . (3)

Consider a case of a cylindrical resonator with the axis
directed along e„,. For definiteness, let this be a coil hav-

ing n turns of cross section A„„alength I, resistance R,
inductance L, and capacity C. The back-acting magnetic
field of a high quality resonator, following Bloembergen
and Pound, ' can be written as

4vrn
id id (4)

~here the voltage induced in the coil by moving spins is

4'
Uind n '9p ~ res X Si 'eres

C

g being a filling factor, and p a density of spins,

V N
Vres I~ res & PV„, V

For the induced magnetic field (4) we get the expression

H;„d= — ilpQ g S;.e„, ,

y is the gyromagnetic ratio whose sign coincides with the
sign of a particle charge; H,z is an effective magnetic field

acting on the system.
The total effective field H,z can contain a constant

external field Hue„an alternating magnetic field

H, e„cos(cot ) and, when the sample is placed into a reso-
nator, a back acting field H;„de„, induced by rotating
spins of the system:

in which the dipole interaction is

IJ lJ

where S; is a spin operator,

in which Q is the quality factor of the circuit,

coL 1 4m.n

R &LC ' lc2

and the characteristic circuit frequency co is assumed to
be in resonance with the frequency of the alternating field

in Eq. (3).
The difference between the classical case considered by
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Bloembergen and Pound' and the quantum case is in the
meaning of the notation S;. In the classical case this is

nothing but a time derivative of the spin S, In the quan-
tum case S; means an additional operator commuting
with spin operators and, under averaging, having the
property (S; ) =d (S; ) Idt S. uch a definition of the
operator S, is given so that the Heisenberg equations for
the considered system would yield, when returning to the
classical case, the corresponding classical equations of
motion. Note that if we use the mean-field method, the
Hamiltonian of our system would not contain the terms
bilinear in spin operators, the term SJ .g;S; will be re-
placed by S .g;(S; ), and the commutator of S; with S.
does not appear. The equations of motion for the classi-
cal quantities ( S; ) are the same for both cases.

I

2

res

(10)

which describes the strength of a coupling between the
spin system and the resonant coil.

In this way, as equations of motion for the microscopic
model with Hamiltonian (1) we obtain the following equa-
tion for the z component of a spin operator

To write the Heisenberg equations for the spin opera-
tors S,.' and S,*=S;"+S~,we direct the coil axis along the
axis x, so that e„,=e„use the notation

~p=gHp

and introduce an important coupling constant,

i' = (S —S )cos(cot) — (S —S. )—g (S +S )
S %cod gp + d
dr 2 dt J

a,"+ y " (s,-s+ —s+s,-)+(c,,s+ —c,,'.s,;)s;+e,,s+s+ —e„'.s,;s;
J' («)

and the equation for the ladder operator

ds;
iR = —A'cooS; +A'cois cos(cot) —g&S g (S +5+)

dt ' 'dt

a;.+ g (S SJ +2S; SJ')+cj(S; SJ+ 2S SJ')+—cJS; S~
—2e; S .S+

j (&i)
(12)

P(r}= =P,„,(r)+P„„(r), (13)

which is presentable as a sum of the incoherent and
coherent parts, respectively,

P;„,(t)=kg g (S,". ), P„„(t)=fig g(S;"S") .i'
Another characteristic is the intensity of magnetodipole
radiation

I(t)=I;„,( )r+I„(h)r, (14}

in which

2

ai= 3
(1—3cos 8;, ),

rlJ

3p
3 sin(28;1 )exp( i P;~ ), —

4r;

3P 2
3

sin 8; exp( 2ig; ),—
4r;.

where 8;J and P; are the spherical angles corresponding
to the vector r; .

