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Generalized gradient approximations (GGA s) seek to improve upon the accuracy of the local-spin-
density (LSD) approximation in electronic-structure calculations. Perdew and Wang have developed a
GGA based on real-space cutoff of the spurious long-range components of the second-order gradient ex-

pansion for the exchange-correlation hole. We have found that this density functional performs well in
numerical tests for a variety of systems: (1) Total energies of 30 atoms are highly accurate. (2) Ioniza-
tion energies and electron aSnities are improved in a statistical sense, although significant
interconfigurational and interterm errors remain. (3) Accurate atomization energies are found for seven

hydrocarbon molecules, with a rms error per bond of 0.1 eV, compared with 0.7 eV for the LSD approxi-
mation and 2.4 eV for the Hartree-Fock approximation. (4) For atoms and molecules, there is a cancel-
lation of error between density functionals for exchange and correlation, which is most striking whenev-
er the Hartree-Fock result is furthest from experiment. (5) The surprising LSD underestimation of the
lattice constants of Li and Na by 34% is corrected, and the magnetic ground state of solid Fe is re-
stored. (6) The work function, surface energy (neglecting the long-range contribution), and curvature en-

ergy of a metallic surface are all slightly reduced in comparison with LSD. Taking account of the posi-
tive long-range contribution, we find surface and curvature energies in good agreement with experimen-
tal or exact values. Finally, a way is found to visualize and understand the nonlocality of exchange and
correlation, its origins, and its physical effects.

I. INTRODUCTION

The ground-state structure of many-electron systems is
conveniently calculated within Kohn-Sham density-
functional theory. ' Exact in principle, this self-
consistent-field theory is usually implemented within the
local-spin-density (LSD) approximation for the
exchange-correlation energy

E„, [nt, ni]= fd r nE„,(r„g), (l)

where n(r)=n&+n& and n is the density of electrons
with spin o. Here r, =(3I4mn)' is th. e local Seitz ra-
dius, g=(n& —ni)/n is the local polarization, and
c,„,(r„g) is the exchange-correlation energy per particle
for a uniform electron gas. The LSD approximation, val-
id in principle for slowly varying densities, has met with
impressive practical success, although it underbinds the
core electrons in an atom and overbinds the atoms in a
molecule or solid.

Using additional information about the electron gas of

slowly varying density, Langreth and other authors
have developed generalized gradient approximations
(GGA's):

E„, [n&, ni]= J d r f(n&, n&, Vn&, Vn&) .

These "semilocal" functionals have demonstrated useful
improvements over LSD in applications to atoms, "
molecules, ' and solids. ' An extended GGA bi-
bliography is compiled in Ref. 26.

In the original work of Langreth and co-workers, a
GGA was constructed via cutoff of the spurious small-
wave-vector contribution to the Fourier transform of the
second-order density-gradient expansion for the
exchange-correlation hole around an electron. Perdew
and Wang (PW GGA-I) argued that the gradient ex-
pansion for the hole in real space is an expansion in R
(distance from the electron) as well as V. They found a
more accurate description of exchange by cutting off the
spurious long-range contributions in real space, but they
continued to use a wave-vector-space cutoff for correla-
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tion. Recently, Perdew and Wang (PW GGA-II)
have presented a unified real-space-cutoff construction of
a GGA for exchange and correlation. The PW GGA-II
correlation-energy functional has no semiempirical pa-
rameter, unlike the PW GGA-I (Ref. 8) and Langreth-
Mehl ' functionals. Although the PW GGA-I
exchange-energy functional could be carried over un-
changed into PW GGA-II, slightly greater accuracy is
achieved by using the closely similar exchange functional
of Becke, ' to which the PW GGA-II adds theoretical
refinements in the small- and large-gradient limits.

A major purpose of this paper is to test PW GGA-II,
in comparison with the LSD approximation and PW
GGA-I, for a wide range of physical systems: atoms, mo1-
ecules, solids, and surfaces. A second purpose is to ex-
plore the capabilities and limitations of GGA s, or, more
generally, of continuum density-functional approxima-
tions, for the exchange energy E„, the correlation energy
E„and the sum E„,=E„+E,. (Continuum density
functionals, such as LSD or GGA, are those which do
not incorporate the derivative discontinuity of the
exact E„,[n &, n ~ ].) A third purpose is to develop a quali-
tative understanding of nonlocality and its physical
effects.

Before presenting the PW GGA-II functionals, we dis-
cuss their principles of construction and some of their
general features. For a density that varies slowly or
moderately over space, the exchange and correlation
holes surrounding an electron have first-principles expan-
sions in gradients of the density. These expansions to
second order predict holes that are fairly realistic close to
the electron, but not far away. ' They can be made
more realistic via real-space cutoffs chosen to enforce ex-
act properties respected by the zero-order or LSD terms
but violated by the second-order expansions: The ex-
change hole is never positive, and integrates to —1, while
the correlation hole integrates to zero. (The nonpositive
character of the exchange hole cannot be enforced by a
wave-vector-space cutoff —another advantage of real-
space analysis. ) Sharp or step-function cutoffs have been
used in practice. ' ' Thus, the PW GGA-II exchange
and correlation holes have finite ranges, which shrink as
the density gradient at the position of the electron grows.
The resulting functionals take the form of Eq. (2). It is
found (Sec. VII) that the nonlocalities (Vn dependencies)

I

EPw GoA-II[ n

1EPw GGA-1I[2n ]+ & EPw GGA-II[2n ]x (3)

where

E o ""[n]=J d'ms (r,O)F(s),

e (r„O)=—3k~/4m. . (5)

We use atomic units (fi=e =m = 1; energies in hartrees
and distances in bohrs). Here,

k~=(3' n )' =1.91916/r,

is the local Fermi wave vector and

(6)

s =
I
Vn

I /2kzn (7)

is a scaled density gradient. The function F(s) is

of PW GGA-II exchange and correlation tend to oppose
one another, nearly canceling at low metallic densities.
At higher densities, exchange dominates and its full non-
locality is unveiled.

An instructive analogy, which suggests what might be
expected from a GGA, is provided by the noninteracting
kinetic-energy functional T, [n &, n &]. Since the exact
kinetic-energy density at a point in space is determined
by derivatives of the exchange hole about an electron at
that point, the second-order gradient expansion of the
exchange hole leads to a second-order gradient expansion
of T, . This may also be regarded as the PW GGA for T„
since the real-space cutoffs occur well outside the position
of the electron. It is known that (1) the second-order gra-
dient expansion for T, [n&, n& ] typically makes an error
of less than 1% when applied to the Hartree-Fock elec-
tron density of an atom. (2) Its functional derivative
5T, /5n (r) is much less satisfactory: The electron densi-

ty which solves the Euler equation fails to display the
correct shell structure or the correct asymptotic behav-
ior. This density leads to a less realistic kinetic energy
than the Hartree-Fock density does. We expect the
GGA for exchange and correlation to behave similarly.

The PW GGA-II exchange energy is

1+0.19645s sinh '(7.7956s)+(0.2743 —0. 1508e ' ' )sF s
1+0.19645s sinh '(7.7956s )+0.004s

(8)

For small s,

F=1+0.1234s +O(s )

E, '[n&, n&]= jd r n[s, (r„g)+H(t, r„g)],
(9)

generates the gradient expansion for the exchange energy
with the correct coefficient 10C /7, where C is the
Sham coefficient. Apart from the Gaussian and s" terms
in Eq. (8), the PW GGA-II and Becke' exchange func-
tionals are identical.

The PW GGA-II correlation energy is

where

t =
I
V n

I /2gk, n

is another scaled density gradient,

g = [(1+0)'"+(1—0)'"]/2

{10)
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and

(12)

3p 2a t +At
2a P 1+At'+ A' t

Ho =g ln 1+ (13)

is the local screening wave vector. The function H equals
Ho+ H „where

directly from the numerically defined functions. The
form of Eqs. (13) and (14) was suggested by the simpler
high-density limit, which arises from the asymptotic scal-
ing behavior of the local and gradient ' ' contributions
to the hole.

PW GGA-II neglects the small "Vg" terms in the
high-density limit of the spin-density gradient expan-
sion (which we have parametrized to fit Table II of Ref.
42):

a=0.09, P=vC, (0), v=(16/n)(3m )'/,
0.004235, Cx = —0.001 667

2' 1

p —2aa, (r, ,g)/(g t) )
e

H, =v[C, (r, ) —C, (0)—3C„/7]g t

X exp [ —100g ( k, /kF )t ] .

