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We have investigated luminescent radiation produced by semiconductor lasers. By using the grand
canonical ensemble for the radiation field produced by the recombination of electron-hole pairs, the
power spectrum and thermodynamic functions (i.e., total energy, entropy, and radiation pressure) are de-
rived in the context of quantum statistics. The correlation function of the luminescent radiation field is
also calculated and compared with blackbody radiation. Numerical calculations are performed to study
the effect of the band gap and chemical potential of the luminescent material on the correlation function
and various thermodynamic functions; for example, we consider the deviation of the total-energy density
from the predictions of the Stefan-Boltzman law. The stimulated emission case is discussed with the in-

troduction of negative temperature. Finally, the probability distribution and fluctuations of the photon
numbers in the radiation field are discussed.

I. INTRODUCTION

The radiation from a luminescent material is not
governed by thermal equilibrium, ' and the power spec-
trum is not that of a blackbody radiation. Radiation
fields produced by the recombination of electron-hole
pairs arise in semiconductor lasers lead to luminescent
radiation. Since the radiation and absorption processes
are types of chemical reactions, equilibrium implies that
the photons of the radiation field are associated with
some nonvanishing chemical potential p. See Refs. 5 and
6 and recent references therein for more phenomenologi-
cal aspects on luminescent radiation.

The purpose of this paper is to give a quantum-
mechanical calculation of power spectral density, tern-
poral covariance, and thermodynamic functions such as
the total energy density, entropy, and radiation pressure
of the luminescent radiation field. Emphasis is given to
the difference between luminescent radiation and black-
body radiation as regards the above quantities. When the
stimulated emission regime is reached, the system of
electron-hole pairs is similar to the interacting nuclear
spin system where population inversion is achieved. Such
a system has been studied by Ramsey many years ago by
introducing the concept of negative temperatures. We
shall show that to describe the stimulated emission in the
context of the quantum statistical treatment, it is natural
and consistent to introduce a negative temperature for
the system of electron-hole pairs and the radiation field.
Additionally we consider the fluctuations and Bose-
Einstein distribution of the field modes.

where

exp( PH)—
Tr [exp( PH)]— (2.1)

with kz the Boltzman constant and T the absolute tem-

perature. 0 is the Hamiltonian,

sembles of the radiation fields. With the electron-hole
pair distribution predetermined by the temperature of the
material, the radiation fields can be treated as a system of
photons with nonvanishing chemical potential p, which is
determined by the density of electron-hole pairs in the
material. When the equilibrium between the photons and
the electron-hole pairs is reached, their chemical poten-
tials are equal: p=p, „,where the chemical potential of
the electron-hole pairs is given by the difference between
the chemical potential of the electrons in the conduction
band IM, and that of the electrons in the valence band p„,
i.e., p,,„=IM,—p, „. The minimum energy of each photon
is given by the band gap Eg. Without worrying about the
exact dynamics in the luminescent radiation, we employ
the grand canonical ensemble with a consequent parame-
ter p, the chemical potential, to describe the luminescent
fields approximately. The state of the photons can be
represented by the density operator p, which is given by
minimizing the entropy S = —Tr[plnp], subject to the
constraint that the total number of photons is fixed by the
number of electron-hole pairs. It can be shown that for a
grand canonical ensemble

II. POWER SPECTRUM AND TEMPORAL
CGVARIANCK FUNCTIONS

H= g (hv„—p)ak+a„,
k

(2.3)

The balance between the luminescent radiation fields
and the electron-hole pairs acts as a constraint on the en-

where h is the Planck's constant, vk is the frequency of
the kth mode of the electromagnetic field, and ak and ak+
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1
u =—Tr g hvkak+akp

k

where Vis the total volume. From the identity

Tr[exp( —xak+ak)]=[1 —exp( —x)] ' (x )0)

(2.4)

(2.5)

we obtain the density operator for the radiation field in
Eq. (2.1}by taking x =I3(hv~ —p, ),

are the corresponding annihilation and creation operators
of the mode. Since we are performing quantum-
mechanical calculations, the electromagnetic fields must
be separated into positive and negative components; thus
the frequency v can only take non-negative values. Final-
1y p is the chemical potential, given by the equilibrium
between the electron-hole pairs and the photons of the
luminescent radiation field. Note that for the system to
have a ground state, the Hamiltonian in Eq. (2.3}must be
positive semidefinite, so hvk p. In fact, the excitation
energy of an electron-hole pair must be greater than the
band gap Eg of the material; we have then h v ~ Eg &p.

