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Strain-induced valence-subband splitting in III-V semiconductors
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A (001) axial strain introduces an additional term, known as the C4 matrix element, into the
valence-band Hamiltonian of III-V semiconductors, proportional to the axial strain and to k~, the wave-

vector component perpendicular to the strain axis. This matrix element has been ignored in all previous
valence-subband calculations. We use the empirical pseudopotential method and the tight-binding
method to calculate the magnitude of C4 in the III-V and selected II-VI semiconductors. The calculated
values are smaller than but comparable to the experimentally determined value in InSb. We then

present envelope-function calculations which show how the C4 term may particularly acct the valence-

subband structure of quantum wells under biaxial tension (e.g., Ga-rich In„Gal „As on InP), splitting
the degeneracy of the highest valence subband, and shifting the valence-band maximum from the
Brillouin-zone center. The strain-induced band splittings are an order of magnitude larger than those in

unstrained bulk material and may be measurable in wells with moderate strain (lattice mismatch =1%).
Finally, we discuss the inhuence of the C4 term on optical, transport, and cyclotron-resonance data.

I. INTRODUCTION

The band structure of a bulk tetrahedrally bonded
group-IV semiconductor, such as Si, is doubly degenerate
because of the inversion symmetry about the center of a
Si-Si bond. By contrast, in a III-V zinc-blende semicon-
ductor such as GaAs, the lack of inversion symmetry lifts
this degeneracy, and introduces terms linear in wave vec-
tor k into the k.p Hamiltonian describing the band struc-
ture. These linear-k terms have been shown to be small
in unstrained semiconductors' and so can be generally
disregarded in band-structure calculations for both bulk
and quantum-well systems. The application of axial
strain e.,„ in a III-V semiconductor further reduces the
crystal symmetry, and introduces additional linear-k ma-
trix elements into the valence-band Hamiltonian, propor-
tional to s,„and to kj, the wave-vector component per-
pendicular to the strain axis. We focus in this paper on
the rnodifications to the valence-band structure when axi-
al strain is applied along the [001] direction, appropriate
to the case of growing strained-layer semiconductor
structures on substrates with the conventional [001]
alignment. We use both the empirical pseudopotential
method and the tight-binding method to calculate the
band structure and relevant momentum matrix elements
for the bulk III-V semiconductors under a (001) axial
strain. This strain introduces an additional matrix ele-
ment, known as the C4 term, to the valence-band Hamil-
tonian. We find that for a 1% lattice mismatch, the
strain-induced linear-k terms are almost an order of mag-
nitude larger than those associated with inversion asym-
metry.

Strains of this magnitude are now routinely incorporat-
ed into strained-layer semiconductor structures, but the
inhuence of the C4 matrix element has been ignored in all
previous studies of strained-layer quantum-well struc-

tures. We include the C4 term here and calculate the
valence-subband structure of strained In„Ga& „As quan-
tum wells between unstrained Inp barriers, for the case
both of quantum-well layers under biaxial compression
(In rich) and under biaxial tension (Ga rich). The addi-
tional term has little effect on the subband structure near
the valence-band maximum of layers under biaxial
compression, but can significantly affect the valence-
subband structure of quantum wells under biaxial tension
(here Ga-rich In„Gal „As on InP), splitting the degen-
eracy of the highest valence subband, and in all cases
shifting the valence-band maximum from the Brillouin-
zone center. We conclude that the strain-induced linear-
k terms should be included when studying the valence-
subband structure of quantum wells under biaxial tension
but can be ignored in most applications for wells under
biaxial compression.

