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Topological phase transition in a two-dimensional nematic n-vector model: A numerical study
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A Monte Carlo study, based on a cluster algorithm, is made of the two-dimensional RP" ' model. In-

troducing various types of order parameters, we find strong evidence for a topological phase transition,
driven by a condensation of defects. For n =3, the model describes a nematic liquid crystal. In this

case, the transition is associated to a divergence of the correlation length and of the susceptibility, and a

cusp in the specific heat. The results for n =40 are compared with the analytical ones for n = 00. The
critical temperatuI'e is correctly reproduced, but the detailed nature of the transition is not. Crossover

phenomena are detected, which reflect the noncommutativity of the n = ao and the thermodynamic limit

for some observables.

I. INTRODUCTION

Two-dimensional models of physical systems continue
to attract attention, both in statistical mechanics and in
field theory, particularly those that produce a phase tran-
sition and related critical phenomena. The existence of a
phase transition in these systems often appears to be cru-
cially related to the commutative (Abelian) nature of the
symmetry group. The Ising and X-Y models provide
standard examples. Both transitions, however, can also
be seen as driven by a condensation of defects: the
Peierls droplets in the Ising case and the vortices in the
XY model, as was shown by Berezinski' and Kosterlitz-
Thouless. In contrast, when the symmetry group is
non-Abelian, as in the O(3) Heisenberg model and its gen-

eralizations, there exists much evidence, both theoretical
and numerical, against any type of transition. However,
to disentangle the effects of the symmetry group and the
homotopy group that classify topological stable defects in

order to determine whether a phase transition does exist
appears to be a difficult task. This became especially
clear when recently Lau and Dasgupta showed, in a nu-

merical study of the three-dimensional O(3) Heisenberg
model, that in the absence of points defects the transition
disappeared. The system remains in its low-temperature
phase, and spin-wave interactions cannot disorder it over
a large length scale. This result, as emphasized by these
authors, calls into question a description of the model by
its continuum limit: the nonlinear o model, basic to all
studies of the two-dimensional case. It is therefore irn-

portant to determine whether the existence of stable de-
fects in a two-dimensional system with a continuous non-
commutative symmetry group can induce a phase transi-
tion without long-range order.

With this purpose in mind we have undertaken a nu-

merical and analytica1 study of a nematic n-vector mode1,
which is called the RP" ' model, for reasons to be given
later. In this lattice model, to each lattice site is attached

a direction in n-dimensional space. There is an interac-
tion between nearest neighbors, which tends to make the
corresponding directions parallel. In the n =3 case, we
can think of these directions as representing very elongat-
ed molecules in the usual three-dimensional space. The
model should therefore describe qualitatively the nematic
liquid-crystal phase transition; it has been introduced for
this purpose by Lebwohl and Lasher. In the liquid-
crystal context, the defects are called disclination lines.
The Hamiltonian of the model can be written as

0=—g {0(x),cr(x, +p))',

where the variables o (x) are n-component unit vectors at
sites x of a square lattice and p denotes the two directions
of the lattice, (cr(x), cr(y)) denotes the scalar product of
the vector cr(x) with the vector o.(y). The n =2, case of
the model is equivalent to the XYmodel as can be seen by
using the trigonometric identity cos 8=—,

' [1+cos(28)].
Values of n ~4 are of theoretical interest, especially

since the limiting case n = ao is solvable. The model is

particularly interesting for the following reasons. It
possesses, like the usual n-vector model, the symmetry
group O(n), which is noncommutative for n ~ 3. It en-

joys local gauge invariance, with group Z2. But this sim-

ply rejects the fact that, with a Hamiltonian written in

form (1.1), we have described a direction by a unit vector
cr(x) and that the vector —o (x) describes the same direc-
tion. At each lattice site, we have therefore attached the
manifold of directions in n-dimensional space. This man-

ifold is known as the real projective space in n dimensions

by mathematicians, in short RP" '. This manifold is
equivalent to the unit (n —1)-sphere S" with opposite
points identified. Cxlobal1y these manifolds differ, but lo-

cally they are the same. If we attached a unit (n —1)-
sphere to each lattice point, we would have constructed
the familiar n-component model. In physical terms, the
local identity of their manifolds means that the spin-wave
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excitations of the RP" ' and S" ' models are the same.
This is seen most clearly by taking the continuum limit of
both models. The Hamiltonian becomes

a 2
H= —g f d x (d„o, B„o)(x), (1.2)

p=1

where a =1 for S" ' model and a =2 for the RP"
model.