With the density operator given in Eq. (2.1), the total
energy density u of the radiation field is given by

4(v)= {(hv)[e@"' "'—1] 'I (v &v& }
c

4(v}=0 (v & vs) (2.11)

where vg =Es /h is the lowest frequency of the radiation
field. In deriving Eq. (2.11) we have restricted ourselves
to free space and have thus neglected the effect of the in-
dex of refraction. The first factor on the right-hand side
is the number of cavity resonances per unit volume and
frequency, assuming that wavelengths are small corn-
pared to the average diameter of the cavity V'/ and
bandwidths d v/c are large compared to (2 V' )

More precisely the expression is valid for

y1/3 ZV'/3dv» 1 and (2.12)»1.
This asymptotic mode counting expression was first de-
rived by Rayleigh and later by Weyl for general cavities. 9

We consider only this situation, as the inclusion of finite
volume effects leads to the rise of many additional
features. When E and p are zero, Eq. (2.11) reduces to
the power spectrum of blackbody radiation:

p= g [1—e " ]exp[ —P(hvk p)ak+—ak)
k

(2.6)

@(v)=, [exp(Phv) —1) (0&v& oo),
8nhv. —1

c

4(v)=0 (v&0) .
(2.13)

where the explicit form of the Hamiltonian Eq. (2.3) has
been used. The total energy density can then be evalu-
ated by using the identity that for x & 0,

Tr[ak+ak exp( —xak+ ak ) ]=exp( —x )[1—exp( —x ) ]

(2.7)

thus

By the Wiener-Khintchine theorem, the temporal co-
variance function C(ht) is given by the Fourier trans-
form of the power spectrum

C(ht)= f 4(v)e '" 'dv. (2.14)

More explicitly,

Tr[a+a~p] = {exp[P(h v —p, ) ]—1]

from Eq. (2.4) we have then

u =—Tr g h vt, {exp [P(h vk —p) ]—1]
1

k

(2 8)

(2.9)

C(bt)= f v {exp[p(hv —p)]—1] 'e z '" 'dv,
c "g

(2.15)

In Eqs. (2.6) and (2.9) the index k represents the available
modes of the field, thus the frequency must be higher
than v =E /h, i.e., vt, ~ v, for only these modes con-
tribute to the luminescent radiation fields.

The chemical potential p plays an important role here.
For p) 0, which is the usual case, there is no net absorp-
tion of the photons, while for p &0, the system of pho-
tons would tend to go into lower occupation number
states to have a lower energy that corresponds to the case
when the luminescent material absorbs energy from the
radiation field to excite the electron-hole pairs. We will
discuss the system for both cases.

Summation over all modes in the cavity (assumed
large) leads to

u = f @(v)dv . (2.10)
0

Here N(v) is the power spectral density of the lumines-
cent radiation field,
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FIG. 1. Power spectral density of luminescent radiation as a
function of the normalized frequency photon energy p, in Eq.
(2.17) for pg=2: ———,a= —1.0; , a=O; —.—- —,
a=1.0.
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FIG. 2. Power spectral density of luminescent radiation as a
function of the normalized photon energy p for pg

=3:
a= —1.5;,a=0; ———,a=1.5. See Eq. (2.17).

where vs) p, /h. In the case of absorption, we have a
negative chemical potential (p&0); when absorption is
absent, p ~0. Note that by definition the variance of the
radiation field C(0) is equal to u, the total-energy density
of the radiation field.

At this point it is convenient to employ normalized
variables and parameters. Let

P =Phv, a=PP, Ps =Phvg, v=2mb, t/(Ph) . .