The radiation processes occurring in the system can be
studied by measuring the power of current absorbed by
the coil

also consisting of the two terms

2 2 2 2

I,„,(r)= ", y(S,. )', I,.„(r)= ", y(S, S, &,

the intensities of incoherent and coherent radiation.
The radiation intensity (14) can be measured, in princi-

ple, by usual detectors of propagating radiofrequency
waves; to distinguish the signal of harmonic pumping and
complicated I(t) is not difficult. The main difference be-
tween (13) and (14) is that the power of current (13) is ob-
served in a resonance circuit surrounding the sample con-
sidered and connected with it by the back action charac-
terized by the coupling constant (10), while the intensity
of radiation (14) should be measured by detectors that are
not coupled with the spin system, being located outside
the latter. When the system is not placed inside a resona-
tor, the sole measurable radiation characteristic is inten-
sity (14), although sometimes a problem can arise when
measuring the intensity of radiation (14} because of its
smallness. For example, in the case of proton spins, if we
take coo-10 s ' and N-10, we get I(t) —10 W,
which is quite small and is rather difficult to measure.
However, in the case of electron spins with ct)p 10 s
and the same number of spins N-10, the intensity I(t)
can reach tens of watts and is easily detectable. There-
fore, the magnetodipole radiation from protons seems to
be too small to be measured, but that from electrons can
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be easily observed, even though in practice the number of
coherently radiating particles N is suf5ciently smaller be-
cause of inhomogeneous broadening. In all the cases, the
power of the current (13) is higher than the intensity of
radiation (14) by a factor of QA, /(2m) V„„which is
quite large for the radiofrequency wavelength k and for
high-quality resonators. '

To study the onset of coherence and all peculiarities of
coherent effects in real systems, it is very convenient to
introduce the coherence coefficients defined here by
the equations

100

8-
0 j &

10

0.'I

0.5

I
l r
) I

I I( I&

I

I . ~

I

(15)

Let us stress that the introduction of the coherence
coefficients (15) is based on the possibility of separating
out in Eqs. (13) and (14) the corresponding incoherent
and coherent terms, which is admissible only for a micro-
scopic model.

III. RESULTS OF NUMERICAL INVESTIGATIONS

We solve the equations of motion (11) and (12) by using
a standard method of computer simulation which is ap-
plied for treating the dynamics of spin systems. ' In
this approach spins are considered as classical vectors,
their initial distribution is given by the Monte Carlo tech-
nique, and the differential equations of motion are numer-
ically solved by the Runge-Kutta method.

To check that the qualitative behavior of the system
does not depend on the number of spins, we have realized
three variants of calculations with N=27, 125, and 343.
For all these cases the time behavior of the system has
been found to be qualitatively the same. Therefore, in
what follows we present the results of calculations for the
case with N =125.

Henceforth time will be measured in units of
Tz —= gaia jp, where a is a mean interparticle distance and3 2

frequencies are in units of T2 '. We have calculated the
coherence coefficients K«h=E«h(t) and C„h=C«h(t)
and the radiation characteristics (13) and (14) which, for
convenience, are made dimensionless by passing to the
quantities

We present as well the average polarization

in which the spin of a particle is assumed to be —,.
It is worthwhile noting that in our microscopic model

we do not take into account the spin-lattice interaction as
far as its intensity is much smaller than that of the dipole
interaction (2); that is, the spin-lattice relaxation time is
much larger than T2.

The polarized spin system is assumed to be prepared in

a highly nonequilibrium, i.e., flipped, state. This means
that if p,' ') 0, where p,' '=p,' ', then the external mag-

netic field is antiparallel in the case of positively charged
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t

FIG. 1. The coherence coefticient K„h, power P of the
current, and polarization p, as functions of time (measured in
units of T2) for the case of the spin system coupled with a reso-
nator but without external pumping (co& =—0). The solid line is
for go =0.1; the dashed line for go =0.01. The Zeeman frequen-

cy is ~coo~ =40 (in units of T& ').
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FIG. 2. The same functions as in Fig. 1 for the parameters
go=0. 1 and p,' '=0.25. The solid line is for ~coo~ =200; dashed
line, for ~coo~ =40.

particles (Hp (0) and is parallel to e, in the case of nega-
tively charged particles (Hp )0). In both the cases
coo=yHo is to be negative ifp,' ' is positive. When the in-
itial polarization p,' ' is negative, then coo is to be positive
in order to make the initial state highly unstable. There-
fore, the general criterion for the system to be initially in
a nonequilibrium state is coop,' ' & 0.