The Hamiltonian is that of the usual nonlinear cr mod-
el and describes spin-wave interactions in both the S"
and RP" ' models at long wavelengths. A
renormalization-group treatment of the nonlinear cr mod-
el predicts no phase transition in two dimensions and a
continuous one in three dimensions for n ~3. Monte
Carlo studies of the RP" ' model, however, have con-
sistently observed a first-order phase transition in three
dimensions. ' ' This indicates either a breakdown of the
2+@expansion in this case, when @=1,or the possibility
of a genuine phase transition in two dimensions. What
could the origin be of such a phase transition and what is
the possible problem with the continuum limit described
by the nonlinear cr model Hamiltonian (1.2)? The prob-
lem is the existence of defects, present in the RP" ' mod-
el and absent in the usual n-component model, when
n 3. Physically, they are disclination lines. Mathemati-
cally, their existence is related to the fact that the sphere
with opposite points identified is topologically different
from the usual sphere. One is tempted therefore to con-
clude that these defects and their interaction are the driv-
ing mechanism of the transition in the three-dimensional
case, and might lead to a genuine phase transition in two
dimensions. Solomon" already suggested the existence of
a defect-mediated phase transition in two dimensions and
found some evidence for it. Subsequent studies of the
RP model' or related ones"' concluded in favor of
some kind of phase transition in two dimensions, whereas
some others did not. '

The existence of a first-order phase transition with la-
tent heat, in the limiting case n = Do, even in two dimen-
sion, prompted us to reconsider the problem. On the
other hand the recent availability of cluster algorithms,
which have successfully overcome the critical slowing
down in the usual n-vector model, suggested that the situ-
ation could also be clarified from the numerical point of
view. Using the Monte Carlo algorithm due to Wolff'
and the recently available method of Ferrenberg and
Swendsen, ' we have found strong evidence for a topolog-
ical phase transition, driven by defects in these models.
In the liquid-crystal with n =3, this transition is associat-
ed with a divergence of the correlation length and a cusp
in the specific heat. Much of the evidence for a phase
transition also comes from the study of two additional or-
der parameters, one of which appears to have a discon-
tinuity at the transition point.

We also studied the model for large values of n
(n =40), in order to compare with analytic theoretical re-
sults known for n = ao case. The results are discomfort-
ing. Whereas the critical temperature is close to the
n = ~ theoretical value, the internal energy shows a
crossover behavior. It seems to have an abrupt discon-
tinuity for small sample sizes in agreement with the

II. THE RP" ' MODEL: BASIC OBSERVABLES
AND ORDER PARAMETERS

There are two possible descriptions of the model, an in-
trinsic and an extrinsic one, both quite useful. An intrin-
sic description of a direction at the lattice site x is provid-
ed by a one-dimensional projector, i.e., an n Xn sym-
metric matrix P(x), such that P (x)=P(x) and
trP (x)= l. In these variables the Hamiltonian of our sys-
tem is given by

H [P]=—,
' g tr[(B„P) (x)], (2.1)

where

(B„P)(x)=P (x +p) P(x)— (2.2)

and p denotes one of the d unit vectors of the d-
dimensional cubic lattice with unit lattice spacing. The
volume will be a cube of size L, and we will use periodic
boundary conditions. N=L will denote the total num-
ber of sites.