C, (0)

(14)

(15)

b,E, [nt, nt]
—0.458/V/. Vn

[ ( 1 g2)]1/3

( —0.037+0 10( )IVgl (16)

Accurate analytic representations are available for
E,(r„g) (Refs. 26, 38, and 39) and C, (r, ). For small
gradients with g =0, the PW GGA-II exchange-
correlation energy correctly ' reduces to the gradient ex-
pansion of Sham with coefBcient C„plus that of Rasolt
and Geldart with coefficient C, (r, ), i.e.,

C„,(r, )=C„+C,(r, ) .

The analytic forms (8) and (13)—(15) fit the numerical
results of the real-space cutoff so well that physical prop-
erties would be practically unchanged if calculated

We shall also test the PW GGA-IIA approximation,
which results when the ungeneralized gradient terms of
Eq. (16) are added to the PW GGA-II correlation energy
of Eq. (9).

An expression for the functional derivative
5E„,/5n (r), which serves as an exchange-correlation
potential for electrons of spin 0., is presented in Refs. 26
and 27. Subroutines which evaluate the PW GGA-II en-

ergy and one-electron potential are available from the au-
thors via electronic mail.

TABLE I. Magnitude ( —E„"")of the exact exchange energy, and difference —E„,F +E„""between exact exchange energy and vari-
ous density functionals for the exchange-correlation energy, for neutral atoms. All calculations employ Hartree-Fock densities for
the observed ground-state configuration and term. (1 hartree =27.2116eV.) Experimental values from Ref. 11. For comparison, the
total energy of Zn is —4.89 X 10 eV.

Atom

H
He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
Cr
Zn
Kr
Xe

EHF

8.50
27.91
48.47
72.57

101.98
137.40
179.52
222.64
272.42
329.49
381.44
435.23
491.77
551.95
616.10
680.46
748.77
821.38

1299.93
1895.05
2554.9
4876

PW GGA-IIX

—0.15
—0.25
—0.49
—0.59
—0.75
—0.77
—0.77
—0.59
—0.22

0.18
—0.29
—0.40
—0.70
—0.94
—1.26
—1.39
—1.47
—1.68

1.72
5.14

—1.6
—6

LSD

—0.61
—0.80
—2.52
—3.55
—4.93
—6.20
—7.53
—8.07
—8.49
—9.04

—11.72
—13.48
—15.67
—17.79
—20.03
—21.38
—22.77
—24.43
—32.32
—36.59
—54.4
—94

EDF+EHF (eV)
PW GGA-I

0.04
1.39
1.64
2.80
4.06
5.30
6.51
8.93

11.36
13.63
14.09
15.64
16.76
17.96
19.04
21.04
22.96
24.65
36.74
51.61
52
74

PW GGA-II

0.03
1.00
1.08
1.97
2.71
3.65
4.66
6.53
8.55

10.59
10.78
11.85
12.64
13.57
14.46
16.10
17.77
19.29
31.10
46.65
50.6
80

PW GGA-IIA

0 03'
1.00'
1.02
1 97'
2.67
3.53
4.44
6.43
8.53

10 59'
10.67
11.85'
12.57
13.44
14.27
16.03
17.75
19.29'
30.48
46.65'
50.6'
80'

Expt. ( —E, )

0.00
1.14
1.24
2.57
3.40
4.26
5.13
7.02
8.76

10.61
10.82
12.07
13.07
14.17
15.06
17.26
19.44
21.42

'Value identically the same as with PW GGA-II.
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II. ATOMS

As a first test of our density functionals, we consider
the total and electron-removal energies of atoms. The
electron density may be constructed via self-consistent
solution of either the Hartree-Fock (HF) or Kohn-Sham
equations. The former approach, which we adopt here,
has certain advantages: Its one-electron potential has the
correct asymptotic (r ~ ~ ) limit ' (so that negative-ion
solutions exist), and the exact exchange energy E„"is
evaluated automatically. For a given continuum
density-functional approximation, there is some energy
difference between the HF and Kohn-Sham densities.
For Zn, this difference is about 1 eV in the total energy
and about 0.2 eV in the ionization energy. (Full density-
functional self-consistency lowers the energy of the neu-
tral atom more than that of the positive ion; compare
Table III of Ref. 13 to our Table II.) From the discussion
of Sec. I, we expect that the Hartree-Fock density is more
realistic and thus more appropriate for comparison with
experiment.

Following the approach of Lagowski and Vosko, "we
have performed self-consistent spin-restricted Hartree-
Fock calculations in the central-field approximation for

the atoms with 1 Z 30 and their first positive and neg-
ative ions. Each atom or ion is assigned its observed
ground-state configuration and term. ' The nonspheri-
cal density is constructed by occupying nonrelativistic
spherical-harmonic orbitals in a Slater determinant with
Ml =L and Mz =S. The scalar-relativistic correction to
the total energy is treated as a first-order perturbation.

Table I shows —E„",the magnitude of the exact or
Hartree-Fock exchange energy, as well as the difference—E„,"+E ", whose experimental value" is the magni-
tude of the correlation energy. The first density-
functional (DF) considered is PW GGA-IIX, the
exchange-energy functional of Eqs. (3)—(g). The PW
GGA-IIX column of Table I shows an error relative to
HF that is typically only a fraction of 1% of the exact ex-
change energy, as expected. ' The other density func-
tionals considered are the LSD, P%' GGA-I, P% GGA-
II, and PW GGA-IIA approximations for the exchange-
correlation energy, as defined in Sec. I. All take e, (r„g)
from Ref. 26, except PW GGA-I which employs Ref. 39.
Clearly the large total-energy errors of LSD and HF,
which are significantly reduced by P%' GGA-I ' '"
are further reduced by PW GGA-II and PW GGA-IIA.
The LSD overestimation of the magnitude of the correla-

TABLE II. First ionization energies (I) of 30 atoms. All calculations employ Hartree-Fock densities for the observed ground-state
configuration and term of the neutral atom and positive ion, and include scalar relativity as a perturbation. Experimental values from
Ref. 44.

Atom Process HF PW GGA-IIX
I (eV)

LSD PW GGA-I PW GGA-II PW GGA-IIA Expt.

H
He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
T1
V
Cr
Mn
Fe
Co
Ni
Cu
Zn

S

S

sd

S

sd
sd

13.61
23.45

5.34
8.05
7.93

10.78
13.95
11.88
15.70
19.82
4.96
6.62
5.49
7.64

10.03
9.01

11.78
14.75
4.02
5.14
5 ~ 38
5.54
6.06
6.00
5.94
6.34
8.21
8.11
6.56
7.78

13.45
23.51

5.42
8.17
7.92

10.95
14.20
12.38
16.53
20.77

5.19
6.89
5.38
7.59
9.88
9.07

11.88
14.71
4.28
5.44
5.71
5.88
5.76
7.06
6.29
6.84
7.57
7.05
7.65
8.71

13.00
24.27

5.45
9.01
8.57

11.67
14.92
13.82
17.94
22. 10

5.31
7.70
5.98
8.21

10.51
10.49
13.18
15.92
4.48
6.20
6.56
6.79
6.17
7.36
7.31
7.85
7.56
7.12
8.16
9.64

13.65
24.96

5.63
9.22
8.69

11.65
14.84
14.12
17.94
21.99

5.45
7.89
6.06
8.25

10.54
10.50
13.14
15.89
4.60
6.36
6.73
6.97
6.60
7.45
7.50
8.04
8.01
7.62
8.32
9.82

13.63
24.56

5.61
9.04
8.57

11.64
14.91
13.76
17.79
21.96

5.36
7.64
6.01
8.25

10.56
10.30
13.05
15.85
4.46
6.10
6.42
6.62
5.96
7.23
7.06
7.59
7.47
7.00
8.01
9.40

13.63'
24.56'

5.55
9.14
8.53

11.56
14.82
13.90
17.87
21.99

5.26
7.81
5.95
8.19

10.51
10.44
13.11
15.86
4.36
6.26
6.66
6.91
6.33
7.20
7.50
7.95
7.45
6.99
7.86
9.61

13.61
24.59

5.39
9.32
8.30

11.26
14.53
13.62
17.42
21.56

5.14
7.65
5.99
8.15

10.49
10.36
12.97
15.76
4.34
6.11
6.54
6.82
6.74
6.77
7.43
7.87
7.86
7.63
7.73
9.39

'Value identically the same as with PW GGA-II.
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tion energy (by about a factor of 2) is nicely corrected by
PW GGA-II.

