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Tetrahedrally symmetric DX-like states of substitutional donors in GaAs and Al, Ga, _, As alloys
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The structural and electronic properties of Si, Ge, Sn, S, Se, and Te substitutional donors in GaAs are
examined via self-consistent pseudopotential calculations. Two distinct negatively charged DX-like deep
donor states are found. The first has a broken-bond atomic configuration while the second arises from a
symmetric “breathing-mode” relaxation around the impurity. The energies of the two configurations are
especially close for Sn, Se, and Te donors. Experimental data on DX centers in Al, Ga,_,As alloys are

analyzed within this model.

Substitutional donors in GaAs and Al,Ga,_, As alloys
are well known to exhibit very interesting electronic
properties as a function of hydrostatic pressure and Al
concentration.! Column IV or VI dopants generally give
shallow effective-mass-like donor levels for hydrostatic
pressures? of under 20 kbar or for Al concentrations of
less than 22%.%> Above these thresholds the donor level
becomes progressively deeper with increasing pressure or
Al content. The deep “DX*” donor levels have the prop-
erty that their optical ionization energy of approximately
0.75-1.5 eV is many times larger than their thermal ion-
ization energy of 0-160 meV.* The underlying mecha-
nism for this and other properties of DX centers has been
a subject of intense investigation over the last decade.

It is now generally well accepted that the occurrence of
DX centers is purely an intrinsic property of donor im-
purities and does not involve, for example, a complexing
of the impurity with a defect.>> There is also consider-
able experimental support®~!* for a “negative-U”’ model
of DX centers based on the charge-exchange reaction'®

2d°—>d*t+DX ", (1)

where d° and d * represent neutral and ionized effective-
mass-like states of a substitutional donor. The atomic
structures of a substitutional donor in the d° and d+
states are essentially identical in Al ,Ga,;_,As alloys be-
cause of the small binding energy and large effective Bohr
radius of the donor electron. The negatively charged
DX ~ state in Eq. (1) was earlier proposed to arise from a
large bond-breaking lattice relaxation at either the donor
site [for Si impurities, as shown schematically in Fig. 1(a)]
or at a nearest-neighbor Ga (or Al) sublattice site (for S
impurities).'® The model accounts well for the large
Stokes shift between the optical and thermal ionization
energies of DX centers and for the observation of per-
sistent photoconductivity (PPC). It also yields good re-
sults for the pressure, alloying,'” and local atomic struc-
ture dependence of the donor binding energy.'® 20

The purpose of this paper is to examine the properties
of a second type of donor-derived DX-like defect [labeled
D in Fig. 1(b)] with negative-U properties. The primary
relaxation in D is an outward, tetrahedrally symmetric,
breathing-mode displacement of the impurity’s four
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nearest neighbors. The electronic properties and total en-
ergies of both types of DX centers are examined via self-
consistent pseudopotential calculations for Si, Ge, Sn, S,
Se, and Te dopants in GaAs. It is found that the energies
of the D~ and DX~ states are very close for Sn, Se, and
Te donor impurities. The primary differences between
the two centers are that (i) D~ has a metastable neutral
state that can be reached via optical excitation whereas
the broken-bond structure for DX ™ is unstable in a neu-
tral charge state; and (ii) DX ~ has generally a larger opti-
cal excitation energy than D~. Recent experimental re-
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FIG. 1. The DX~ and D~ states for a Si substitutional donor
in GaAs are shown in (a) and (b), respectively. The D ~ state in-
volves a symmetric breathing-mode distortion around the im-
purity which is indicated by the arrows.
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sults by Peale et al.'*?! on Te-doped Alj 35Gag sAs al-
loys showing the existence of two different DX-like
centers and separate experimental data'® on other substi-
tutional donors are shown to be consistent with this pic-
ture. For the case of Sn donors, a third metastable state
(labeled DX’ in Fig. 2) with DX-like properties which re-
sults from a large bond-breaking displacement on an As
nearest neighbor of Sn (instead of the donor itself) is
found.

The D center arises from a radially outward displace-
ment of its four nearest neighbors. The electronic level of
this center corresponds to the lowest energy antibonding
level of the impurity-host system. The properties of D in
a neutral charge state have been examined by several au-
thors.”2~ 26 This state was also an early candidate for the
DX center.

The stability of the shallow effective-mass state relative
to the deep states are determined by considering the ener-
gy changes resulting from the reaction given in Eq. (1)
and

2D dt+D~ ()
and
d°-DO . 3)

The distinction between d° and D is that d° refers to an
effective-mass-like state in which the donor electron is
loosely bound to the impurity. In contrast, in the D°
state the donor electron is localized on an atomic scale to
the impurity. In the simplest tight-binding picture it
arises from a symmetric antibonding combination of the
impurity’s sp> orbitals with the corresponding orbitals of
its four nearest-neighbor atoms. The DX? state obtained
by keeping the atomic structure of the DX ™ state intact,
but changing the charge state is highly unstable!® com-
pared to the d° state and will not be considered. The d°,
D, and DX~ states of a Si donor are shown schemati-
cally in Fig. 1.