We can, however, use an extrinsic description of the
direction by attaching to it a unit vector o (x), i.e.,

o (x)=1
and taking for the projector P (x):

(2.3)

n = 00 theoretical result, but this discontinuity becomes
less abrupt with increasing system. It appears therefore
that the limit n = ~ and the thermodynamic limit do not
commute in the two-dimensional case. Motivated by
these results, we have reconsidered the n = 00 limit from
a more rigorous point of view than before. We have
proven that the thermodynamic limit and the n = ao limit
commute for the free energy and confirmed the previous
result for this quantity. This can partially explain the nu-
merical observations.

Finally, we would like to mention that the RP" ' mod-
el is the simplest member of a large class of the nonlinear
0. models, the so-called Grassmanian models. At each
space point we would attach the manifold of k planes in
n-dimensional space O(n+k)/[O(n) XO(k)]. Such
models have been mostly analyzed in the continuum lim-
it where they can be studied in 2+a dimensions. The
noncompact Grassmanian model O(n, n)/[O(n) XO(n)]
describes the localization transition, in the limit n =0, as
shown by Wegner. ' Lattice versions of these models can
be constructed. ' They all undergo a first-order phase
transition at the mean-field level. ' We have shown that,
in the n = 00 limit, keeping k fixed, they undergo a first-
order transition in any dimension larger than two, be-
cause in this limit they are basically k copies of the
RP" ' model.

Some of these models also possess a fundamental
homotopy group Z2, and therefore defects of the same
kind as those of the RP" ' models. It would be quite in-
teresting, in our opinion, to analyze the role of these de-
fects, which are consistently neglected in the treatment of
these models in their continuum limit. A brief summary
of these results has been presented in a separate publica-
tion. '
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P(x): P &(x)=cr (x)o&(x), a,PE [1,2, . . . , n ] .

In this notation, the Hamiltonian becomes

H[cr]= —g (cr(x), o(x+p}}+dL

(2.4)

(2.5)

will, however, be concerned here with the two-
dimensional system, in which the usual order parameter
(m(x)) vanishes as a consequence of a Mermin-
Wagner-type theorem.

In order to define a correlation length g, we consider
the Fourier transform of the two-point correlation func-
tion

In this form, besides the global O(n) symmetry, the Ham-
iltonian is invariant under the local gauge group Z2, cor-
responding to cr(x)~+cr(x). The average value of an
observable will be given by

(~)= (2.6)
Jdv(o )e

where

G(k)=g '"' (( (0), ( )) ) ——1

n
(2.17)

[G(k)] '=y '[1+k g +O(k )] (2.18)

with

In the infinite system, when the correlation function

g (x) = ((o (0), o (x)) ) —1/n decays exponentially, we
will have

dv(o)=c f ff 5(o (x)—1}do(x),

and the constant c is chosen so that

dv(o )=1 .

(2 7)

(2 8)
and

gx g(x)
X

2 gg(x)
(2.19)

The thermodynamic quantities of interest to us are the
following: the energy per link, y=G(0)=gg(x) . (2.20)

', &H[P]),

the specific heat,

C„= (H[P]),

(2.9)

(2.10) [G (k)1 ' =X '[ I+k Y] (2.21)

In the numerical study, we proceed as follows. We corn-
pute y from (2.11) and then define the correlation length
by the equation

the scalar susceptibility,

~ tr Q P(x't —
(Q P( \x1

X

and, since

&P(x)) =—,1

(2.11)

(2.12)

we also have

g (o {0),cr(x))'—
n

(2.13)

n cr, (x)—1
m(x)=

n —1
(2.14}

if the ordering field has been put in the direction 1. The
corresponding susceptibility g, given by

„g(m(x)m(y))1

L d
(2.15)

is related to the scalar susceptibility by

n —1
X X]

2n+1 ——
n

(2.16)

as can be seen, by using the rotational invariance. We

If one is interested in the usual long-range order, one can
introduce an order parameter defined locally as

by choosing E=( 02m /L)and by computing G(k) from
Eq. (2.17). This correlation length gL can be proved to
tend to g given by (2.19), when L tends to infinity, if g (x)
decays fast enough.