We begin in the next section by discussing the valence-
band structure of III-V semiconductors, using the
Luttinger-Kohn (LK) Hamiltonians in the spin- —,'basis
to describe the heavy- and light-hole bands. We describe
how the LK Hamiltonian is modified by a (001) axial
strain, including the incorporation of the C4-related
linear-k terms. We use the empirical pseudopotential
method in Sec. III to calculate the value of the C4 ma-
trix element for each of the III-V semiconductors, and
find it to be consistently smaller than but comparable to
the experimentally determined value in InSb. Similar
values are obtained in Sec. IV using Harrison's linear
combination of atomic orbitals (LCAO) method. We
then take an estimated value of C4 and use the envelope-
function method in Sec. V to calculate the valence-
subband structure of In„Ga& „As quantum wells be-
tween InP barriers for layers under biaxial tension
(x (0.53) and biaxial compression (x)0.53). Finally,
we discuss our results and summarize our conclusions in
Sec. VI.
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II. VALENCE-BAND STRUCTURE

The application of an axial strain along the [001]direc-
tion breaks the cubic symmetry of a III-V semiconductor,
distorting the unit cell as (1+Ej, 1+E~, 1+a~~) and there-
by modifying the band structure. The total strain can be
resolved into a purely axial component
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We are primarily interested in the effects of the axial
strain c,„but will also, where appropriate, consider the
effects of the hydrostatic strain c„„.

The valence-band structure of unstrained GaAs, taken
as the prototype III-V semiconductor, is shown in Fig.
1(a), calculated using the empirical pseudopotential
method, as described in the next section. Figures 1(b)
and 1(c) show the band structure with net positive
(e,„=—3%) and negative (e,„=3%) axial strains, re-
spectively. For both calculations, c.~~=

—2c~, so that
c„&=0. The band structure is plotted along the strain
direction, b,

~~

[001], and perpendicular to it, along b, j
[100], and extends 20% into the Brillouin zone. In each
case, the lowest conduction band is approximately para-
bolic near the zone center. The description of the holes is
complicated even in the unstrained case [Fig. 1(a)]. The
heavy-hold (HH) and light-hole (LH) bands are degen-
erate at the zone center I, and the spin-split-off (SO)
band lies at an energy 50 below the two highest bands.
The application of axial strain has three noticeable effects
on the band structures of Figs. 1(b) and 1(c). First, it
splits the degeneracy of the light- and heavy-hole states at
I, typically by about 100 meV for e,„=3%. Secondly, it
introduces an anisotropic valence-band structure, with
the band that is heavy along the [001]direction, k~~, being
comparatively light perpendicular to that direction, along
k~, and vice versa. Finally, axial strain splits the degen-
eracy of the spin-up and spin-down valence states along
k~, away from the strain axis. The band splitting in-

creases linearly with wave vector k~ for the highest
valence band in Fig. 1(c), and this in fact results in a
slight shift in the valence-band maximum away from I
(k =0) in this case.

The strain-induced splitting of the heavy and light
valence-band-maximum states, and consequent anisotrop-
ic band structure, have been widely discussed in relation
to strained-layer quantum-well structures, where they

FIG. 1. Valence-band structure of GaAs for (a) unstrained,
(b) biaxial compression (c,„=—3%), and (c) biaxial tension

(c,„=+3%). The strain is applied along the (001) direction,
and band dispersions are shown 20% into the Brillouin zone.
The (100) direction (6&) is then perpendicular„and the (001)
(h~~) parallel to the strain axis. Along the direction perpendicu-
lar to the strain axis (6&), the strain-induced matrix element C4
splits the degeneracy of the spin states by a sizable amount, even
for moderate strains. The effect of C4 on the highest valence
band will therefore be greater in strain-layer systems under ten-
sion (c) than for layers under compression (b).

have been shown to lead to a reduced hole mass in layers
under biaxial compression, with consequent benefits for
laser applications. Little attention has been paid to the
strain-induced band splitting of the spin-up and spin-
down states, on which we now focus.