Tables II and III show the first ionization energy I
(neutral atom ~ positive ion) and electron affinity A

(negative ion ~ neutral atom), respectively. Four kinds
of processes occur: removal of a valence s, p, or d elec-
tron, and the "sd" process in which one valence s elec-
tron is removed and a second is transferred to a d orbital.
All of the continuum density-functional approximations
(LSD, PW GGA-I, PW GGA-II, and PW GGA-IIA)
display interconfigurational errors: "' the tendency to
overbind 2p and especially 3d electrons, leading to a
strong overestimation of d removal energies, and (except
for PW GGA-I) a strong underestimation of sd energies.
There are also some substantial errors which are not
interconfigurational in origin (e.g., for the s-electron ion-
ization energy of Cr). We call these "interterm" errors.

Our results for the ionization energies and electron
affinities are summarized by the root-mean-square (rms)
errors displayed in Table IV. The rows labeled "E„,""
show the errors when exchange and correlation are both
represented by density functionals, as in Tables I-III.
The errors are largest for the Hartree-Fock approxima-
tion and decrease systematically as we pass to PW
GGA-IIX, LSD, PW GGA-I, PW GGA-II, and PW
GGA-IIA.

An alternative approach" ' ' is simply to add a densi-
ty functional for correlation to the Hartree-Fock energy,
as in the rows of Table IV labeled "E„"+E,"." Al-
though this approach can yield extremely accurate total

energies for neutral atoms, it is not as satisfactory as
the "E„,"" approach for valence-electron properties, as
demonstrated by the larger errors it makes for the ioniza-
tion energy and electron affinity in Table IV. Where the
Hartree-Fock approximation is furthest from experiment
(e.g., for the electron affinities of N, 0, F, Fe, Co, and
Ni), the PW GGA-IIX approximation is significantly
closer, and the PW GGA-II exchange-correlation ap-
proximation can be very accurate indeed. Since there is a
significant error cancellation between the density-
functional descriptions of exchange and correlation, it is
best to treat these two together in the same way. The ori-
gin of this error cancellation is probably the fact ' that
the exact exchange hole can be significantly more long-
ranged than the exact exchange-correlation hole or the
LSD and GGA holes. The same fact is responsible for
the incorrect dissociation limit of spin-restricted
Hartree-Fock binding-energy curves for molecules.

Of greater chemical significance than the ionization en-

ergy I and electron affinity A of an atom are its electrone-
gativity (I+ A )/2 and hardness (I A)/2, —i.e., the nu-
merical derivatives BE/BN—and —,'B E/BN, where N is

the electron number. The charge transfer between two
atoms in a molecule or solid is driven by the difference of
their electronegativities and opposed by the sum of their
hardnesses. Table IV also shows the rms errors for
these quantities.

The rms error of the electronegativity is rather small
(-0.2 eV or less) when exchange and correlation are
treated in the LSD and especially the PW GGA-II and

TABLE III. Electron a5nities ( A) of 21 atoms. All calculations employ Hartree-Fock densities for the observed ground-state
configuration and term of the neutral atom and negative ion, and include scalar relativity as a perturbation. Experimental values
from Ref. 45.

Atom Process HF PW GGA-IIX
W (eV)

LSD PW GGA-I PW GGA-II PW GGA-IIA Expt.

H
Li
B
C
N
0
F
Na
A1
Si
P
S
C1
K
T1
V
Cr
Fe
Co
Ni
Cu

s
s

s

P

s
d
d
s
d
d
d
s

—0.33
—0.12
—0.27

0.55
—2.15
—0.54

1.35
—0.10

0.04
0.95

—0.55
0.90
2.56

—0.08
—1.06
—0.76
—0.54
—2.35
—2.01
—1.70

0.03

—0.04
—0.03

0.18
1.10

—1.23
0.73
2.82
0.05
0.21
1.04

—0.28
1.24
2.80
0.06

—0.06
0.61

—0.51
—0.74

0.11
0.92
0.56

0.91
0.58
0.66
1.67

—0.01
1.93
3.97
0.58
0.60
1.51
0.91
2.34
3.85
0.53
0.56
1.21
0.21

0.40
1.21
1.95
1.15

1.1
0.68
0.71
1.66
0.25
1.97
3.92
0.70
0.67
1.56
0.96
2.34
3.85
0.64
0.44
1.05
0.37

0.35
1.08
1.79
1.33

0.71
0.53
0.62
1.63

—0.13
1.74
3.79
0.56
0.60
1.53
0.72
2.19
3.74
0.51
0.48
1.15
0.05

0.21
1.01
1.77
1.01

0 71'
0.59
0.55
1.55
0.00
1.82
3.81
0.66
0.56
1.49
0.85
2.25
3.76
0.61
0.40
1.04
0.38

0.27
1.05
1.79
1.16

0.75
0.62
0.28
1.26

—0.07
1.46
3.40
0.55
0.44
1.38
0.75
2.08
3.62
0.50
0.08
0.52
0.67

0.16
0.66
1.16
1.23

'Value identically the same as with PW GGA-II.
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TABLE IV. Root-mean-square error with respect to experiment for the ionization energy I of the 30 atoms in Table II; for the
electron affinity A, electronegativity (I+ A )/2, and hardness (I—A )/2 of the 21 atoms in Table III; and for the s-process electrone-
gativity of the 9 atoms H, Li, Na, K, V, Cr, Co, Ni, and Cu (Table V). Note that the errors are smaller when exchange and correla-
tion are both represented by density functionals (E„,F ), as in Tables I—III, than when a density-functional correlation correction is
applied to Hartree-Fock (E„"+E,F).

Property E„, HF
rms error of DF (eV)

PW GGA-IIX LSD PW GGA-I PW GGA-II PW GGA-IIA

EHF+EDF
EDF

XC 1.04 0.77
0.43
0.32

0.33
0.31

0.42
0.30

0.33
0.25

EHF+EDF
EDF

XC 1.51 0.67
0.62
0.38

0.74
0.34

0.84
0.31

0.81
0.28

(I+ A )/2 EHF+EDF
EDF

XC 0.61
0.31
0.22

0.39
0.28

0.52
0.16

0.46
0.17

(I—A )/2 EHF+EDF
EDF

XC 0.57 0.30
0.43
0.28

0.41
0.17

0.40
0.28

0.41
0.22

(s,s) or
(d, sd)
(I+ A )/2

EHF+EDF
EDF

XC 0.88 0.38
0.32
0.12

0.39
0.24

0.54
0.06

0.50
0.06

PW GGA-IIA approximations. We explain this as fol-
lows: When one electron is removed from an atom or
ion, the term (L,S) must change, and so all ionization en-
ergies and electron affinities are subject to interterm er-
ror. But the electronegativity is the average energy per
electron to remove two electrons from the negative ion.
In many cases (Table V), this process is term conserving,
and the errors of LSD and especially PW GGA-II and
PW GGA-IIA are then modest. If we consider only the
(s, s) and (d, sd ) processes, which result in the removal of
two valence s electrons, we also eliminate the
interconfigurational error. Then the remaining error
(Tables IV and V) is small indeed. We propose these s-

process electr onegativities as a useful atomic testing
ground for continuum density functionals, which we
suspect cannot otherwise completely escape from
interconfigurational and interterm errors. On this

ground, PW GGA-II and PW GGA-IIA achieve a rms
error of 0.06 eV.

These s-process electronegativities are in fact dominat-
ed by exchange and correlation. For a monovalent metal,
the electronegativity of the underlying atom is essentially
the same as the work function or electronegativity of the
metallic crystal, which arises largely from exchange
and correlation. [The other contributions are smaller and
tend to cancel one another, as shown by Table III of Ref.
49 or Fig. 4(a) of Ref. 50.]

A real atomic density has a cusp at the nucleus, but
PW GGA-II works at least as well for cuspless model
densities (Table VI).

III. MOLECUI. ES

Hydrocarbon rnolecules are good choices for testing
density functionals. Abundant experimental data, includ-

TABLE V. Electronegativities for the neutral atoms with 1 Z 30 for which the first positive and negative ions have the same
term (L,S). These density-functional results are free from the interterm errors that bedevil the ionization energies I and electron
affinities A of Tables II and III.

Atom Term Process HF
Term-conserving (I+ A)/2 (eV)

PW GGA-IIX LSD PW GGA-I PW GGA-II PW GGA-IIA Expt.