One of the most interesting features of the RP"
model is the existence of topologically stable defects even
in two dimensions because m&(RP" ')=Z2 when n & 3.
These defects are well known in liquid-crystal theory as
disclination lines, in the three-dimensional case. In two
dimensions they are point defects. These defects are usu-

ally defined in the continuum limit, where the director
field P(x) varies smoothly except at the defects. On the
lattice, however, the typical configurations on a small
length scale appear to be rather wild. We need therefore
to interpolate the lattice configurations. We proceed as
follows: to the bond (x,y) we associate the shortest geo-
desic connecting the vectors o (x) and o (y) on the unit
(n —1) sphere. In this way we can obtain a map from a
closed loop L on the lattice to a loop on the manifold
RP" '. The homotopy class of this map is given by

w(X)= g sgn{cr(x), cr(y)}=sgntr g P(x), (2.22)
(xy) EX xE+

the product of projectors being an ordered one. If
W(X ) = + 1 [ W{X}= —1], then the loop encloses an
even (odd) number of defects. This definition works for
all configurations except for a set of measure zero, corre-
sponding to vanishing values of (o(x), o(y)). Moreover,
it preserves the multiplicative structure of the Zz group,
i.e., W(X X')= W(X)W(X'}, a homomorphism, and
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agrees with the usual notion in the continuum limit. We
can then define the density of defects by

D =
—,
' [1—( 8'(BP ) )], (2.23)

XD=, Dx ' — Dx (2.24)

where BP is the boundary of a plaquette P of the lattice.
It vanishes in the ground state and should show an ex-
ponential behavior exp( PEo—) at low temperatures, Eo
being an activation energy for a pair of defects. Finally,
we expect it to increase with temperature.

We can also measure the fluctuation of the number of
defects. It is defined by

H(g) =g tr[P(x)g„P (x +p)g„' ]
x,y

= —g (cr(x), g„o (x +p) ) (2.26)

L. At low temperatures, if we have a "phase" in which
defects are absent or paired, this quantity should be
nonzero even in the thermodynamic limit.

Finally, it appears useful to introduce an order parame-
ter which measures the rigidity of the system with respect
to rotations. In the case of the XFmodel, this is the heli-

city modulus' ' which is proportional to the superAuid
density. When the symmetry group is non-Abelian, or in
the RP" ' model, we propose to define it as follows: Let

where D (x)=—,'[1—W(BP(x))] takes the value 1 if there
is a defect at the center of the plaquette P (x ) and 0 other-
wise. We call this quantity the susceptibility of defects.

We can take advantage of the periodic boundary condi-
tions to define a topological order parameter measuring
the pairing of the defects. Indeed, the lattice can be
thought of as a lattice on a torus. If we move vertically,
for example, from one boundary of the square to the oth-
er, we describe a loop X on the torus and to this loop cor-
responds the element of the homotopy group W(X). We
therefore define as our topological order parameter the
quantity

F(8}—F(0)= ln (2.27)

where

Z(g) = fdv(o )e (2.28)

be a modified Hamiltonian where g„ is a rotation of angle

8„/L in the (1,2) plane in the spin space, for example.
Choosing 8„=5„&8,we can compute the free-energy in-

crement due to this rotation

p=( W(X)) . (2.25)
is the partition function for a system described by the
Hamiltonian H (g). For small angles 8, we get

Note that this loop is not homotopically equivalent to the
one used in the definition of the defects density D. At
high temperatures it vanishes exponentially in the length

I

F(8)—F(0)=8 X+O(8 ),
where

(2.29)

X= L~g ([(o—(x), o(x+p, ))(o(x),J o(x+p, })+(cr(x),Jo(x+p, }}])

2BL
( x(~(x),—cr(x+y. , )j(cr(x), Jrr(x+y. , )) '),

X

(2.30)

where J is the generator of the rotation in the (1,2) plane.
The quantity X is our desired order parameter that we

will call the rotational-rigidity modulus. This quantity
vanishes in the thermodynamic limit when the correla-
tion functions decay exponentially, i.e., at high tempera-
tures. In the ordered phase, which appears in three di-
mensions, it is nonzero. We have computed it in the limit
n = ao, and one finds that, indeed,

