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A transfer-matrix scaling technique is developed for randomly diluted systems and applied to the site-
diluted Ising model on a square lattice. For each connected configuration between adjacent columns, the
contribution of the respective transfer matrix to the decay of correlations is considered only as far as the
ratio of the two largest eigenvalues, allowing an economical incorporation of configurational averages.
Predictions for the phase boundary at and near the percolation and pure Ising limits, and for the correla-
tion exponent g at those limits, agree with exactly known results to within 1% error with largest strip
widths of only L =5. The exponent g remains near the pure value ( 4 ) for all intermediate concentra-
tions until it turns over to the percolation value at the threshold.

The transfer matrix (TM) provides exact solutions for a
number of low-dimensional pure systems; when applied
to finite-width strips and combined with finite-size scal-
ing, it has also proved to be extremely powerful and accu-
rate for nonsolvable pure cases. ' Applications of "strip-
scaling" techniques to random systems have, however,
been few, despite the enormous interest in such problems
as the spin glass, random field and dilute magnets, ceram-
ic superconductors, etc. This is because the form so far
utilized deals with particular realizations of the ran-
dom system which need not be representative unless ap-
propriate averaging (or self-averaging) is employed, re-
sulting in very large scale computing on extremely long
strips and/or many realizations.

Here we provide a strip-scaling approach for random
systems, in which the disorder averaging is carried out as
one proceeds along the strip. This does not have the
deficiencies noted above.

We apply the method to the two-dimensional site-
diluted Ising model. This is one of the best studied of all
random systems, and includes well-understood special
limits (the pure Ising case, and percolation) and so is par-
ticularly suitable for testing the new technique. At the
same time the system raises interesting questions, such as
the discrepancy between different field-theoretic predic-
tions for the bulk and correlation function critical be-
havior. We provide decisive results on this controversy,
by direct evaluation of the correlation exponent g, and
also give an accurate phase diagram.

In the TM scaling formulation, the central quantity to
be considered is the correlation length g. For a pure sys-
tem, this is given by

' = —ln(A. 2/A, , ),
where A, A.2 are the two largest eigenvalues of the TM. '

Equation (1) is obtained by iteratively applying the (same)
TM, keeping only leading terms in the long-distance lim-
it.

For a random system, the decay of thermal correla-
tions is still given through the iterative product of
(nonidentical) TM's from one column to the next; howev-
er, the randomness makes configurational averaging
necessary. In previous work this was done by generat-
ing strips of length N &&1 and carrying out the actual
TM products, so the end result would presumably reflect
the properties of a representative sample. A correlation
length was extracted from the largest even- and odd-
sector eigenvalues of the iterated TM, A.,„,„and A,,dd,
via

(g '),„,= —(1/N) ln(A, ,dd/k, ,„,„). (2)

While (2) has not the same rigor as (1) for pure systems,
it is nevertheless a sensible choice to make, to obtain a
quenched average of the decay of correlations, since it at
least partly exploits the self-averaging by the system. The
difficulty of judging when the strip is sufficiently long
remains and, for diluted systems, how to avoid the effects
of disconnections.

In our approach the starting point is the TM formula-
tion of the percolation problem. " In this case, which is
the zero-temperature limit of diluted magnets, the
(geometric) correlation length is given by the largest ei-
genvalue of a TM, whose elements are related to the
probability that two adjacent site columns (each with oc-
cupied and vacant sites) are linked to each other and to
the origin. Care is thus taken of the correlations between
frozen spins; as the temperature is raised from zero, each
of the possible links represented by the nonzero elements
of the geometric TM is weakened by thermal fluctua-
tions. We take these into account still within the frame-
work of a single matrix, so the exact column-by-column
character of the average of disorder configurations will be
preserved. It is necessary to modify each nonzero ele-
ment of the original matrix by incorporating properties of
the spin TM between the corresponding site column
states. As the physical property under investigation is
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the rate of decay of correlations, analogy with the leading
contribution towards this in pure systems suggests taking
the ratio of the two largest eigenvalues of the spin TM,
and multiplying the corresponding geometric TM ele-
ment by it. If i and j are two site column states connect-
ed to each other and to the origin, with respective proba-
bilities P, and P, and the spin TM T' between these
columns has A, 'I' and A, $ as its largest eigenvalues, the ma-
trix element of the "thermal-geometric" TM of our for-
mulation is then

(3)

The averaged correlation length is given by
(g '),„,= —lnA„where A, is the largest eigenvalue of
T.