H
Li
N
Na
P
K
T1
V
Cr
Co
Ni
CU

'S
's
3p
's
3p
's
4F
5D

6S
3F
2D

's

S,S

$7$

P~P
$,$

PP
$, $

d, s
d, sd
$7$

d& Sd

d, sd
$,$

6.64
2.61
5.90
2.43
4.74
1.97
2.24
2.65
2.73
3.10
3.20
3.29

6.71
2.69
6.48
2.62
4.80
2.17
2.91
3.19
3.28
3.84
3.98
4.10

6.96
3.02
7.45
2.95
5.71
2.51
3.68
3.69
3.78
4.38
4.53
4.66

7.4
3.15
7.54
3.07
5.75
2.62
3.70
3.82
3.91
4.55
4.70
4.82

7.17
3.07
7.39
2.96
5.64
2.48
3.55
3.55
3.64
4.24
4.39
4.51

7.17'
3 07'
7.41
2.96'
5.68
2.48'
3.66
3.69
3.79
4.25
4.39
4.51'

7.18
3.01
7.23
2.84
5.62
2.42
3.45
3.63
3.72
4.26
4.40
4.48

'Value identically the same as with PW GGA-II.



46 ATOMS, MOLECULES, SOLIDS, AND SURFACES: 6677

TABLE VI. Exchange (E„)and exchange-correlation (E„,) energies for cuspless one-electron densi-
ties n (r ) = (a3/32m )(1+ar )e '", g= 1. Here r, characterizes the maximum density n (0)=3/4', '.

r, (bohrs) LSD

9.90
4.95
2.48
1.65

—E„(eV)
PW GGA-II

11.25
5.63
2.81
1.87

Exact

11.60
5.80
2.90
1.93

LSD

10.59
5.46
2.83
1.93

—E„, (eV)
PW GGA-II

11.48
5.82
2.97
2.01

Exact

11.60
5.80
2.90
1.93

ing very accurate atomization energies, ' are available.
Pederson, Jackson, and Pickett ' have studied the set of
molecules listed in Table VII using LSD, within the pa-
rametrization of Ref. 39. The optimized LSD bond
lengths make errors of only l%%uo or 2%%uo, in comparison
with experiment. This level of agreement is typical for
structural parameters calculated in LSD.

LSD-calculated atomization energies for the molecules
of Table VII are much less satisfactory, however. These
are typically 10—15% greater than experimental values.
It is this property that we wish to address with the gen-
eralized gradient approximations (GGA's). Previous
GGA calculations of atomization energies for mole-
cules' and solids ' have demonstrated consider-
able improvement over LSD.

The calculations of Tables VII and VIII were per-
formed using a finite cluster, local Gaussian-orbital pro-
cedure. ' The method uses a highly accurate numeri-
cal integration scheme to evaluate the total energy and
matrix-element integrals. In this scheme, the integration
mesh is systematically refined to provide essentially arbi-
trary accuracy for the various integrals. One advantage
of the computational procedure is that it allows the
Kohn-Sham potential to be used in the calculation,
without further approximation. The numerical accuracy
of the calculations is then limited only to basis-set com-
pleteness, which, in principle, can be systematically con-
trolled.

Except for C60, we have used very large single Gauss-
ian basis sets, consisting of eighteen single s-type Gauss-
ians, nine p-type Gaussians, and four d-type Gaussians on

each carbon and hydrogen atom. This amounts to a total
of 65 functions per atom. To illustrate convergence of
the atomization energies, we discuss calculations per-
formed on CH& with this basis as well as two smaller
basis sets. The smallest basis set, consisting of seven s-
type, four p-type, and two d-type contracted Gaussian or-
bitals, gave an atomization energy of 19.94 eV. A larger
set, consisting of ten s-type, four r s-type, eight p-type,
and four d-type single Gaussians led to an atomization
energy of 20.11 eV. Finally, the largest set, described
above, gave 20.09 eV. Based on this result and similar re-
sults for the other systems discussed below, we believe
that the atomization energies reported in Table VII are
accurate to at least 0.05 eV/atom. For the Cso molecular
calculation, we have used the smallest basis set.

To obtain the GGA atomization energies for the mole-
cules in Table VII, optimized geometries should be found
from self-consistent GGA calculations. Fan and
Ziegler' have shown, however, that the GGA atomiza-
tion energies found in this way are essentially indistin-
guishable from those obtained from a much simpler pro-
cedure in which the GGA total energy is evaluated using
the LSD electron density and geometry. Because of its
simplicity, we use this non-self-consistent approach here.

Calculated atomization energies are shown in Table
VII. The density-functional calculations for the carbon
atom were performed for the potential of the spherical
atom, for which the 2p„~, 2p~~, and 2p,~ orbitals have equal
occupation numbers, —,

' of an electron each. The non-

spherical atom was then constructed by assigning unit oc-
cupation to the 2p ~ and 2p„~ orbitals, and zero occupa-

TABLE VII. Atomization energies of seven hydrocarbon molecules and the root-mean-square error per bond relative to experi-
ment. A single, double, or triple bond is counted as one bond. LSD electron densities and geometries are employed in all calcula-
tions except HF (Ref. 16). Since the calculated atomization energies are for static molecules, the zero-point vibrational energy has
been removed from the experimental values (Ref. 16). The antiferromagnetic (AF) singlet LSD solution is used to represent Cz. (1 eV
=23.06 kcal/mole. )

Atomization energy (eV)

Molecule

H2
C2 (AF)
C2H2
CH4
C2H4
C2H6
C6H6

Number of
bonds

1

1

3
4
5

7
12

HF

3.63
0.73

13.00
14.39
18.71
24.16
45.19

PW GGA-IIX

3.67
5.0

14.88
14.82
20.23
25.04
49.49

LSD

4.89
7.51

20.02
20.09
27.51
34.48
68.42

PW GGA-I

4.80
6.62

18.20
19.29
26.83
31.57
61.25

PW GGA-II

4.55
6.55

18.09
18.33
24.92
31.24
61.34

Expt.

4.75
6.36

17.69
18.40
24.65
31.22
59.67

rms error/bond 2.40 1.00 0.68 0.23 0.13
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TABLE VIII. Total energy of the molecule C2 measured from the total energy of the antiferromagnetic (AF) singlet, which we
take to represent the experimental ground state. The experimental singlet-triplet splitting is from Ref. 54.

LSD
Energy relative to AF singlet (eV)

PW GGA-I PW GGA-II Expt.

Nonmagnetic singlet 'Xg [(m.t ) (n.„}']
Triplet 'II„[(m~ }'nto, ]

0.22
—0.19

0.34
—0.17

0.35
—0.21 +0.09

p&=P +[A/ +B$ ]', (17)

p~=4.'„„+[A%.', B0.,]'— (18)

where A +B = 1. It is the AF singlet (B%0) that we
take to represent the ground state of the molecule in
Table VI, even though it still lies about 0.2 eV above the
triplet state in our density-functional calculations. This

tion to the 2p,~; its total energy is lower than that of the
spherical carbon atom by 0.00 eV in LSD, 0.11 eV in PW
GGA-I, and 0.10 eV in PW GGA-II. (With spherical
harmonic orbitals [m& = —1 and 0] in place of cubic har-
monics, the PW GGA-II energy would be lower than
that of the spherical atom by only 0.01 eV.)

For the seven molecules shown in Table VII, the rms
error per bond is 2.4 eV for Hartree-Fock, 0.7 eV for
LSD, 0.2 eV for PW GGA-I, and only 0.1 eV for PW
GGA-II. Because the atomization energies of molecules
are nearly additive over bonds, we expect that PW
GGA-II energies will achieve this level of accuracy for all
hydrocarbons.

The cancellation of error between density-functional
approximations for exchange and correlation is evident
for molecules, as it was for atoms. Another feature of the
atomic results carries over to molecules: When Hartree-
Fock is a good zero-order approximation, the exchange-
only density functional PW GGA-IIX emulates Hartree-
Fock energies, although the PW GGA-IIX results fall
somewhat closer to experiment. When Hartree-Fock is a
poor zeroth-order approximation (C2), the PW GGA-
IIX results fall much closer to experiment.

For CzH& (ethane), the structure in which the hydrogen
triads are staggered lies only 0.13 eV below that in which
they are eclipsed. This experimental energy difference
is correctly predicted by both LSD (Ref. 51) and PW
GGA-II.

Six of the seven molecules in Table VII have closed
subshells. Cz, however, has several low-lying excited
states. The experimental ground state is a spin singlet,
but the density-functional approximations that we tested
place the triplet state lower in energy (Table VIII). The
LSD total energy of the singlet is reduced by a broken-
symmetry antiferromagnetic (AF) solution, in which
equal but opposite spin moments appear. In the AF solu-
tion of Dunlap, these moments are localized on the
atomic sites, but we find a lower-energy AF solution by
localizing the moments on opposite sides of the bond
axis. The singlet valence-electron spin densities are con-
ceptually

situation would probably be improved by PW GGA-IIA,
which favors antiferromagnetic order over ferromagnetic.
However, prediction of the wrong ground state might
still persist as an interconfigurational or interterm error
of continuum density-functional approximations.