X=O if T& T, ,

(2.31)

In contrast, in the two-dimensional case one finds that
X vanishes identically when n = ao, despite the existence
of a first-order thermodynamic phase transition. We in-
terpret this as the result of the exponential decay of
correlation functions, which occur in this case. We con-
clude, therefore, that this order parameter can be expect-
ed to be nonzero, even in the absence of long-range order,
if the correlation functions show a suSciently slow
power-law decay, like the helicity modulus in the two-
dimensional XFmodel.

X=—1+v'1 —1 jdP-=2 A
n 2

if T&T, , III. NUMERICAL TECHNICALITIES

where

d8„A=
o „, 2n. d —g cos8„

(2.32)

when the space dimensionality d 3. This quantity
makes a jump at T, .

We began simulations with the usual local update in
the manner of the Metropolis algorithm, sweeping in
temperature. The results were very poor because of the
huge autocorrelation time of this algorithm. So, two key
ingredients for the success of the simulations are the re-
cently available method of Ferrenberg and Swendsen'
and a nonlocal update for cr due to Wolff. The
Ferrenberg-Swendsen method allows us to do Monte Car-
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lo (MC) simulations for a set of temperatures and then to
combine the different histograms in order to minimize the
error on our know1edge of the density of state. Then, we
can compute the average of various quantities in function
of P. Moreover, we can add simulations as we wish in or-
der to reduce the errors, and this method does not de-
pend on the update algorithm. The second essential in-
gredient is a cluster update. Recently, WolfF ' designed
such an algorithm for the O(n) nonlinear o model, and
he checked that it is ergodic and satisfies the detailed-
balance condition. It is easy to modify the activating
probability so as to satisfy the detai. led-balance condition
for the RP" ' model. Briefly, the update in the RP"
case runs as follows.

(1) Take a random unit vector rCIR", and define
o (x)'=0 (x)—2(rr(x), r )r.

(2) Activate bonds (x,y) of the lattice with a probabili-
ty

p (x,y) =1—exp(minIO, 4P(cr,', r)(o, r)

X[(cr„',rr ) (o', r)(o—, r)]jI )

(3.1)

and construct the different clusters of activated bonds
(3) Choose at random one or many clusters, and fiip the

corresponding spins according to cr(x }~cr'(x).
As described above, one update will take a time of or-

der L". But according to Wolff, we can modify the algo-
rithm slightly by constructing only one Ripped cluster at-
tached to a random starting point xo, which now will
take a time of order of the Hipped cluster size. In order
to attain effectively the optimal bound, we should keep
two representations of the cluster, one as a list of points
with their associated coordinates, and one as a table of
occupied sites. The list of points is divided into the point
already in the cluster, and the points at the border where
the cluster is still growing. When the last list is empty,
the construction of one cluster is finished. However, in
the low-temperature phase, the correlation length as well
as the cluster size is of order of the sample size. This is
very inefficient because, after a large amount of work, the
new configuration will differ from the old one, essentially

by a global rotation. In order to overcome this difficulty,
the trick is to first choose the starting point of the cluster

xo and then to bias the choice of the random vector r in

such a way that o.'(xo) is close to cr(xo). The validity of
this algorithm has been proven in Ref. 19. The program
itself adjusts the bias in such a way that the average size
of the cluster does not grow larger than a given fraction
of the volume. The ratio —,