The following comments are in order.
(a) As the temperature T~0, the two largest eigenval-

ues of all thermal TM's become degenerate, and (3) shows
that 'T reduces correctly to the geometric TM of Ref. 11.

(b) As the concentration p of magnetic sites approaches
1, the only remaining nonzero element of T is along the
diagonal, connecting two fully occupied columns; denot-
ing by A,II'"" and A,p" the largest eigenvalues of the corre-
sponding thermal TM, A, =A,f""/A,[""for p =1, and the
pure system limit is correctly obtained.

(c) As befits quenched problems, disorder and thermal
aspects are not being averaged together. We represent
the effect of thermal fluctuations on each given geometric
configuration by the ratio of the respective largest
thermal eigenvalues, and the disorder average is per-
formed at a later step, in obtaining the largest eigenvalue
of 7. Thus we make the analog of the configurational
average of the factor e ' ~ in the correlation function
(related to its decay between two adjacent columns) and it
is indeed the correlation function which is self-averaging.

(d) The procedure outlined contains the approximation
that the complex contribution given by each thermal TM
is truncated and replaced by that of its two largest eigen-
values. As the thermal TM's corresponding to distinct
disorder configurations do not commute with each other,
the inhuence of higher-ranking eigenvalues does not van-
ish identically, ' however, it is expected to die out asymp-
totically, thus minimizing the truncation effects men-
tioned above. We cannot rigorously prove this statement,
and must thus refer to the quality of the results in order
to check its validity as a working assumption. Note that
from (a) above, this approximation is asymptotically
correct in the low-temperature regime. For other disor-
dered systems this must be true as well, provided that one
can start from a suitable TM description of the ground-
state correlations.

We have studied strips on a square lattice with periodic
boundary conditions. We first present results for the crit-
ical curve.

Along the critical line T, = T, (p), the correlation
length g diverges in the infinite system limit. In phenom-
enological scaling between strip widths L and L, this is
where gl /L =(I ./L '. ' With one variable, this condition
would give a fixed point. Here, where two variables T, p
occur, we fix p and find the associated critical tempera-
ture T, (p) for each L/L'. The results for L/L'=3/2,
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FIG. 1. Approximate phase diagrams from phenomenologi-
cal renormalization between strips of width L and L —1: dots,
L =3; short dashes, L =4; long dashes, L = 5. Solid line: inter-
polated curve (see text).

4/3, 5/4 are shown in Fig. 1 (with T given in units of the
exchange constant), and are qualitatively similar to those
provided by simple analytic scaling approaches and by
recent Monte Carlo simulations. '

At the pure Ising critical temperature T, (1) and the
percolation critical concentration p, (where T, goes to
zero) our results are T, (1)=2.367 640 4, 2.320 811 7,
2.293 8239; p, =0.5821419, 0.5909567, 0.5886960, re-
spectively, for L/L'=3/2, 4/3, 5/4. These are to be
compared with the exact T, (1)=2.269 185 3. . .
(known from duality) and the best estimate'

p, =0.592745+0.000002. The above results coincide
with those obtained by Nightingale' and Derrida and De
Seze" respectively in their separate treatments of these
two special limits by strip scaling. This coincidence is
guaranteed within our generalized procedure for the ran-
dom system.

Another quantity for which exact analytic results are
known' for comparison is the reduced slope
[I/T, (1)][dT,(p)/dp]~ &

of the critical curve at the
pure limit. This is not provided in the pure Ising or per-
colation special cases, so it is a more severe test of our ap-
proach. Results from L/(L —1) scalings up to L =7 are
given in Table 1, together with an extrapolated value
whose error, about 1%, is a measure of the divergence of
different extrapolations. The exact result' is safely
within the error bars.