A three-dimensionally periodic 32-atom cell was used
to study the total energies and electronic properties of
donors in the d %1 (ionized effective-mass state), DX~
(broken-bond state), D, and D~ states. The energy of
the d° shallow donor state was determined from the rela-
tion E(do)zE(d’LH-Egap where E,, is the calculated
band gap of GaAs. The atomic configurations were fully
optimized via an iterative total-energy minimization
scheme based on using Hellmann-Feynman forces to
determine the directions of atomic motions. All atoms in
the unit cell were allowed to relax. An energy cutoff of
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FIG. 2. The DX’ state for a Sn donor impurity in GaAs. Un-
like the DX ™ state, such as the one shown for Si in Fig. 1(a), this
center arises from a large atomic relaxation on an As sublattice.
Among column IV impurities the DX’ state is relevant primari-
ly for Sn. The DX’ configuration is stable only in a negatively
charged state.

6.5 Ry was used for the plane-wave expansion. At this
cutoff the calculated minimum band gap of GaAs is 1.53
eV, close to the experimental value of 1.52 eV at low tem-
peratures.

The results of the calculations show that the reaction
given by Eq. (2) is always exothermic and that D is a
negative-U defect center. The energy difference between
D~ and DX~ and the optical excitation energies for the
two states are shown in Table I. For Si- and Ge-doped
Al,Ga,_,As alloys we find, in agreement with our previ-
ous results,'”!® that the experimentally observed DX
center should be identified with the C,;, symmetric
broken-bond DX ~ state. In GaAs the DX~ state is a res-
onance lying 0.27+0.1 eV above the conduction-band
minimum and at high doping levels causes Fermi-level
pinning.”’ It becomes a deep center in Al ,Ga,_,As for
x >0.22. The DX~ center for Si and Ge is calculated to
be significantly lower in energy than the D~ center. Ex-
perimental data also appear to favor DX~ over D ~. The
deep-level transient spectra (DLTS) of the Si-induced DX
center in GaAs seen under pressure exhibits a single
peak.? This peak is observed to split into four com-
ponents in Al,Ga,_, As alloys.! The splitting is easily
understandable if the DX center corresponds to the DX~
model shown in Fig. 1(a)."'® For an energy difference as
small as 0.01 eV between the DX~ and D~ models, as
suggested from a cluster calculation,?® one would expect
to see two peaks in the DLTS. Experimental evidence for
a relatively shallow defect center with a binding energy of

TABLE 1. The optical excitation energies (in eV) of Si, Ge, Sn, S, Se, and Te donor impurities in
GaAs for the D™ and DX~ states and the total-energy difference between the two states are shown.

Donors Si Ge Sn S Se Te
Energies
E,(D") 0.3 0.48 0.57 0.49 0.44
E,(DX™) 1.09 1.15 0.94 0.83 0.79
E(DX )—E(D") —0.37 —0.2 —0.03 —0.10 —0.04 —0.05
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0.03 eV in a Si-doped Ga, ¢Al, 4As alloy has been report-
ed.?® Identification of this center with D ~ allows an es-
timation of its total energy relative to DX ~. The binding
energy of DX~ for the alloy is about 0.14 eV. This would
indicate an energy difference of 0.11 (0.22) eV between
the two states if the DX and D centers are assumed to be
neutral (negatively charged).'® This value is within 0.15
eV of that calculated for GaAs and shown in Table I.

The energy of the D ™ is found to be within 0.05 eV of
DX~ for Sn (and also Se and Te) impurities in GaAs. A
radially symmetric distortion of approximately 0.35 A
around Sn is calculated for D~. A third type of DX
center in which the Sn donor has a small lattice relaxa-
tion was found. In this state, shown schematically in Fig.
2, a nearest-neighbor As atom of Sn undergoes a large lat-
tice relaxation that breaks its bond to the impurity. This
new DX' center has an energy that is 0.08 eV higher than
the “normal” type of DX center [shown schematically in
Fig. 1(a) for a Si impurity] that results from a large lattice
relaxation on Sn. The optical excitation energy for the
new center is 0.75 eV. We had previously examined!® a
similar configuration for Si but had found its energy to be
much larger than the normal DX ™ state in Fig. 1(a) than
is found here for Sn. The DX’ center is also predicted to
exhibit a persistent-photoconductivity effect. The center
is stable in the configuration with a large lattice relaxa-
tion only when negatively charged. It reverts to the ordi-
nary fourfold-coordinated configuration when its charge
is changed, e.g., via optical excitation, to neutral or posi-
tively charged. The barrier for bond breaking prevents
the formation of DX’ and leads to persistent photocon-
ductivity.