' gives a low autocorrelation
time. The autocorrelation time for the energy is estimat-
ed by the Madras-Sokal' automatic windowing pro-
cedure. This algorithm, in contrast to the local one, ap-
parently shows no critical slowing down, and the compu-
tational time is improved by orders of magnitude. The
program is designed for exploration work and computes
many different observables, but it is not optimized for a
high-precision study. %'e do not compute error bars on
the simulation points, which make little sense anyway
when used with the Ferrenberg-Swendsen method {be-

cause a point with a poor statistics may be compensated
by neighbor points}. By observing the effect of adding
histograms into the data set, the errors are estimated to
be very small, at least for first derivatives like h or D.
They can be estimated by dividing the number of events
in the histograms by the autocorrelation time for the en-
ergy to give the number of independent measures. The
errors are then 1/&X and for all results presented here
are of order of a few percent or better. The case of
second derivative like C, or g is more demanding. Final-
ly, the numerical difhculties should not be underestimat-
ed and the computation of the raw data takes several
hundred hours of equivalent CRAY time.

IV. THE LIQUID CRYSTAL (n =3)

0.2—

0 0
0.3 0.4

T

/L

0.5

FIG. 1. The internal energy per link h, the density of defects
D, the topological order parameter p, the rotational rigidity
modulus X, and the correlation length (/L vs temperature T for
the RP model at size I, =64.

The n =3 case is interesting because it is a model for a
film of a liquid crystal and also for numerical reasons. It
is the smallest nontrivial model of the family (n =2 is
equivalent to the XY model) and, later on, we will see that
the autocorrelation time goes roughly as n This. makes
the n =3 case the easiest to simulate, and we have stud-
ied it extensively from 1. =8 to 256. The main con-
clusion is that this model has a phase transition such
that, below a temperature T, =0.358, both the rotational
rigidity modulus and the topological order parameter do
not vanish. Coming from the high-temperature side, the
correlation length g and the susceptibility y diverge.
Below T„ it seems that both y and g are infinite. The
helicity modulus jumps at T, .

In Fig. 1, we plot the different observables h, p, D, X,
and g/L vs temperature around T, for the L =64 size.
The most remarkable feature is the complete absence of
structure of the internal energy per link h, and when
looking only at this quantity we may perfectly miss the
phase transition. ' We clearly have to focus on more sub-
tle observables like p, X, or g in order to see a clear indi-
cation of the two different phases. Figures 2 and 3 are
two typical configurations for T (T, and T) T, . At low
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a defect.

FIG. 4. The configuration of the energy for the same spin
configurations as in Fig. 2 (see text).
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FIG. 3. As for Fig. 2, but with T=0.400.

temperatures, defects appear in pair at distance 1, but for
T & T, we observe some pairs at a larger distance or iso-

lated defects (if pairing still tnakes sense at all). In Fig. 4,
we represent the configuration of the energy per link for
the same configuration as Fig. 2, namely, we draw the

dual lattice with the surface of each link proportional to
the energy of the corresponding direct space link. Links

with an energy smaller than 0.2 are not represented. This

is, roughly speaking, the equivalent of the Peierls contour
for a model with continuous symmetry. In this figure we
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FIG. 5. The specific heat C, vs temperature T for sizes L =8,
16, 32, and 64 for the RP model. The dashed line is at the es-
timated critical temperature T, =0.358, as in Figs. 7—9.

see very clearly the importance of defects since they carry
most of the energy. Also, the interaction between them is
to be seen through the heavy lines joining them. Finally,
the region without defects may be seen as corresponding
to our intuitive idea of a spin-wave phase.

We leave the L =64 case in order to concentrate on
scaling with the size for the various quantities. The
specific heat C, is shown in Fig. 5 for L =8 to 64. There
is a well-defined rnaximurn which seems to develop into a
cusp when L increases, but there is clearly no divergence.
This is in agreement with the previous numerical study of
Chiccoli, Pasini, and Zannoni made with the usual
Metropolis algorithm. The small oscillations for L =64
come from the insuScient statistics in the histogram and
the Ferrenberg-Swendsen method does not work properly
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g( T, L)/L =f(L /g„),
y(T, L)/L =g(L/g„),

(4.1)

for a second-derivative quantity such as C, .
In Fig. 6, we plot the correlation length, as well as the

data for the O(3) Heisenberg model taken from Wolff.
The difference is obvious, although these two models
have the same naive continuum limit. We also give in
Table I some of the computed data.