Near the percolation threshold, the crossover exponent
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TABLE I. Reduced slope of critical curve at the pure system
limit (p =1).

L /L'

3/2
4/3
5/4
6/5
7/6

dT, (p)

dp =1

1.4461
1.4765
1.5032
1.5165
1.5223

Extrapolated
Exact'

1.57+0.015
1.565

'Reference 15.

—2/T, (p)
gives the power-law dependence of e ' on

(p —p, ). As P is known exactly to be 1,' this can provide
another test of our results.

Figure 2 gives a plot of ln(p —p, ) vs 1/T, for p near p,
for L /L'= 5/4. The data fall very close to a straight line
of slope —2 as shown, and the limiting slope gives
2//=1. 99+0.01, in very good agreement with the exact
result.

As can be seen from Fig. 2, the range of T, for which

e ' =C(p —p, ) goes up to T, somewhat greater
than 0.5, and Fig. 1 shows that this exponential regime is
joined by a relatively narrow crossover region to one
where T, (p) is linear in (p —p, ) with essentially the p =1
limiting slope. An interpolation employing the exact

values of T,(1),p„and the limiting slope, and an extra-
polate from successive L/(L —1) scalings for the con-
stant C (C-4), provides a very accurate "interpolated"
critical curve, shown as the solid line in Fig. 1. This will
be useful below.

We now turn to the exponent g. Accurate values of g
can be obtained from the correlation length calculated at
the critical point, on a strip of width L, via'

gL =L/[mgL (T, )]. Figure 3 gives the corresponding re-
sults for g for strips with L =2, 3,4, 5 using the "interpo-
lated" critical curve. The black square at p =p, is the ex-
act percolation value g=5/24, ' and that at p =1 is the
exact pure value g = 1/4. It is apparent that the values of
g at p =p„p=1 approach the exact ones as L increases.
The numerical results are g(p =p, )=0.21635, 0.21306,
0.212 56, 0.211 47 and r)(p = 1)=0.277 30, 0.264 51,
0.25784, 0.25471 for L =2,3,4, 5, respectively. Again,
these two special cases have been treated previously, "'
and our results for these limits coincide with those al-
ready obtained.

The results for g at intermediate p are new. In Fig. 3
they converge with increasing L to a value not much
different from the pure value g=1/4 for all p, except
p -p„where the percolation value is approached.

This conclusion is to be compared with current field
theory results for random Ising models in two dimen-

sions. The theories (with some exceptions, e.g., Ref.
7) agree in predicting that the specific heat singularity is
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FIG. 2. Exponential behavior at low temperatures; data from
5/4 scaling. The solid line has slope —2 and is a guide to the
eye.

FIG. 3. Correlation exponent g from correlation-length am-
plitudes, along interpolated critical curve, for strip widths
L =2, 3,4, 5 (top to bottom). Black squares at (0.59275, 5/24)
and (1, 1/4).
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of lnln(T —T, ) type rather than the ln(T —T, ) of the
pure case. But one group of theories ' predicts that the
asymptotic pair correlation is as in the pure case

((ooo„)-r ", g= 1/4), while the other concludes that

the correlation has the form (crow, ) -e "''""' . Our re-

sults clearly support the first class of predictions.
Recent very large Monte Carlo simulations on the

random-bond Ising model at a particular (self-dual) con-
centration also provide indirect evidence in favor of the
first class of results. A direct evaluation of g, again
pointing to the pure result, has also been obtained ' ' for
the same random bond Ising model by strip scaling on
long realizations of the random system.

We conclude that the new transfer matrix scaling
method gives a reliable and accurate treatment of the
site-diluted Ising model. The results for g at intermedi-
ate concentrations give clear evidence in favor of one of
the competing classes of field-theoretic treatments.
We are at present generalizing the method for treating
the random-field Ising ferromagnet and the random-bond
Ising model.
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