We describe the valence-band structure in the vicinity
of the band maximum using the Luttinger-Kohn Hamil-
tonian in the spin- —, basis, with the axis of quantization
taken along the (001) direction. The most general form of
the LK Hamiltonian for an unstrained III-V semiconduc-
tor in zero magnetic field is

$2H= — (y)k I—2y2[(J„——,'J }k„+c.p. ]

—4y 3 [ [J„J ] k„k +c.p. ]}

+ [ jJ„(J2—J, ) ]k„+c.p. ],
3

(2.3)

where I is the (4X4) unit matrix, J„,J», and J, are the
angular momentum matrices for spin —,', and x, y, and z

denote the crystallographic [001) directions. [J„J ]
=

—,'(J„J»+J»J„), and c.p. stands for cyclic permutation

of the preceding term. Equation (2.3) can be rewritten as
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where

+[J„C4(e —e„)k„+c.p. ], (2.5)

where a„and b are the valence-band volume and axial de-
formation potentials, c„„=a~„=cz,c, =c.

~~,
while C4 de-

scribes the strain-induced linear-k splittings. Equation
(2.5) can be rewritten as

3
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where S= be,„,f= —i C4e,„(k„—ik» ), an—d we have set
a„e„,&=0. The strain-induced splitting of the valence-
band maximum in Figs. 1(b) and 1(c) are then described
by the diagonal terms in Eq. (2.6), and the band splittings
away from the (001) axial strain direction by the off-
diagonal terms in Eq. (2.6).

C4 has been defined by Trebin using perturbation
theory in terms of the unstrained basis states as

2 A
iC4 =——

3 m

4'"' &&lp»lj&&jl& Iz&+&XI& Ij&&jlp»lz&

(2.7}

g = —
—,'(y, +2yz)k, —

—,'(y]+yz)(k +k ),
b =i v'3yz(k„—ik»)k, ,

c = V—3[yz(k„k—) 2—i y zk„k» ]/2,
d =Ck, ,

d'=iv 3C(k„ik—»)/2 .

We have taken 4= m =1 in Eq. (2.4}. The m» =2—,
' states

correspond to the heavy-hole bands and the mJ +2
states to the light-hole bands along (001), with the
heavy-hole mass then given by mz'=(y, —2yz} ' and the
light-hole mass by ml' =(y, +2yz) '. The linear-k terms
arise from the lack of inversion symmetry in III-V semi-
conductors, but are generally considered to be very small.
Brillouin scattering experiments were unable to detect
any linear-k splittings in GaAs, while theoretical calcu-
lations have estimated a value for C in GaAs of 3.4 meV
A. Experimentally determined values of C in other zinc-
blende semiconductors vary between 9.3 meVA (InSb}
and 20.0 meVA (CdTe}. These C terms are therefore
small and can be ignored in valence-band calculations.

The application of an axial strain along the (001) direc-
tion further reduces the symmetry and introduces addi-
tional terms H, into the LK valence-band Hamiltonian,
with the terms up to e,k being given by

H, =a„e„,&I
—b[(J„——,

' J )e„„+c.p. ]

where

D„=
2

S'z 3V
m Bs„

In our pseudopotential and LCAO methods described
below, we calculate C4 directly from the strained basis
states.

III. PSEUDOPOTENTIAL METHOD
AND RESULTS

In this section, we use the empirical pseudopotential
method (EPM) with the local approximation to calculate
the magnitude of the C4 matrix element for the III-V
semiconductors. We use published values of the form fac-
tors ' ' to calculate the band structure of the un-
strained bulk semiconductors. We then determine how
the form factors vary with axial strain to reproduce ex-
perimentally measured deformation potentials. The
strain-dependent form factors are finally used to calculate
the relevant matrix element. The eigenvalues and eigen-
vectors are calculated in each case by diagonalizing a
113X 113 plane-wave matrix (doubling in size when spin
is included), which ensures energy convergence to within
0.01 eV.