In order to study the approach of the transition in the
high-temperature phase, we use the finite-size-scaling
(FSS) hypothesis ' in the form

16
32
64
64

128
128
128
256
256
256

2.30
2.40
2.50
2.56
2.60
2.64
2.67
2.69
2.71
2.72

4.4
6.1

9.4
13.4
18
26
34
44
57
67

TABLE I. Computed data for the RP model.

22
38
81

150
240
450
740

1100
1800
2300

where g„denotes the infinite volume correlation length.
We proceed in a similar way for the other observables
with the corresponding critical exponents. In the param-
eter fitting, we also impose that when the correlation
length is suf5ciently small compared to the size of the
system, the observables must tend to the infinite volume
limit; that is,

g(T,L)~g„ for g/L (—,',
y(T, L)~y„ for g/L & —,

' .
(4.2)

g„=c(T—T, )

and the Kosterlitz-Thouless form

(4.3)

g„=cexp (4.4)

It is dificult to decide between these two forms. As a re-
sult, the power law fits well, but the KT form is even

better. We find the values for the power law

T, =0.356+0.002,

U =1.45+0. 10,
y/v=1. 70+0.05 y=2. 45+0. 1

(4.5)

For the infinite volume correlation length, we try the sim-

ple power law

and for the KT singularity

T, =0.342+0.002,

a =1.57+0.05,
y/v=1. 72+0.05 .

(4 6)

Without any analytical hint, we would favor this second
form. For example, the FSS plot for the correlation
length for a KT singularity is given in Fig. 7 in a scale
suited to test condition 2. Without rescaling, on the raw
plot g vs T, the power law and KT fit are barely distin-
guishable from the measurements.

For the power-law singularity, these values are con-
sistent with the theoretical computation of Solomon:"
by using a Fade approximation of the high-temperature
series for the continuous-time formulation of the RP
model, the estimation T, =0.48 and v=1. 18 is obtained.
Using the scaling relation y =v(2 —rI) and a=2(1 —v),
we deduce g =0.3 and a = —0.65. This negative value of
e is compatible with the cusp observed in the specific
heat.

It is interesting to compare these results with those of
the Heisenberg model. The renormalization-group treat-
ment in d =2+@of both models is identical because it is
sensitive only to local properties of the manifold. The
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FIG. 6. The correlation length ( vs temperature T, for the

RP model (solid curves) and the O(3) =S Heisenberg model

(dots) taken from Ref. 4.

FIG. 7. The rescaled correlation length (/L vs L/g„, for a

KT singularity at sizes L =8, 16, 32, 128, and 256. The parame-

ters are T, =0.342, a =1.57, c=0.22.
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and g/L )0.6 in the low-temperature phase, g/L —+0 for
T & T, . Moreover, this form of FSS is independent of the
form of g„. In Fig 10, w.e give X for L =8 to 128, and,
in the inset, the FSS plot with exponent 0. We deduced

/=0, X(T) T, )=0, X(T(T,))0.2 . (4.8)

This shows clearly that X is an order parameter for the
phase transition, with a jurnp at T, . An attempt to fit the
data with X proportional to 1/lnL at T, was not success-
ful.

Turning to topological quantities, we plot the density

-11
1.0x10

0.8

0.6

0.4

0.2

0.0
0.36 0.37 0.38 0.39

T
0.4 0.41 0.42

FICr. 8. The rescaled correlation length g. 2mgexp( —2mP)
vs temperature T for the RP model.

correlation length at two-loop order is predicted to be

/=go(2~P) 'exp(2mP) (for a given size there is a cross-

over to a fictition low-temperature phase and, because g
grows very fast, one should be careful not to interpret
this as a phase transition). Our attempts in that direction
for the RP model are clearly unsuccessful, as shown in

Fig. 8 where we draw the measured correlation length di-

vided by the above law, with P replaced by P/2, in order
to recover the continuous limit. A Kosterlitz-Thouless

type of divergence g =g oexp[a ( T —T, )
'~

] does not

work either. For the Heisenberg model, Wolff fits more
or less successfully the previous law. The discomforting
fact is that, even with correlation lengths up to 0(100),
there is no clear asymptotic scaling. But it is not possible
to obtain a sensible fit of the Wolff data with a powerlike
divergence such as (4.2).