Figures 1 —3 show a transition of the spin system from
such a highly nonequilibrium state to its equilibrium state
when the system is coupled with a resonance circuit
(go%0) but with the alternating pumping field absent
(cot

——0). Figure 1 demonstrates the influence of the cou-
pling constant go on the delay time and on the duration
of a radiation pulse. The dependence of the latter charac-
teristics on the value of coo and on the initial polarization
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p,' ' is illustrated in Figs. 2 and 3, respectively. In Figs.
1-3 the time behavior of the power P is completely
analogous to this function measured in the corresponding
experiments. ' ' The first coherent burst is typical of su-
perradiance"' when P -X, after which the incoherent
maser generation continues. The Bloch equations, which
assume the existence of coherence, can reasonably de-
scribe the superradiating pulse itself, but cannot describe
the incoherent maser generation (see Refs. 11, 12, 19—22).
The is because the Bloch equations correspond to the
classical approximation, while the incoherent radiation is
quantum mechanical in nature. Our microscopic model
allows us to picture the whole process with both its
coherent and incoherent parts and to obtain a good
agreement with experiment. ' ' By tracing the time be-
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FIG. 4. The coherence coeKcient C„h, radiation intensity I,
and polarization p, as functions of time in the case of the spin
system without a resonator (go =0) and without pumping
{co,—:0) for p,' '=0.475. The solid line is for ~coo~ = 1000; dashed
line, for ~coo~ =200; solid line marked with crosses, for ~coo~

=50;
solid line marked with triangles, for ~coo~ =200 but without di-
pole interactions. All corresponding curves for the polarization
p, practically coincide.

FIG. 3. The same functions as in Fig. 1 for the parameters
go=0. 1 and ~coo~ =40. The solid line is for p+'=0. 475; dashed

line, for p,' '=0.250.

FIG. 5. The same functions as in Fig. 4 in the case of the spin
s stem without a resonator (go—:0) but in the presence of ansy
external pumping (co=coo) for the parameters ~coo~=200 and

~co, ~=0.5. The solid line is for p,' '= —0.475; dashed line, for

p,' '=0.375; solid line marked with crosses, for p, =0.475.(&)—

havior of the coherence coefficient, defined in (15), we can
decide unambiguously when the process is really coherent
and when it is not.

If the spin system is not coupled with a resonator
(go

—=0) and there is no alternating pumping (co, =0), then
the coherence can appear only in the situation typical of

(o) '
free induction, when the initial polanzation p, is more
important than p,' ' This case is illustrated in Fig. 4. The
description of free induction by the Bloch equations
displays the disappearance of coherence during the time
T2. Contrary to this, we see in Fig. 4 that for t & T2
there are oscillations of coherence with a period close to
T2. These oscillations are due to the nonuniformity of
the system, since in our case not all spins initially have
the same direction. As is evident, such oscillations of
coherence cannot appear in the Bloch description where
all spins, by supposition, are unidirected.

Finally, we show that coherence can be obtained in a
system without a resonator (go =0) but in the presence of
a resonance external pumping (co,%0). This is demon-
strated in Fig. 5. Such a regime cannot be accurately de-
scribed by the Bloch equations, since, as has been dis-
cussed by Redfield, with radio frequency fields, when
the energy of spin alignment in these fields is comparable
to the energy of typical dipole spin interactions, the sim-
ple phenomenological concept of a T2 relaxation time
breaks down.

In conclusion, we would like to emphasize that the
model considered in the present paper makes it possible
to portray correctly different coherent effects in spin sys-
tems not only because this model is microscopic but also
because a direct numerical solution of the nonlinear equa-
tions of motion can be carried out. If we were to start
from a microscopic description but invoking perturbation
theory instead, as was done in Ref. 30 at very high polar-
izations p„such as those discussed in our work, then we
would be able to arrive at a description solely of the in-
coherent behavior of the system.
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