The variation in band structure with c.,„was calculated
by introducing a purely axial strain along the [001] direc-
tion, distorting the unit cell as (1+a,1+a, 1 —2s), so that
c,„=3@,and, to first order, there is no change in volume.
Keeping the volume constant ensures that the screening
and form-factor normalization are unchanged, and conse-
quently the strain-dependent band structure can be calcu-
lated once the gradient of the form factors at the relevant
reciprocal-lattice vectors has been determined. In fact,
only four of the six form-factor slopes need to be deter-
mined, since a &001& axial strain has no effect on the
symmetric form factor Vs(q ) and the antisymmetric form
factor, Vz (q ) for q = (2n. /a ) 3, where q is the reciprocal
space vector.

The empirical determination of the form-factor gra-
dients was carried out in a two-stage process. First, a
"best guess" was made of the gradients by polynomial
fitting of the unstrained symmetric and antisymmetric
form factors. The gradients were then modified using a
numerical fitting technique to optimize the calculated
values of the deformation potential b associated with the
(001) axial-strain-induced splitting of the valence-band
maximum, where the strain-induced splitting S between
the mJ= —', and —,

' states is given by S=2bc.,„. We also
monitored the splitting of the conduction-band X mini-
ma, where the separation between the X„and the X,
state is given by E2c„,here E2 is the relevant strain de-
formation potential. ' An additional constraint was in-
cluded in the fitting procedure to ensure that the calculat-
ed slopes remained close to those predicted by polynomi-
al fitting. This process was repeated for all the group-IV
and III-V semiconductors. The calculated values of b
and E2 are listed in Table I, along with the available ex-
perimental data. There is good agreement between
theory and experiment.
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TABLE I. Experimental and theoretical deformation potentials (in eV) for the main group-IV and
III-V semiconductors. The sixth and seventh columns contain the calculated values of the
intervalence-band momentum matrix element (C4) in units of eVA, from the EPM and LCAO
methods, respectively. Also shown is the experimentally determined value for InSb (in italics).

Material

Si
Ge
Alp
AlAs
Alsb
GaP
GaAs
GaSb
InP
InAs
InSb

ZnS
ZnSe
Zn Te
CdTe

b„),
(eV)

—2.1
—2.4
—1.5
—1.6
—1.4
—1.5
—1.7
—1.9
—1.9
—1.7
—1.9

—0.8
—1.2
—1.0
—1.1

bexpt

(eV)

—2. 1
—2.4
—1.5
—1.5
—1.4
—1.5
—1.7
—2.0
—2.0
—1.8
—2.0

—0.8
—1.2
—1.0
—1.1

2 Gale

(eV)

14.0
11.5
7.7
7.1

7.3
7.6
7.8
4.7
6.5
3.7
2.8

2.7
8.2
7.0
2.5

E2 expt

(eV)

9.2
9.5

5.4
6.4
6.3

EPM C4
(eV A)

0.0
0.0
3.5
4.3
3.7
3.3
3.2
2.2
2.3
2.9
2.0

11.3 (expt. )

0.8
0.3
1.3
0.6

LCAO C4
(eV A)

0.0
0.0
7.3
6.9
6.0
7.3
6.8
6.0
7.4
7.0
6.3

8.4
8.0
7.5
6.9

The calculated values of the intravalence-band momen-
tum matrix element C4 are also shown in Table I, in units

0
of eV A. C4 is zero for the group-IV materials due to the
higher symmetry of the diamond lattice. The calculated
values of C4 are all comparable to but smaller than that
derived from experiment for InSb, where C4 was deter-
mined to be 11.3 eVA. ' We have carried out further
calculations which indicate that the difference between
the theoretical and experimental values cannot be re-
moved by considering different form-factor sets, or sensi-
ble alternative values for the form-factor slopes. Rather,
we would need to alter severely the form-factor slopes,
beyond physical feasibility, to calculate a value of C4
equal to the experimentally determined value in InSb.
We thus conclude that the discrepancy between the one
experimental value for C4 and our results cannot be
caused by the fitting procedure adopted.