We have also calculated the atomization energy of an
isolated C&o (fullerene) molecule via LSD and PW GGA-
II. Within LSD, we find a cohesive energy of 8.46
eV/atom. Using basis sets of similar quality and the
same exchange-correlation functional, Dunlap et al.
found a cohesive energy of 8.54 eV/atom. Within PW
GGA-II, we find 7.38 eV/atom. By performing PW
GGA-II calculations with the same basis set on the simi-
lar C6H6 molecule and noting a 0.21 eV/carbon
difference between the experimental and PW GGA-II
cohesive energy, we estimate that the true cohesive ener-

gy of a static C60 molecule is closer to 7.25 eV. For com-
parison, we note that the measured enthalpy of formation
of diamond (7.35 eV) and the theoretical zero-point vibra-
tional energy (0.20 eV) due to Kong et a/. may be com-
bined to estimate the cohesive energy of static diamond
as 7.55 eV. This analysis suggests that the fullerene mol-
ecule is about 0.3 eV/atom less stable than diamond.

IV. SOLIDS

Solids, and especially metals, should be well suited to a
continuum density-functional description based upon the
electron gas of slowly varying density, for two reasons:
(1) The reduced density gradients in the interior of a solid
never get too large [e.g. , the parameter s of Eq. (7) is nev-
er much greater than unity], and (2) the valence-electron
orbitals of a solid form a continuum, as they do in the
electron gas.

Although cohesive (atomization) energies of solids are
overestimated by LSD, purely solid-state properties are
often described very accurately. However, the zero-
temperature (T=O) lattice constants of the alkali metals
are a surprising exception to this rule: LSD underesti-
mates the lattice constants of Li and Na by 3.2% and
4.1% (Table IX), in comparison with experiment.
While LSD typically underestimates the lattice constants
of metals, its errors for the alkali metals are exceptionally
large, despite the free-electron character of these metals.
The error, which correlates with the compressibility of
the metal, is greatest for Cs. (Our LSD lattice constants
for Li and Na in Table IX agree with those of Sigalis
et al. , who considered all the alkali metals, but our
value for bcc Li differs from that of an earlier LSD calcu-
lation. ")

In order to investigate this problem, we have per-



46 ATOMS, MOLECULES, SOLIDS, AND SURFACES: 6679

TABLE IX. Cube-side lattice constant a, bulk modulus 8, and structural energy difference per atom Eb„—E&„ for solid Li and
Na in the body-centered-cubic and face-centered-cubic structures. (1 bohr=0. 529177 A; 1 hartree/bohr =2942Q GPa; 1

meV=10 3 eV.) LSD densities are employed for all calculations other than LM; the Langreth-Mehl (f=0.15) calculations are fully

self-consistent. To within the accuracy of our numerical calculation (1%), the ratio of fcc to bcc volume per atom is unity for Li in

all the approximations considered. Experimental values include the effect of zero-point vibration. The bulk modulus of Na was mea-

sured at T=78 K. (The experimental values of r, are 3.24 and 3.93 bohrs for Li and Na, respectively. )

Property

a (bohr)

Crystal

fcc Li
bcc Li
bcc Na

LSD'

8.01
6.37
7.65

LSD

8.00
6.36
7.65

LM

8.41
6.71
8.11

PW GGA-I

8.09
6.43
7.82

PW GGA-II

8.19
6.51
7.97

Expt.

6.57
7.98'

8 (GPa) fcc Li
bcc Li
bcc Na

14.7
15.1
9.2

15.5
15.0
9.2

14.0
13.3
6.4

14.8
14.3
8.4

13.3
13.4
7.1

13Q
7.4'

Eb„—E&„(meV)

'Reference 60.
Reference 58.

'Reference 59.
Reference 64.

'Reference 66.

Li 6.4 4.2 2.7 3.9 3.7

formed general-potential linearized-augmented-plane-
wave (LAPW) calculations (with relativistic cores) for
Li and Na. Because the generalized gradient approxima-
tions (GGA's) are sensitive to nonspherical components
of the density, we reject shape restrictions on the density
or potential. The calculations presented here are highly
converged, both with respect to basis-set size and
Brillouin-zone sampling. (We used 60 and 112 special k
points for the fcc and bcc structures, respectively. )

Unlike the calculations of Secs. II and III, some of our
solid-state calculations achieve full self-consistency for
each density functional considered: LSD, PW GGA-I,
and PW GGA-II. (For Na, we tested the non-self-
consistent procedure described in Sec. II and found that
the results were unchanged within the numerical error of
the calculation, 0.5% to 1% of the lattice constant. This
procedure, which employs the LSD density, was imple-
mented for Li as well. )

As shown in Table IX and in earlier studies,
GGA corrections to LSD increase the lattice constants of
metals in the direction of experiment. ' PW GGA-II
underestimates the lattice constants of Li and Na by only
0.9% and 0.1%, respectively.

We now analyze the remaining small discrepancy be-
tween PW GGA-II theory and experiment for bcc Li.
The experimental lattice constant in Table IX was mea-
sured at T=20 K. Because the Li atom is so light, its
low-temperature lattice constant must include a contribu-
tion from anharmonic zero-point vibration, which makes
it larger than the static-lattice value we are trying to cal-
culate. We might hope to eliminate this contribution by
extrapolating the "classical" region of linear thermal ex-
pansion (200& T &300 K) to T=O. The result is a bcc
lattice constant of 6.54 bohr, only 0.5% larger than our
PW GGA-II theoretical value. Alternatively, we could
reduce the experimental value from Table IX by 0.6%, a
theoretical estimate from Ref. 64, leaving a static-lattice

and its derivative

(19)

8 = —Ih)P /BQ, (20)

where E and Q are the total energy per atom and volume
per atom. The experimental values for cubic crystals are
constructed from measured elastic constants ' by the
formula

8 =(C„+2C,~)/3 . (21)
Table IX shows that the LSD overestimation of the bulk
modulus is largely corrected by PW GGA-II.

The observed ground state of metallic Fe is a ferromag-
netic bcc lattice. The wrong ground state predicted by
LSD (Ref. 68) (a paramagnetic fcc lattice) is corrected by
PW GGA-I. ' Our LAP% calculations show that PW
GGA-II also predicts the true ground state for Fe.

Because the metals Pd and V are close to being fer-

constant only 0.3% bigger than our PW GGA-II theoret-
ical value.

At low temperature, Li is a combination of body-
centered-cubic (bcc) and close-packed 9R crystal struc-
tures. At T=78 K, the volume per atom is 142.5 bohr
for each phase. The two phases appear to be close in
energy, with 9R slightly lower. To simulate the 9R
phase, we follow the lead of Sigalas et a/. , who per-
formed calculations for the close-packed face-centered-
cubic (fcc) structure of Li. As in Ref. 60, we find that the
fcc energy per atom is slightly lower than the bcc energy.
In the present well-converged calculations, a value of
0.004 eV is obtained for this difFerence. GGA corrections
to LSD have little efFect on this structural energy
difference.

In Table IX we also report the bulk modulus B (inverse
compressibility), in comparison with experiment. 's6 At
zero temperature, we calculate the pressure
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romagnetic in LSD (i.e., they have large LSD spin-
susceptibility enhancements y/F0=4. 5 and 2.3, respec-
tively), one might wonder if the GGA's would incorrectly
tip these metals over into the ferromagnetic state. How-
ever, our LAPW calculations at the experimental lattice
constants show that these metals are correctly paramag-
netic in the PW GGA-II approximation.

LSD fails to predict the observed insulating antiferro-
magnetic ground state for the high-temperature super-
conductor La2Cu04 and other layered cuprate materials
such as CaCu02. ' Singh and Pickett have shown that
CaCu02 is also incorrectly predicted to have a metallic
paramagnetic ground state by the Langreth-Mehl
(LM), ' Becke, ' and PW GGA-II functionals. By cal-
culating a generalized inverse susceptibility, they found
that the LM and PW GGA-II approximations at least
bring CaCu02 closer to antiferromagnetism than do the
LSD and Becke approximations.

V. SURFACES

The surfaces of metals should be amenable to a contin-
uum density-functional description, since the valence-
electron orbitals form a continuum. However, the diver-
gence of the reduced density gradients s and t of Eqs. (7)
and (10) far outside the metal poses a challenge to contin-
uum approximations based upon the electron gas of slow-
ly varying density, such as LSD and GGA. (See Figs.
2 —4 of Ref. 72.)