In the normalized version,

(2.16)

4(p)= p [exp(p —a) —1] ' (p ~p ),

4(p) =0 (p (pg }, (2.17)

C(r)= J p [exp(p —a}—1] 'e "~dp,
ch ~g

(2.18)

with a &0 for absorption and a & 0 for no absorption. In
Figs. 1 and 2 we plot the spectral density of the lumines-

cent radiation field in the normalized version, with pa-
rameters properly chosen to be close to experimental situ-
ations. The overall temperature-dependent factor has
been neglected in the figures.

eluded. In the limit of a=@ =0, the case of blackbody
radiation, the above integral is evaluated as m. /15 and
reduces to the Stefan-Boltzman law for blackbody radia-
tion '

u =8' /(15c h P') . (3.2)

The integral in Eq. (3.1) depends on the temperature, be-
cause of the explicit temperature dependence of the pa-
rameters a and p in Eq. (2.16).

In Fig. 3, we show the result from direct numerical cal-
culation of the above integral, as a function of tempera-
ture, for a set of parameters chosen to be close to the ex-
perimental situation. We plot the ratio of the lumines-
cent energy density and blackbody radiation energy den-

sity, as a function of the temperature. As the tempera-
ture increases, the ratio approaches unity. The high-
temperature behavior can be explained as follows. For
very high temperature, the thermal energy dominates; the
effect of the band gap and the chemical potential is
minimal, and so is the difference between the two kinds of
radiation. On the other hand, it is important to take the
effect of the band gap and chemical potential into ac-
count at the low-temperature limit. The ratio is zero in
the zero-temperature limit, and rises according to the
power law of ps exp[a —p ] as the temperature increases.
In the case for no absorption, i.e., a & 0, the ratio goes up
quickly, exceeds unity, and then reaches its maximum;
when the temperature is increased further, the ratio de-
creases in magnitude and eventually approaches unity.
For the case of absorption, the ratio is never greater than
1 and there is no maximum. In this situation, the
luminescent field has a lower energy density than the
blackbody radiation field at the same temperature be-
cause of the absorption of the radiation by the material.

We have obtained forma1 solutions of the temporal co-
variance function, in terms of generalized Langevin func-

tions, but they are extremely unwieldy for numerical
evaluation. We chose to do the numerics by direct quad-
rature.

We erst notice that the temporal covariance function is

III. BEHAVIOR OF TOTAL-ENERGY DENSITY
AND THK TEMPORAL COVARIANCE FUNCTION

u:—C(0)= J p [exp(p —a) —1] 'dp,
ch &g

(3.1)

The temperature dependence of the total-energy densi-

ty now is not given by the T power law of the blackbody
radiation. From Eq. (2.18) we write the total-energy den-

sity as
—:I

~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~~ —— + '~ ~ y ~ ~—~—~ ~ ~ ~ a ~ ~~~~

I

2 3
kii T (eV)

and understand that in the case of no absorption

p &a)0, while a(0 when there is absorption. Equa-
tion (3.1) is a generalization of the Stefan-Boltzman law
with the effect of the band gap and chemical potential in-

FIG. 3. Total-energy density of luminescent radiation, Eq.
(3.1), as a function of the thermal energy k&T (eV), for Eg =3
eV: ———,p= —2.0; p 0+ ~ ~ + p } 5+ ~ ~ ~ ~

p=2.0 (eV).
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IV. THERMODYNAMIC FUNCTIONS

Just as in the study of blackb d do y ra iation, one can
etermine the thermodynamic functions for the lumines-

cent radiation field in the
'

n e in t e context of quantum statistics.
py an ra iation pres-e will only calculate the entrop and r d'

sure, although other state functions b dcan e etermined in

The von Neumann entropy defined by

S = —kii Tr(p lnp} (4.1)

can be calculated by using Eq. (2.6) and the identities on
trace Eqs. (2.5) and (2.7). We obtain

~ ~

diation, the power spectrum Eq. (2.13) and its first deriva-
tive vanish as the frequency approaches zero. S'

i on the mode frequencies, the long-time behav-
ior of the temporal covariance function h' h

'

y e nonvanishing second derivative of the
power spectrum at zero frequency, decreases in ma ni-
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FIG. 6. Entro py o luminescent radiation S as a function of
thermal energy k&T {eV} for E =3 V:"., @=2.0; -"-",@=2.5

S =k&P g ( h v k
—p )[exp(Ph vk Pp )

—1]—
k

kII g—in[1 exp(—Pp Ph v—„)], (4.2)

The term pN in this relation is due to the fact that we are
using the grand canonical ensemble and th he c emical po-
ential of the luminescent radiati fi ld