IV. LCAO METHOD AND RESULTS

Ip,')—/X) =

fpv ) c /p III ) (4.1)

with similar expressions for the
~
Y) and ~Z) states. In

We use Harrison's tight-binding LCAO method with
an sp basis to estimate the magnitude of C4 in the III-V
and selected II-VI semiconductors in this section.

The valence-band maximum is triply degenerate in a
zinc-blende semiconductor when the spin-orbit interac-
tion is ignored, and is of I » symmetry. The three I »
states can be described by wave functions that are of x-,
y-, and z-like symmetry, which we refer to as the ~X),

~
Y), and ~Z ) states, respectively. The wave function of

the ~X ) state is given in the LCAO sp basis as
1/2 1/21+a 1 —a

the above equation, ~p„'"") describes a p state on the
group-V (group-III) site and a is the ionicity of the ~X)
state, defined by

i
( &III EV )p pa"=

P( III v)2+(4V )2jl/2
(4.2)

( Y[H(k„)[Z)= .
4i V„sin( k„a /4)( c~a, —a c, )

0 when a" =a', (4.4)

where Vx~ in Eq. (4.4) describes the interaction between a

~p,. ) and ~pj. ) state on neighboring sites (i' ) and is

given in the present case by

V„=m n ( V —V~„) . (4.5)

Application of a purely axial (001) strain modifies the
direction cosines as ( I /&3)(1+ s, 1+E, 1 —2s), with
c.,„=3m.. This strain changes the symmetry of the z direc-
tion relative to the x and y directions, so that a~& no
longer equals a' and we find, for small k„, that

where c ""' is the self-energy of a p atomic orbital on
the group-V (group-III) site, and V„„describes the co-
valent interaction between ~p„) states on neighboring
sites, given by

V,„=l (V —V )+ V (4 3)

where (l, m, n)=(1/&3)(1, 1, 1) is the direction cosine
between neighboring sites and Vpp and V are the in-
teratomic matrix elements between p states pointing, re-
spectively, parallel and perpendicular to the bond direc-
tion. The Hamiltonian interaction between the

~
Y) and

~Z ) states is zero in an unstrained crystal for a wave vec-
tor k„along the (100) direction, because the y and z direc-
tions are equivalent, and so
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(&„y)
(YiH(k„)iZ)= i— a a, k„as,„,p c x ax~ (4.6}

where a, =(1—a~ }' and a is the lattice constant. We
take the values of V„„and V„ from Harrison's solid-state
table, where they are both proportional to a, and find
that C4 is then given by

XX ma
(4.7)

V. BAND-STRUCTURE CALCULATIONS

It is now possible to grow high-quality strained-layer
quantum-well structures, in which the quantum well is

It can be seen, as expected, that C4 is zero in a purely co-
valent material such as Si, where ap =0, and would also
be zero in a purely ionic material, where a, =0. The cal-
culated values of C& for the III-V semiconductors are
shown in Table I, using values of a and a, derived from
the solid-state table.

The values of C4 calculated using the LCAO method
lie between the EPM values and the experimental value
determined for InSb. We note that the calculated C4
values for the selected II-VI compounds are larger than
those for the III-V compounds in the LCAO method but
are significantly smaller in the EPM calculation. We be-
lieve that this discrepancy can be understood using Eq.
(4.7), which predicts that C~ equals zero in the purely co-
valent (a =0) or purely ionic compound (a, =0) and is
maximized when a =a, =0.707. In the LCAO calcula-
tions, the III-V compounds are weakly ionic (a& =0.5),
while the II-VI compounds are more ionic, with a =0.7.
Thus C4 increases in going from the III-V to II-VI com-
pounds in the LCAO case. We have not derived an ex-
pression analogous to Eq. (4.7), but presume that the
same trend holds with varying ionicity, except that now
the III-V compounds have ionicities closer to that which
gives the peak value of C4, with the selected II-VI corn-
pounds having ionicities well beyond the C4 peak.