Experimental observations of a metastable neutral and
paramagnetic active state!® of DX in a Sn-doped
Al 39Gag ;As alloy are consistent only with the assign-
ment of this state to a D center. The predicted closeness
of the energies for the D~ and DX~ states is consistent
with the experimental observation?® of two DLTS peaks
in Sn-doped GaAs under hydrostatic pressure. The two
peaks are seen to occur at nearly the same pressure. Only
a single peak is seen for the case of Si. Extended x-ray-
absorption fine-structure (EXAFS) experiments*® can dis-
tinguish, in principle, the various types of Sn-derived
donor states and such experiments are currently under-
way.

For S, Se, and Te substitutional donors in GaAs the en-
ergy of D™ is calculated to be only 0.05-0.11£0.1 eV
higher than the DX ™ state. The tetrahedrally symmetric
Ga-nearest-neighbor atomic relaxations induced by the
D™ centers are found to be nearly 0.25 A for Se and 0.36
A for Te. The DX~ center develops into a deep donor in
Al Ga,_,As alloys when x >0.22. Assuming that the
variation of the binding energy of D~ and DX~ with al-
loy composition is nearly equal, the D ~ state is estimated
to become a deep state for x >0.26-0.29. This suggests
that at higher Al concentrations, there could be two deep
negatively charged donor-derived states in the band gap.
This situation may explain the observation of three S-
related vibrational modes (possibly corresponding to the
d*, D, and DX~ states) in some S-doped GaAs sam-
ples under pressure.’!
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The D™ and DX~ states may also be important in ex-
plaining the recently observed properties of Te donors in
an Alj 35Ga, ¢sAs alloy where Peale et al.'*?! have found
evidence for two different DX-like centers with optical ex-
citation energies of 0.6 and 1.5 eV. Both centers were
found to be diamagnetic in character, a behavior con-
sistent with that expected from negative-U defects. Peale
et al.?! used the notations DX and PPC2 for the 0.6- and
1.5-eV centers, respectively. They examined the di-
chroism of the optical-absorption spectra (by using polar-
ized light incident along various symmetry axes) to check
the symmetry of the DX center. They found no statisti-
cally significant effect and concluded that either the di-
pole matrix elements of the DX are accidently very iso-
tropic, or that more likely there is no large symmetry-
lowering distortion (e.g., of C;, character) at this center.
Although the first conclusion on the diamagnetic nature
of this defect was found to be consistent with our previ-
ous broken-bond model for the DX center, the latter con-
clusion is in direct conflict with it.

We would identify the 0.6-eV center as the D~ center.
Its diamagnetic properties, tetrahedral symmetry, and
relatively small optical ionization energy are all con-
sistent with this assignment. In addition, the observation
of a metastable neutral state of this center in photoioniza-
tion experiments'® is consistent with the creation of a
metastable D center and not a DX° center since the
latter is theoretically found to be highly unstable.'® Simi-
larly, it is possible that the 1.5-eV center arises from the
previously proposed C;, symmetric broken-bond DX~
state. This would be consistent with the much larger op-
tical excitation energy calculated for this state as com-
pared to the D~ state. The observation by Mochizuki
and Mizuta® that in some samples only the D ~-like is
found suggests, however, that the 1.5-eV center may be
an extrinsic defect center not associated directly with Te
donors.

The D~ model for DX in group-VI-doped GaAs and
Al and Al,Ga,_ As alloys is also consistent with the re-
sults of EXAFS experiments on S- and Se-doped sam-
ples.’*3* At extremely high doping levels in GaAs the
electrons at the Fermi level have enough energy to form
DX centers. In this doping regime Sette et al.>* found
that S impurities in GaAs had two different substitutional
configurations corresponding to two different nearest-
neighbor bond lengths. The two configurations were
found to have equal concentrations to within 20%.
These results are consistent with those expected from Eq.
(2). EXAFS data* on Se showing that Se atoms do not
move upon the formation of DX centers are consistent
with either the DX~ or D~ models.

In summary, substitutional donors in Al,Ga,_, As al-
loys are found to have two different negatively charged
states with DX-like properties. The C,;, symmetric
broken-bond DX ~ state [Fig. 1(a)] is found to be the best
candidate for the DX center in Si- and Ge-doped alloys.
The tetrahedrally symmetric D ~ state [Fig. 1(b)] has an
energy very close to that of DX~ for Sn, Se, and Te im-
purities. The D~ state can be distinguished from DX~
by its smaller optical excitation energy and by the pres-
ence of a metastable neutral state. It is suggested that the
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two DX-like centers seen experimentally!* in Te-doped
Al 35Gag ¢sAs may be related to the two different nega-
tively charged states of donors discussed above. A third
type of low-energy metastable configuration with an ener-
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gy 0.08 eV above that of DX was found for Sn. In this
structure the donor is not displaced but a nearest-
neighbor As atom goes into a threefold-coordinated ““in-
terstitial” configuration.
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