The surface properties we consider are the work func-
tion W, surface energy 0., and curvature energy y. The
work function is simultaneously the ionization energy,
electron affinity, and electronegativity of the metallic
crystal. The surface and curvature energies enter the
liquid-drop expansion for the total energy of an extended
system with volume V and surface area A:

Since these surface properties for the simple metals are
determined largely by the bulk valence-electron density

p =3/4~r, , (23)

we study two models characterized only by the bulk den-
sity parameter r„viz. , jellium and stabilized jellium.
In jellium, the electrons are bound to a positive back-
ground of uniform density which vanishes outside a sharp
surface. But jellium is stable only at r, =4.2 bohr. In
stabilized jellium, the electrons interact with an addition-
al short-range potential, chosen to make the bulk stable
at a given r, . This additional potential is constant inside
the sharp surface, and vanishes outside. Especially for
the simple high-density metals (r, =2, where the jellium
surface energy is negative), stabilized jellium is the more
realistic model. We evaluate 8', 0., and y from Kohn-
Sham calculations for the planar surface, as in Refs. 75
and 76.

We begin with the infinite barrier model of the jellium
surface, in which the Kohn-Sham potential is replaced by
an infinite step. For this non-self-consistent model, the
surface energies are known within the random-phase ap-
proximation (RPA). ' We easily construct RPA ver-
sions of LSD and PW GGA-II, using RPA input for
s, (r„g) (Ref. 26) and C, (r, ) (Ref. 3) in Eq (1) .or (9).
Table X shows that LSD seriously underestimates the
correlation contribution 0., to the surface energy, while
PW GGA-II fortuitously yields the exact cr„ to the accu-
racy with which it is known. For the surface exchange
energy a„, the situation is less satisfactory. While LSD
overestimates 0 „by 55%, a direct calculation of o „(PW
GGA-II) underestimates cr„by 36%. This underestima-
tion is more severe for PW GGA-I (44%) and for Becke'
(57%) and Vosko-Macdonald (62%) exchange. Howev-
er, as Table X shows, the quantity

E=a V+ Acr+ —,
'
y fd A %

where % ' is the mean curvature of area element d A.

(22) cr„'(PW GGA-II) =cr„(PW GGA-II)

+ (2315 erg/cm ) /r, (24)

TABLE X. Surface exchange energy o.„and correlation energy 0., (within the random-phase ap-

proximation) for the infinite-barrier model of the jellium surface. r, is the bulk density parameter. (1
hartree/bohr~=1. 55692X106 erg/cm .) PW GGA-II values include the long-range correction of Eq.
(24). Exact values from Ref. 77, as corrected in Ref. 78. Note that the Langreth-Mehl approximation
(LM, f=0.17) breaks down for this rapidly varying density profile, but still works well for the more

physical profiles of Tables XI and XII.

Component
Infinite-barrier model (erg/cm')

LSD LM PW GGA-II Exact

o 2.07
4
6

1109
154
46

—1396
—194
—57

715
99
29

715
99
29

RPA
C 2.07

4
6

136
31
12

1498
239

648
117
40

673
104
34

~RPA
XC 2.07

6

1245
185
58

102
45
21

1363
216

70

1388
203

63
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TABLE XI. Surface exchange energy o.„and correlation energy o., for jellium, with self-consistent density profiles. PW GGA-II
surface energies include the long-range contribution from Eq. (24). The difference between exact and LSD values for o „ is estimated

from Tables VI and VII of Ref. 12.

2.07
3.99
5.63

LSD

2670
225

57

o.„(erg/cm )

PW GGA-II

2306
156
29

Exact

2309
164
36

LSD

293
39
13

o, (erg/cm )

PW GGA-II

746
123
47

LSD

2963
264

70

oxc ox++c
PW GGA-II

3052
279
76

reproduces the exact cr . We regard the second term on
the right of Eq. (24) as a radically nonlocal contribution
arising from long-range density fluctuations neglected in
PW GGA-II. It is perhaps only for a semi-infinite system
(and not for atoms, molecules, or bulk solids near equilib-
rium} that the exact exchange-correlation hole has a
long-ranged tail ' and so cannot be modeled reliably by
the finite-ranged PW GGA-II hole. The correction to the
surface exchange-correlation energy from this long-range
tail is necessarily positive. That the needed correction to
cr„, is smaller for LSD (about [1270 erg/cm ]/r, ) than
for PW GGA-II is probably accidental.

A better-justified correction to the PW GGA-II surface
energy would replace the separate radial cutoffs on the
exchange and correlation holes by a single radial cutoff
on their sum, and would further replace the zero hole
density outside this radius by the known long-range tail.
In future work, we hope to construct this real-space
GGA analog of the Langreth-Perdew wave-vector inter-
polation.

Now we turn to self-consistent surface density profiles
(Tables XI and XII). As for the infinite-barrier model,
the long-range correction of Eq. (24) brings the PW
GGA-II surface exchange energies into agreement with
exact values' (although this correction is now a smaller
fraction of cr„) We ex. pect that the PW GGA-II surface

correlation energies are still correct, since (a} the self-
consistent profiles are more slowly varying than the
infinite-barrier profiles and (b} corrections to the RPA
have no long-range contribution. From Table XII and
Eq. (24), it is clear that the PW GGA-II work functions
W, surface energies o (neglecting the long-range part},
and curvature energies y are all slightly lower than the
corresponding LSD values. In Sec. VI we will relate this
PW GGA-II reduction in cr and y to the PW GGA-II
reduction of atomic total energy found in Sec. II and the
PW GGA-II reduction of atomization energy found in
Sec. III. When the long-range contribution of Eq. (24) is
included (as it has been in Tables XI and XII}, the PW
GGA-II surface energies are slightly higher than LSD
values.

The PW GGA-II surface energies for self-consistent
jellium profiles (Table XII) are in good agreement with
Langreth-Mehl values (for which no long-range correc-
tion is invoked) and also with the result of the Green's-
function quantum Monte Carlo methods' (o = —470
erg/cm for r, =2.07). Moreover, the PW GGA-II work
function, surface energy, and curvature energy for stabi-
lized jellium are in reasonable agreement with experimen-
tal values for the real metals. (A more general but
also more demanding approach to metallic surfaces or
clusters would combine an exact description of exchange

TABLE XII. Work function W, intrinsic (ideally flat) surface energy cr, and curvature energy y for jellium and stabilized jellium,
with self-consistent density profiles. (1 millihartree =10 hartree. ) PW GGA-II surface energies include the long-range contribu-
tion from Eq. (24). Langreth-Mehl (LM, f=0.17) values from Ref. 80. For comparison, experimental or phenomenological values

are presented for the real metals Al (r, =2.07), Na (r, =3.99), and Cs (r, =5.63). The experimental work function is the polycrystal-
line value (Ref. 82). The "experimental" value for the intrinsic surface energy is the zero-temperature extrapolation of the liquid-
metal surface tension (Ref. 83), divided by the corrugation factor of 1.2 (Ref. 84). The "experimental" curvature energy is obtained
from the measured vacancy-formation energy e„„by the liquid-drop equation y = [o4rrro e„„]/2ero,—as in Ref. 84, but with the
long-range contribution of Eq. (24) subtracted from the experimental surface energy cr (consistent with the approach of Table XIII).

Property

W (eV)

rs

2.07
3.99
5.63

LSD

3.74
2.91
2.35

Jellium
LM

4.12
3.32
2.74

PW GGA-II

3.65
2.88
2.30

LSD

4.24
2.92
2.24

Stabilized jellium
PW GGA-II

4.17
2.90
2.23

Expt.

4.28
2.75
2.14

o. (erg/cm ) 2.07
3.99
5.63

—605
164
71

—484
189
82

—473
185
80

953
171
60

1060
191
69

953
218

79

y (millihartree/bohr) 2.07
3.99
5.63

1.77
0.36
0.13

1.47
0.31
0.11

1.82
0.35
0.13

1.50
0.30
0.12

1.35
0.28
0.19
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FIG. 1. LSD solution for the r, =3.99 jellium surface. The
solid curve is the electron-density profile, measured in units of
the bulk density kF'/3n. . The dashed curve is the self-consistent
one-electron potential, measured in units of the bulk Fermi en-
ergy kF /2. A constant has been added to this potential to make
it tend to —kF/2 in the bulk. Distance from the jellium edge is
measured in units of the Fermi wavelength 2m/kF.