If we regard a typical EPM value of 2.5 eVA as a
lower estimate of C4 and the experimental value of 11.3
eV A as an upper estimate, then for a value of axial strain
of s,„=3%,we find Czs,„=75—350 meVA, so that the
strain-induced linear-k terms in Eq. (2.6) are approxi-
mately an order of magnitude larger than the linear-k
terms due to inversion asymmetry in Eq. (2.4). We now
turn to consider in the next section the influence of the
C4-related terms on the valence-subband structure of typ-
ical quantum-well structures with built-in axial strain.

composed of a semiconductor which would normally
have a significantly different lattice constant from the
substrate. For GaAs/In„Ga, „As, which is the most
widely studied III-V system, high-quality growth is now
routinely achieved in structures where the product of
lattice-mismatch cp and well width I., is of order 200
A%. The lattice constant of In Ga, „As is greater than
GaAs, so that strained In Ga& „As quantum wells on a
GaAs substrate are always under biaxial compression.
By contrast, the lattice constant of InP lies between that
of InAs and GaAs, so that it is possible to grow
In„Ga& „As quantum wells on InP which are under ei-
ther biaxial tension (x &0.53} or biaxial compression
(x )0.53).' ' We have therefore chosen In„Ga| „As
quantum wells between InP barriers as the prototype sys-
tern in which to consider the influence of strain-induced
valence-band splittings.

The valence-subband structure is calculated using the
envelope-function method' with the Hamiltonian of Eqs.
(2.4) and (2.6), but ignoring the linear-k terms present due
to inversion asymmetry in Eq. (2.4). The Luttinger y pa-
rameters are shown in Table II. The InP y parameters
were taken from Lawaetz, while the In„Ga, „As
values were obtained by linear interpolation of effective
masses between unstrained bulk GaAs (Ref. 21) and
InAs, ' but allowing via the k p interaction for the varia-
tion in the light-hole mass with strain in the quantum
well. The axial deformation potential b was assumed to
vary linearly between the GaAs and InAs values, and the
built-in axial strain c,„was related to the lattice
mismatch cp as

E,ax
1+o.

Cp,
1 —o.

(5.1)

where cr is Poisson's ratio, taken equal to —,
' across the al-

loy system. The band offsets were then calculated using
Van de Walle's model-solid theory. We also list the C4
values used in our calculations.

Figure 2 shows the calculated valence-subband disper-
sion in the quantum-well plane for (i} 50 A and (ii) 100 A
In„Ga& „As quantum wells on unstrained InP substrate
which are (a) under biaxial compression (x)0.53), (b)
unstrained (x=0.53) and (c),(d) under biaxial tension
(x &0.53). The lifting of the spin degeneracy, particular-
ly for layers under tension, is a direct result of C4. The
compositions are equivalent to a lattice mismatch of
Eo= (a) —1%, (b) 0%, (c) 1%, and (d) 2%, respectively, so
that for all the structures considered EOL, &200 A%, and
lies within the range of good quality growth in the
In Ga, As system.

TABLE II. Material parameters used in valence-subband-structure calculations.

Material

InP
In„Ga& „As cI= —1%

c~ =0%
can=1%
ci=2%

6.28
11.06
9.80
8.73
7.90

r2

2.08
4.06
3.43
2.90
2.48

r3

2.76
4.94
4.29
3.74
3.30

b (eV)

—2.00
—1.77
—1.75
—1.74
—1.72

C, teVA)

3.45
4.52
4.58
4.65
4.71
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(a) e,=-1%
0

HH1

(b) e,=p
I I

HH1

(C )c,=+1%
I ' ~

(d) c,=+2%
I ' I

-50
E

]00 HH2

Q)

UJ -$50 - LH1

-200
0 2 4

LH1

. HH1

6 0 2 4 6 0 2 4 6 0 2 4 6

In-Plane wave
(f) e,=p

I I

(e) e,=-i%
I ' I

vector, k~ (10'A )