'
ion e is not equal to

zero. We can write the radiation pressure in Eq. (4.5) as

—in[1 —exp(a —p}]]dp . (4.3)

Here V is the total volume p & )0 h

absor tion
a w en there is no

a sorption, and a&0 when there is absor ti Th
y radiation hmit is obviously seen when we take

the limit of pg =u=0, and notice that the above inte ral

the integral in Eq. (4.3) indicates the difference between
the luminescent radiation and the blackbody radiation.
The numerical result is shown in Fi . 6 where

io o e uminescent radiation entropy over the black-
body radiation entro py. It shows a similar temperature

~ ~

dependence of the ratio for the total energy d 'tnergy ensity in

ig. 3. The high-temperature limit for the ratio a-
proaches unit s

or e ratio ap-

limit and c
es uni y, since both p and a approach zero

' th'

, an consequently there is no difference between the
luminescent radiation and the bl kb dac o y radiation. In
the low-temperature limit, from Eq. (4.3) we have

pg(pg
exp[ —

(pg
—a)] (T~O) . (4.4)

Here we have used the fact th t h h
approaches zero

a w en t e temperature

pp ero, we can make the approximation for the
integrand in Eq. (4.3) that exp[p —a]»1» [expLO. p j

e radiation pressure P can be calculated fr ha e rom t ere-

subject to the constraint v &v I h 1

limit, we can c
v~. n t e arge volume

imit, we can convert the summation over modes k into
an integral over frequency; the final result is

8@k~ VS= , p [(p —a)[exp(p —a}— ]
'

8~
3 3g p ln [ 1 —exp( a —p }]dp

One can easily verify that in the limit of p =a=0, the
above expression becomes the equation of state for black-
body radiation, i.e., P = u l3, see Refs. 4 and 6. Th

rom blackbody radiation is due to the additional
temperature dependence of the integral in the above
equation. In Fi . 7 wn ig. we show the comparison between the
blackbody radiation pressure and th 1e uminescent radia-
tion pressure by plotting the ratio of the luminescent ra-

One can see
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ne can see that the ratio approaches unity in the hi h-

tem erature 1'
i y in t e ig-

both and cz c
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reduces to the blackbody radiation pressure. In the low-
temperature limit, we have according to Eq. (4.6)

2

P- exp[ —
(ps

—a)] (T~0) .Pg (4.7)

V. STIMULATED EMISSION CALCULATIONS

The above treatment is restricted to the case for spon-
taneous emission region, i.e., the chemical potential of
the electron-hole pairs is less than the band gap of the
material, so that the following inequality holds:
hv~Eg &p. However, one may achieve the opposite so
that p & E . This corresponds to the stimulated emission

regime where the radiation fields are constantly
amplified through the medium. Semiconductor lasers
usually operate under such a condition. Our treatment,
presented in previous sections, can be extended to this
stimulated emission regime by introducing a negative
temperature for the system of radiation fields.

It is seen that when the frequency of the radiation
fields is limited by E hv(p, the Harniltonian defined
in Eq. (2.3) is negative semidefinite. For the density
operator p in Eq. (2.1) to be meaningful, the temperature
T must be negative. We can use the same formalism in
Secs. II-VI for the stimulated emission case, provided
that we associate the system of radiation fields with a
negative temperature, and that the frequency of radiation
fields is limited by Ez /h & v &p/h.

For most semiconductor laser operations, the mode
structure is determined by the properties of the cavity
and environment of the device itself. We will omit the
effects due to complicated mode structures, and study a
single mode of the radiation field first. The total contri-
bution to the luminescent radiation results from the su-
perposition of various frequency components of the radi-
ation field.

We now proceed with the density operator for the sin-
gle mode of the radiation field:

p = [1—exp[P(p —h v) ]]exp[P(p —h v)a+a ]

(E Ih & v&pIh) (5.1)

where p= 1/(kz T) &0 and a and a+ are the annihilation
and creation operators of the field mode, respectively.
With the above-defined density operator, we can calculate
the expectation values of the thermodynamic functions.
Thus the luminescent energy in a mode is found to be,
analogous to Eq. (2.9),

(5.7)