2 I

with PW GGA-II correlation. )

The correction that we find to the LSD surface energy
is rather small, as a result of a delicate cancellation be-
tween the nonlocalities of exchange and correlation
(Tables X—XII). This correction is much smaller than
that found by the Fermi hypernetted-chain method,
which was regarded as the standard before the advent of
the quantum Monte Carlo calculation. ' However, it is
consistent with the results of Skriver and Rosengaard,
who calculated LSD surface energies, for the close-
packed faces of the alkali metals, that agree closely with
measured liquid-metal surface tensions extrapolated to
zero temperature. Note further that a sophisticated ver-
sion of the fully nonlocal weighted-density approximation
gives surface energies close to those of LSD.

The LSD and PW GGA-II electron-density profiles

and one-electron potentials for the r, =3.99 jellium sur-
face are displayed in Figs. 1 and 2. On the scale of these
figures, the LSD and PW GGA-II density profiles are in-
distinguishable. The potentials are barely distinguishable
until the electron density has decayed to about 10% of its
bulk value. From this point, the PW GGA-II potential
first rises above and then dips below the LSD potential.
A similar oscillation is found in the PW GGA-I and LM
potentials for atoms. '

VI. ATOMS, SOLIDS, AND SURFACES
IN THE JELLIUM MODEL:
A UNIFIED PERSPECTIVE

e„h= [ I+3/Sr, ]
—e—, (25)

where E=3kz/10+a„, (r, ) is the energy per electron in
the uniform or condensed phase. By Eq. (22), the liquid-
drop-model estimate of the cohesive energy is just the
energy needed to create the curved surface of the jelliurn
atom:

Here we present simple estimates which tie together
our results for atomic total energies (Sec. II), atomization
energies (Sec. III), and surface and curvature energies
(Sec. V). Use will be made of the jellium model of Sec V. .

According to the liquid-drop model for crystalline met-
als, the expansion (22) can be valid even for microscop-
ic radii of curvature, so long as electronic shell-structure
effects may be neglected. Clear-cut examples are provid-
ed by the mono vacancy-formation energy and the
crystal-face dependence of the surface energy for a metal
of infinite volume. The expansion (22) also seems to ap-
ply to one-electron atoms, i.e., the shell-structure oscilla-
tion tends to vanish for these systems with half-filled
shells.

Consider a monovalent atom of jellium, i.e., one elec-
tron bound to a uniform positive background of density
3/4n. r, confined inside a sharp spherical surface of radius
r, The t.otal energy is I+3/Sr„w—here I is the ener-

gy needed to ionize the electron and 3/5r, is the electro-
static energy of the positive background. Since this is a
one-electron problem, I is easily calculated exactly or in a
density-functional approximation.

The cohesive energy of jelliurn is the atomization ener-

gy per atom, i.e.,

o4mr, +y2mr, . (26)

0—

W
Z
LLJ

Na (JELLIUM)
PW GGA-II

n

O

2
—1.50 —'I .00 —0.50 0.00 0.50

potential
density

I

1.00

DISTANCE (units of 27rlk&)

FIG. 2. PW GGA-II solution for the r, =3.99 jellium sur-
face. See caption of Fig. 1.

In Table XIII we compare the LSD cohesive energy of
Eq. (25) against the liquid-drop prediction of Eq. (26), us-
ing LSD values for o. and y from Sec. V. We also com-
pare the exact cohesive energy against the liquid-drop
prediction, using PW GGA-II values for cr and y. [We
omit the long-range contribution of Eq. (24), which arises
from an effect present only for a semi-infinite system and
thus irrelevant to the cohesive energy. ] The following
conclusions may be drawn: (1) Except at the highest den-
sity considered (r, =2.07), the liquid-drop model has
good quantitative accuracy. Even at r, =2.07, the curva-
ture term helps. (The liquid-drop model must fail in the
limit r, ~0, in which the jellium atom reduces to hydro-
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TABLE XIII. Prediction of the liquid-drop model [Eq. (26)] compared with the cohesive energy of Eq. (25) for jellium with bulk
density parameter r, . The first three rows employ LSD values for the surface, curvature, and cohesive energies. The last three rows
employ PW GGA-II values for the surface and curvature energies, and exact (not density-functional) values for the cohesive energies.
Here the PW GGA-II surface energies do not include the long-range contribution of Eq. (24). The LSD energy for the monovalent
je11ium atom was calculated with the exact one-electron density. The last column is the liquid-drop-model cohesive energy for stabi-
lized jellium.

Method

LSD

rs

2.07
3.99
5.63

0.4m.r,

—0.57
0.57
0.49

Cohesive energy of jellium (eV)
cr4mr, +y2m r,

0.06
0.82
0.62

&coh

0.48
0.88
0.63

Stabilized
cr4m. r, +y2m. r,

1.54
0.84
0.54

PW GGA-II 2.07
3.99
5.63

—0.69
0.52
0.47

—0.17
0.73
0.57

0.24
0.77
0.57

1.28
0.75
0.5 1

gen. ) (2) LSD cohesive energies are higher than exact
ones. Thus LSD overestimates the atomization energy
for jellium, as it does for molecules and real solids. (3)
Since the bulk of jellium is uniform, LSD yields the exact
bulk energy. Therefore, LSD overestimates the total en-
ergy of a jellium atom, as it does for a real atom. (4)
Since the surface and curvature energies are lower in PW
GGA-II than in LSD, the PW GGA-II atomization and
total energies are also lower and thus closer to the exact
values. Table XIII suggests that, in comparison with
LSD, PW GGA-II gives a better description of the con-
tribution to 0 and y from intermediate-range density
fluctuations. (Long-range fluctuations are essentially ab-
sent from one-electron atoms. )

As first shown by Kutzler and Painter, ' GGA's favor
nonspherical densities more than LSD does (cf. our dis-
cussion of the carbon atom in Sec. III) ~ From the liquid-
drop model, the same effect may be expected for jellium.
Consider a volume-conserving oblate or prolate
spheroidal distortion of the one-electron jellium atom,
which increases the area and the curvature integral of Eq.
(22). Since the PW GGA-II functional predicts lower
values for u and y, it penalizes this distortion less severe-
ly than LSD does.

For these one-electron atoms (as for the hydrogen
atom or the systems of Table VI), PW GGA-II may be
regarded as an approximate self-interaction correction
to LSD. More generally, PW GGA-II contains informa-
tion about real electron-electron interactions in inhomo-
geneous systems, as the bulk-metal results of Sec. IV
demonstrate.

The importance of exchange and correlation for
valence electrons in general, and for jellium in particular,
cannot be overemphasized Without exchange and corre-
lation, bulk jellium would be unstable (or at least unreal-
istic) in several ways: (1) The pressure of Eq. (19) would
not vanish at any finite r„and (2) the surface, curvature,
and atomization energies would be either negative or ab-
surdly small at all r„as would the work function.

These instabilities are removed in the following way:
(1) Creation of the exchange-correlation hole around
each electron lowers the bulk energy per electron by an
amount roughly proportional to r, ', and so opposes the

VII. UNDERSTANDING NONLOCALITY

In order to visualize the nonlocality of PW GGA-II ex-
change and correlation [Eqs. (3)—(15)], we define an
enhancement factor F„, (relative to spin-unpolarized lo-
cal exchange). For the case of uniform g (V(=0), we
write

E„, "[n&,nl ]=f d r ns„(r„O)F„,(r„g,s), (27)

where s is the reduced density gradient of Eq. (7). We
note that the reduced gradient of Eq. (10) is

t =1.228s/Qr, g(g) . (28)

Figures 3 and 4 display F„, for the spin-unpolarized
(/=0) and fully polarized (g= 1) cases, respectively.
From the viewpoint of Slater's Xa method, ' F„, pro-
vides a position-dependent a =—', F„,.

The nonlocality is borne by the s dependence of F„,. In
fact, the LSD approximation replaces F„,(r, g, s ) by

F„,(r„g,O) =s„,(r„g)/s„(r„O),
i.e., by horizontal straight lines not shown in Figs. 3 and
4. Although it is not evident on the scale of these figures,
the PW GGA-II curve for each r, starts out from s =0
with a negative second derivative. Thus the ungeneral-
ized second-order gradient expansion replaces F„,(r„g,s )
by a downward-turning parabola

F„,(r„(,0) I C(r„g)ls' .

expansion driven by the kinetic energy (which raises the
energy per electron by an amount proportional to r, )

(2) An electron which penetrates into the surface region
gets partially separated from its exchange-correlation
hole (which lags behind in a region of higher density),
and this effect raises the surface energy. Because the sep-
aration is more complete for a convex (% '&0) surface
than for a concave (A '&0) one, the same eff'ect also
raises the curvature energy. In order to remove an elec-
tron completely, positive work must be done to separate
it from its exchange-correlation hole.
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1.6

1.3
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Reduced Density Gradient s=lVnl/2k'

FIG. 3. PW GGA-II nonlocality in the spin-unpolarized
case. The enhancement factor F„,(r„O,s) (relative to spin-
unpolarized local exchange) is plotted vs the reduced density
gradient s for several values of the local-density parameter r, .
The corresponding enhancement factors for LSD are the hor-
izontal lines F„,(r„0,0)=c„,(r„O)/c„(r„O). For the second-
order gradient expansion, they are downward-turning parabolas
F„,(r„0,0)—

~
C(r„0)~s'.