(g)e =+1% (h) E =+2%
1 ' I

FIG. 2. In-plane valence-subband dispersions for (a) —(d) 50
A and (e)-(h) 100 A strained layers of In„Ga& „As between un-

strained InP barriers. For each well width four compositions
are shown equivalent to the following lattice mismatches (a),(e)

1%; (b),(f) co=0%', (c),(g) F0=1%; and (e),(h) co=2%.
This encompasses layers under compression (@0&0), tension
(c& & 0), and unstrained (F0=0). The strain-induced splitting
has the greatest effect on layers under tension, since mJ=+ —,

'

(light-hole) derived states are the highest valence states.

We see that the strain-induced splitting of the highest
subband at the valence-band maximum is linear in k for
layers under sufficient biaxial tension, [(c),(d)] but not for
layers under biaxial compression. This follows immedi-
ately from the strain-dependent Hamiltonian of Eq. (2.6),
where the off-diagonal linear-k terms cause a direct in-
teraction between the otherwise degenerate light-hole
(+—,

'
) states, while mixing the heavy-hole (+—', ) states with

nondegenerate light-hole states, which causes the split-
ting to vary slowly near the zone center, as k . We thus
conclude that the strain-induced C4 terms can generally
be ignored when considering carriers near the valence-
band maximum in quantum wells under biaxial compres-
sion [Fig. 2(a)] but that they can have a significant
influence on layers under biaxial tension [Figs. 2(c) and

2(d)], in particular shifting the valence-band maximum
away from the Brillouin-zone center at I .

We seek to quantify the influence of the C4 terms by
considering the valence-band Hamiltonian in the decou-
pled approximation, where we ignore the interactions be-
tween heavy-hole (mJ =+—,

'
) and light-hole (mJ =+—,

'
)

states. The Hamiltonian for the mJ=+ —,
' states is then

given by

+ —,
' a —S

H Cc keI 4 ax

C4caxk ~ e

a —S (5.2)

where 0 is the angle of k~ in the x-y plane. The splitting

Q for an in-plane wave vector of magnitude ki is then
given by

Q =2Cqe, „ki . (5.3)

This leads to a splitting of 10 meV by k~=6X10 A

-50
E

-100

-150

-200 ~ I I I

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

when c.,„=2% [Fig. 2(c)], and of 19 meV for E,„=4%
[Fig. 2(d)], where we assumed in the calculations that
C4=4 eVA. The latter splitting would have been as
large as 53 meV if we had assumed a value of 11 eV A for
C4, equivalent to the experimentally determined value in
InSb. ' This would be a sizable distortion of the band
structure, which would significantly modify the transport
properties.

From Eq. (5.2), the highest mj =k —,
' valence state will

always be shifted from the zone center (ki =0) by the C4
terms, and the dispersion will vary near the zone center
as

$2
E(ki) =EL,— ki+C4s, „kj,

2m &y2

(5.4)
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FIG. 3. Landau-level dispersion of the
states in the decoupled approximation, with
C4c„=0.08 eVA (theoretical C4), and (c)
(experimental C4 ).

light-hole-derived
(a) C4c,„=0.0, (b)

C4c,„=0.44 eV A

where EL, is the energy of the highest mJ =+—,
' state at

k J 0 and m»z is the in-plane effective mass when

C4 =0. The band maximum will then occur at
k J m t &2C4 s,„/A' and will be at an energy
b,E=

—,'(C4E,„) m

ized

lfi . This translates in the decoupled
approximation [Eq. (5.2)] into a shift of 0.4 meV for
C4=4 eVA and E,„=2%, and a shift of 13 meV for
C4=11 eVA and E,„=4%. Here we have assumed an
in-plane effective mass equal to the free-electron mass
m»2=mQ, a typical value for tensile-strained quantum
wells. A shift of the latter magnitude would again cause
a significant distortion of the band structure.