(5.8)

where c. is the energy of the electronic state and g, is the
chemical potential for conduction electrons. Similarly,
the occupation for the valence band is proportional to

f„(s)= [exp[(e —r)„)/ks T„,]+1] (5.9)

with g„ the chemical potential for the valence electrons.
When the transition at an energy h v between the valence
band and conduction band is considered, the electron-
hole pairs can be just treated as two-level atoms. The
population on the excited state is proportional to
f,(e+hv)[1 —f„(s)]; on the ground state it is propor-
tional to [1—f, (s+hv)]f„(s). Hence the ratio of the
populations on the excited state N, to that on the ground
state Ng is given by

If we denote the number of modes per unit volume per
unit frequency by g(v), then the total energy density u

due to the stimulated emission is given by

u = f „g(v)U(v)dv, (5 5)

which is the ratio of U/V, with V the total volume and U
the total energy of the stimulated emission. The entropy
and total number of photons, being extensive quantities,
can be calculated in the same way. Explicitly, we have
for the total entropy S and the number of photons N in
the stimulated emission field,

S=V g vSv v, (5.6}

N= V f g(v)N(v)dv .

The pressure P can then be calculated from Eq. (4.5).
We notice that the negative temperature for the system

of photons is consistent with our understanding of the
physical situation of the electron-hole pairs in the stimu-
lated emission regime. When the condition p & h v & E is
satisfied, the system of electron-hole pairs is analogous to
a system of inverted two-level atoms with energy level
hv. Since this "inversion" is determined by the occupa-
tion of the electronic states in the valence and conduction
bands, which in turn is determined by the lattice temper-
ature as well as properties of the material, we can find a
relation between the effective negative temperature of the
electron-hole pairs, or that of the photons. Denote the
lattice temperature of the semiconducting material by
T&„, the Fermi statistics of the electron gives that the oc-
cupation of the conduction band is proportional to

U(v) =h v[exp[P(h v —
p, }]—1] (5.2)

The contribution to the entropy is given by, via Eq. (4.2),

f,(e+hv)[1 —f„(e)]
Ns f„(s}[1—f,(e+hv)] (5.10)

S(v) =P(h v —p) [exp[P(h v —p)]—1]
k~

—ln [ 1 —exp[P(p —h v) ]] . (5.3}

Here c, refers to the valence electron energy. For the
effective two-level system, the left-hand side of the above
equation is equal to exp[ hv/(k&T)]. Whe—n Eqs. (5.8)
and (5.9) are applied, we obtain then the effective temper-
ature of the two-level system

The average number of photons in a mode is

N(v) = [exp[P(h v —p)] —1} (5.4)
hvT T]gt e

hv —p
(5.11)
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Here we have used p=g, —g, to denote the chemical po-
tential of the electron-hole pair.

It is clear from the above equation that when h v (p,
we have T(0. Thus the temperature for the stimulated
emission field is negative. Also we notice that according
to the above equation, when p=0, the condition for
thermal equilibrium between the radiation field and the
material, the temperature of the radiation field is the
same as that of the material: T = T&„. This equality also
holds for hv&+p. In general, the temperature for non-
thermal radiation field is different from the lattice tem-
perature. Strictly speaking, the inverted two-level system
(i.e., electron-hole pairs) and the radiation field generated
by the recornbinations of the electron-hole pairs are not a
closed system, as there are many possible dynamic pro-
cesses involved. In other words, there is constantly an
energy flow between the above system and external
world. To describe such a system in thermodynamic
terms, one is assuming that the equilibrium established
inside the system itself, i.e., the equilibrium between the
electron-hole pairs and the radiation fields generated
from their recombination, is reached in a much shorter
time than other time scales, such as the external pumping
rate and the thermal relaxation time of the lattice, so that
efFectively one can treat the electron-hole pairs and the
luminescent radiation as an isolated system. Only then,
one can assign a meaningful temperature, as well as other

thermodynamic quantities, to the radiation field and the
effective two-level system.

VI. FLUCTUATIONS AND PHOTON
COUNTING RATES

There are other properties that can demonstrate the
difference between luminescent and blackbody radiation.
An example is the photon statistics of radiation fields. '

We now calculate the fluctuation in the photon numbers
of the luminescent radiation field.