1.9

1.8

1.7

1.6

Qv
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Reduced Density Gradient s=lVnl/2k n

FIG. 4. Same as Fig. 3, but for the fully spin-polarized case.

The values of s that are important in the interior of a
metal typically fall in the range O~s ~2.0. Atoms sam-
ple the range 0.2~s, with s diverging into the vacuum
around the atom. (Within an electronic shell,

~
Vn

~
/n is

approximately constant, but kF and s increase in the
outward direction. } Clearly, for most physical properties
of real systems, the nonlocal effect of PW GGA-II is op-
posite to that of the second-order gradient expansion.
Thus, Bagno, Jepsen and Gunnarsson ' found that the
gradient expansion shrinks the lattice constants of met-
als, which are already too small in LSD, and further de-
stabilizes the bcc ferromagnetic ground state of Fe, which
is wrongly unstable in LSD. PW GGA-II has the oppo-
site (and correct) effects.

The exchange-only PW GGA-IIX nonlocality is
presented in the r, =0 curves of Figs. 3 and 4. The non-
locality of exchange (E, "&E„&0), which
favors density inhomogeneity, is strong when s is of order
unity, i.e., when the density varies significantly over the
range of the exchange hole. An opposite nonlocality
(0)E, ' )E, ), which opposes density inhomo-

geneity, extinguishes the correlation contribution to F„,
as t —+ec. (Compare the similar behavior of the linear
response function in Ref. 41, and the somewhat different
behavior produced by the wave-vector-space cutoff of
Refs. 4 or 8.) In the high-density limit (r, ~0), the corre-
lation contribution vanishes on the scale of these figures.
But for metallic densities (2 & r, & 6), the nonlocality of
correlation cancels much of that for exchange
(E„, + "& E„, ). For these and lower densities, the
exchange-correlation hole is significantly deeper and
(apart from oscillations) more short ranged than the ex-
change hole, making F„, larger and more "local" than
F . As a result, LSD can give a reasonably good descrip-
tion of valence-electron energies in metals, even though it
makes serious errors for the cores.

Since the residue of this cancellation between nonlocal-
ities is still exchangelike in PW GGA-II, the principal
PW GGA-II nonlocal effect is to favor density inhomo-
geneity or surface formation more than LSD does. Thus
the PW GGA-II correction to LSD lowers total, atomiza-
tion, surface, and curvature energies. It enlarges the lat-
tice constants of metals, where expansion continuously
increases the inhomogeneity. PW GGA-II also favors
nonspherical distortions over spherical densities.

Although the PW GGA-II functional improves upon
LSD, too much should not be expected from it:

(l) Even the exact density functional would not predict
all excited-state energies, ' nor would its Kohn-Sham ei-
genvalue spectrum predict the fundamental gap (twice
"hardness") of an insulator or semiconductor ' or the
exact Fermi surface of a metal.

(2) Many incorrect features of LSD are carried over
into PW GGA-II and other GGA's: (a} Incorrect asymp-
totic decay ' of the density and one-electron potential
into the vacuum, blocking self-consistent solutions for
negative ions; (b) absence of derivative discontinuities,
leading to incorrect fractionally charged fragments in-

stead of neutral atoms as dissociation products of
heteronuclear molecules or solids; (c) interconfigura-
tional and interterm errors of ionization energies and
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electron affinities (Sec. II); and (d) symmetry and multi-

plet problems. ' These incorrect features should be
least troubling in bulk simple metals, or perhaps in solids
under pressure.

VIII. CONCLUSIONS

In a variety of tests for atoms, molecules, solids, and
surfaces, we have found that the Perdew-Wang general-
ized gradient approximation (PW GGA-II) for exchange
and correlation is usually more accurate than the local-
spin-density (LSD) approximation or older GGA's.
Many of the PW GGA-II nonlocal effects have a simple
qualitative explanation (Sec. VII).

Unlike LSD, PW GGA-II total energies of atoms are
highly accurate. Atomic ionization energies and electron
affinities display the interconfigurational and interterm
errors that are apparently common to LSD and all
GGA's (at least within the central-field approximation
for the potential), but the root-mean-square error is
slightly reduced by PW GGA-II. The best accuracy is
achieved by (a) applying PW GGA-II to realistic
Hartree-Fock densities and (b) considering only processes
free from interconfigurational and interterm error (e.g. ,
removal of two valence s electrons).

PW GGA-II atomization energies are also highly accu-
rate. For seven hydrocarbon molecules with LSD densi-
ties and geometries, PW GGA-II achieves a rms error of
0.1 eV per bond, compared to 0.7 eV per bond for LSD
and 2.4 eV per bond for Hartree-Fock theory. Buckmin-
sterfullerene (Cs0) is predicted to be about 0.3 eV/atom
less stable than diamond. Numerical results for a much
larger class of molecules are also encouraging.

For both atoms and molecules, there is a cancellation
of error between density functionals for exchange and
correlation, which should therefore be treated together in
the same way. This error cancellation is most striking
whenever Hartree-Fock is a poor zero-order approxima-
tion (e.g., the electron affinity of N and the atomization
energy of C2).

Good results are also found for solids. While LSD un-
derestimates the lattice constants of Li and Na by 3.2%
and 4.1%, respectively, PW GGA-II reduces the un-
derestimation to less than 1%. This increase in theoreti-
cal lattice constant is accompanied by an improvement in
the bulk modulus.

Of all natural systems, bulk simple metals should be
most amendable to a generalized gradient approximation
based upon the electron gas of slowly varying density.
Thus the agreement between PW GGA-II theory and
precise measurements of the lattice constants for Li and
Na is especially significant. Metals are also the physical
systems that should be best suited to the ungeneralized
second-order gradient expansion of the exchange-
correlation energy, which, however, underestimates their
lattice constants even more severely than LSD does. '

Because of the long range of the Coulomb interaction be-
tween electrons, the ungeneralized expansion appears to

be valid only in an unphysical limit of slowly varying
density, as originally asserted in Refs. 3 and 78. (This
conclusion is antithetical to that of Ref. 40.)

When LSD predicts the true ground state (e.g., solid
Pd), PW GGA-II tends to do the same. In some cases
(e.g. , the molecule C2 and the solid CaCu02), both LSD
and PW GGA-II predict the wrong ground state. In oth-
er cases (e.g. , solid Fe), the wrong LSD ground state is
corrected by PW GGA-II.

For metal surfaces, the work function, surface energy,
and curvature energy are all slightly lower in PW GGA-
II than in LSD. For the separate exchange and correla-
tion components of the surface energy, PW GGA-II is
more accurate than LSD. However, neither LSD nor
PW GGA-II includes the contribution to the surface en-

ergy from long-range density fluctuations [which must
therefore be added by hand, as in Eq. (24)]. Via the
liquid-drop model, the reduced surface and curvature en-

ergies of PW GGA-II "explain" why atomic total ener-
gies and atomization energies are lower in PW GGA-II
than in LSD.

While more extensive tests are needed, we tentatively
recommend the PW GGA-II generalized gradient ap-
proximation for problems requiring better accuracy than
LSD for a modest increase of computation. We also
stress that the improvement over LSD is attributable to
the nonspurious part of the gradient expansion.

Fully nonlocal alternatives to GGA's, such as self-
interaction corrections or weighted-density approxima-
tions, ' ' are considerably harder to implement, espe-
cially for large systems. These fully nonlocal approxima-
tions typically have better asymptotic behavior of the
atomic potential, but GGA's might be expected to give a
better description of ground-state properties for bulk
solids, especially the simple metals.

In principle, neither LSD nor PW GGA-II can de-
scribe the long-range part of the exchange-correlation
hole. Fortunately, this does not seem to be an important
limitation for most properties of interest in condensed-
matter physics and quantum chemistry. For the metal
surface energy, however, the exceptionally long-ranged
tail of the exchange-correlation hole must be taken into
account exactly or via Eq. (24).
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