Finally, we consider the influence of the C4 terms on
the Landau-level dispersion in a strained quantum-well
structure under biaxial tension, using the decoupled ap-
proximation of Eq. (5.2), where we ignore interactions
with the mJ=+ —', states. For a magnetic field along the
(001) direction, the Landau-level dispersion for the
mJ =+—,

' states can be found for the 2X2 matrix (5.2) in

an analogous way to that previously published. ' ' It
involves replacing the vector k in the valence-band Ham-
iltonian by k+e A/A', where A is the vector potential,
and by introducing a term of weight ~ along the matrix
diagonal. For a field along the (001) direction the vector
potential changes the valence-band Hamiltonian such
that k„and k are replaced by harmonic-oscillator opera-
tors. 25 This is achieved by writing Eq. (5.2) in terms of
the raising and lowering operators:
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a+= (k„+ik }, a = (k„—ik ), N=a+a+ 1 . 1

2
" "' 2

(5.5}

where s =eB/fic. By inspection, the relevant harmonic-
oscillator functions u„(x,y ) for the 2 X 2 matrix (5.2) are

u„

) (5.6)

)
with n as the Landau-level quantum number. We then
use the identities a+ u„=(n +1)' r u„+„a u„
=n ' u„&, and Nu„=nu„ to give the Landau Hamil-
tOnian, Hgandau&

A, +fico, (y i
—yi —a)/2

H Landau —C,s,„&2sn

C—,e,„&2sn

fico, (y—i
—

y2
—tt)/2

(5.7)

with

A, = —A'to, (yi y2—)n +ELH;, (5.8)

where to, is the cyclotron frequency eB /moc, «= l, ' and

ELH; is the confinement energy of the ith light-hole state.
The effect of C4 is to produce a strong-coupling term be-
tween the mJ=+ —,

' states. This term is proportional to
C4c,,„, and thus will produce greater coupling for large
C4 values and strains. The resultant Landau dispersion
for the first light-hole subband Ez H&, namely

VI. CONCLUSION

We have used the empirical pseudopotential method
and the tight-binding LCAO method to calculate the
strain-induced linear-k (C4} terms in the valence-band
Hamiltonian of III-V semiconductors. The C& matrix

+—,'I8sn(C4e, „) +[fuo( y,
—yi —tr)] J'~

(5.9)

is valid for n ~ 1, while its negative-square-root solution
is the only valid solution for n =0. Using parameters for
GaAs, ' the Landau levels are plotted against magnetic
field in Fig. 3 with n ~3 for (a) C4e,„=0.0 eVA, (b)

C4e,„=0.08 eV A (moderate strain, theoretical C4 value),
and (c) Cse,„=0.44 eVA (large strain, experimental C4
value). The average theoretical C4 produces little
difference from the Landau-level dispersion, while the
large C4 value will shift the dispersion significantly.

I

elements calculated using the EPM are a factor of 3-4
smaller than the one experimental C4 value available for
InSb, as indicated in Table I, with the LCAO results ly-
ing between the EPM and the experimental value. We
find that the C4 terms have little effect on the valence-
band dispersion near the valence-band maximum for lay-
ers under biaxial compression. The situation is more
complicated for layers under biaxial tension, as little
effect is found using the theoretically determined values
of C4, whereas the effects are becoming significant when
we assume a value of C4 equal to the one experimental
value. We suggest that cyclotron-resonance measure-
ments on p-doped layers under biaxial tension should
confirm the magnitude of the C4 terms and resolve the
disagreement (by a factor of 4) between the calculated
values of C4 and the one experimental result to date on
InSb.

In summary, the strain-induced linear-k terms are al-
most an order of magnitude larger than the linear-k
terms due to inversion asymmetry in a quantum well un-
der biaxial tension and lead to the highest valence sub-
band being singly degenerate in all cases in such struc-
tures, with the valence-band maximum being shifted from
the zone center. We suggest that further measurements
are appropriate to quantify the magnitude of these
effects.
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