In Eq. (2.8) we used the identity Eq. (2.7) to calculate
the averaged photon number in the jth mode of the radia-
tion field,

also be rewritten as, by using Eq. (6.2),

((aJ+aJ) & =(a,.+a. &+2((aJ+aJ &) (6.5)

so that the variance of the occupation number in the jth
mode is obtained as

whereas for blackbody radiation,

var(NJ ) =exp(Ph vJ )[exp(Ph vJ ) —1] (6.7b)

Note that for the luminescent radiation, the frequency
must be above the frequency limit v due to the restric-
tion of the band gap of the material. ' The fiuctuations in
the occupation numbers of the modes in the system are
explicitly dependent on the band gap and the chemical
potential. The photon statistics of the luminescent radia-
tion field will then also depend on the two parameters of
the luminescent material. For blackbody radiation, the
only parameter that depends on the experimental situa-
tion is the temperature.

The photon counting rate of the radiation field is
directly related to the occupation number distribution,
which can be derived by taking the diagonal matrix ele-
ment of the density operator. ' We obtain the probability
of having m photons in the jth mode of the radiation field

P (m)=(m~p ~m & . (6.8)

For luminescent radiation, p is the density operator of
the jth mode of the luminescent radiation field obtained
from the total density operator for the field Eq. (2.6),

This form of the variance in the occupation number is
true for both luminescent and blackbody radiation fields.
The corresponding expectation values of the occupation
number are given by Eqs. (6.1) and (6.2). Thus the vari-
ance of occupation number N in the jth mode of the field

is, for the luminescent radiation,

var(N ) =exp[P(h v. —p)] [exp[P(h v, —p)] —1]

(6.7a)

( a,+a
&
= [exp [P(h v —p ) ]—1] (6.1)

p, = [1—e ' ]exp[ —P(h v —p)a a ) . (6.9)

which reduces to

(a, a, &=[exp(PhvJ) —1] (6.2)

for blackbody radiation. Similarly, by using the identity

Tr[(a&+ak ) exp( —xak+ak ) ]

Thus we have

P (m)=[1—exp[ —p(hv —p)]]exp[ —p(hvJ —p)m] .

(6.10)

=exp[ —x][1—exp( —x)]

+2exp( —2x)[1—exp( —x)] (x )0)
we obtain

(6.3)

For the blackbody radiation, the density operator can be
obtained as the limiting case of Eq. (6.9) for p=vg =0.
Hence the probability of having m photons in the jth
rIlode ls

((a+a ) & =[exp[P(hv —p) —1]]

+2[exp[P(h v —p, ) —1]] (6.4)

where the explicit form of the density operator in Eq.
(2.6) has been used in evaluating the above expectation
value and x is taken to be P(h v, —p). Equation (6.4) can

P (m)=[1—exp( —Phv )]exp( —PhvJm) . (6.11)

We can write the probability distribution for the two ra-

diation fields in the same form, in terms of the averaged
occupation number in the field mode, given by Eqs. (6.1)
and (6.2), as
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((.,+;))-
P(m)= + +, (6.12)

(1+ a+a )

which is a Bose-Einstein distribution in (aj a ). In fact,
one can show directly that given a density operator in the
form of Eq. (2.6), the variance in the occupation number
M of a field mode is related to the mean by

var(M) = (M ) '+ (M ), (6.13)

We have studied the statistical and thermodynamic
properties of the luminescent radiation field generated by
the recombination of electron-hole pairs. It is possible to

where M represents the number operator of the corre-
sponding mode M =a+a. Of course, for the luminescent
radiation ( a a ), as well as P (m ), depends upon the
chemical potential.

VII. CONCLUSION

describe the radiation field in thermodynamic terms when
the equilibrium between the electron-hole pairs and radi-
ation fields can be reached in a short time relative to oth-
er processes. We then find the effective temperature of
the radiation field is related to the lattice temperature,
which determines the excitation of the electron-hole
pairs.

Thermodynamic functions are calculated based on sta-
tistical mechanics in the context of the grand canonical
ensemble. They in general depend on the band gap as
well as the chemical potential of the electron-hole pair.
Coherence properties of the radiation field is also calcu-
lated and compared to that of blackbody radiation.

Properties of the radiation field can be obtained from
the photon counting rates. For this purpose, we have cal-
culated the statistics of the luminescent radiation fields.
By comparing the statistics with that of blackbody radia-
tions, one can further examine the difference between
luminescent radiation and thermal radiation.
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