In the low-temperature phase, scaling suggests
y=L ". In Fig. 9, the plot of in(y)/ln(L) vs T gives
directly 2—ri with approximately ri(T, )=0.4. This is

consistent with the values obtained from the high-
temperature side and with the result of Ciccoli, Pasini,
and Zannoni from the power-law decay of the two-point
function.

Next, we want to discuss the rotational rigidity
modulus X and a different form of the finite-size scaling.
In two dimensions and in the low-temperature phase, the
correlation length will be of order L. Thus, the useful
form of FSS is

(4.7)
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FIG. 9. The rescaled susceptibility lny/lnL vs temperature T
for sizes L =8, 16, 32, 64, and 128.

of defects D and the topological order parameter p in
Fig. 11. The density of defects shows an increase above
the transition point, but there seems to be no singularity.
In contrast, the results for the topological order parame-
ter p suggest strongly that the transition is associated to
an unpairing of defects. FSS for Bp/BT suggests a transi-
tion with exponent = —0.2. This implies for T & T, that
p=(T, —T) and 8=0.75. However, this value is not
conclusive because, for this observable, our statistics are
not sufficient.

In the low-temperature phase, we expect an activated
behavior for the density of defects D=exp( Eo/T). —
Figure 12 gives ln(D) vs P, and confirms this law with

Ep =0.36. We interpret this value as the energy needed
to create a pair of defects at distance r =1. Close to the
transition, the departure from the above law reflects the
creation of pairs at distance r & 1. The derivative of the
density of defects with respect to the temperature is given
in Fig. 13. The similarity with the specific heat is striking
and confirms the idea that defects play a dominant role in
the transition and carry most of the energy. This sug-
gests the existence of a singularity in BD/BT with the
same critical exponent as for C„. The behavior of the
density of defects is somewhat similar to that found by
Lau and Dasgupta in the three-dimensional Heisenberg
model. The susceptibility per unit volume for the defects
y~ is reported in Fig. 14. We see clearly how the density
of defects plays the role of a disorder parameter since it
shows almost no fluctuation at low temperatures, whereas
it does very much at high temperatures.

Finally, we may note that the autocorrelation time of
the energy, with this algorithm, has a slight maximum
around the maximum of the specific heat, and grows
slowly with the volume, but displays no divergence at the
transition. As an order of magnitude, for size L =128,
the maximum autocorrelation time is w= 14 in an
equivalent sweep unit. To be precise, we take as a unit
Monte Carlo time when, in average, L spins are updat-
ed. The comparison with a traditional Metropolis algo-
rithm will depend on the acceptance rate of this later al-
gorithm.
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FIG. 10. The rotational rigidity modulus X vs temperature T for sizes L =8, 16, 32, 64, and 128 for the RP' model. The solid lines

denote the low-temperature region g) L/2 and the high-temperature region ( & L/4, the dashed lines denote the crossover region

L /4 & g & L /2. A FSS with exponent 0 for X is plotted in the inset.

V. THE LARGE-n CASE ( n =40)

The n =40 case is interesting as a check for the theory
near n = 00. Unfortunately, as already discussed in the
previous section, the difficulty grows as n, and we are able
to study this problem only from L =4 to 32. There are
also a few simulations for L =64, but the statistics are
clearly insufficient for the Ferrenberg-Swendsen method
to work.

The results for the internal energy per link h are given

in Fig. 15. For small size (L =4, 8), h behaves as if it
would tend to a first-order transition, and it exhibits the
usual signatures, i.e., a hysteresis effect with the tradi-
tional sweeping algorithm, and a double bump for the
distribution of h at the transition. However, after a
crossover (L =16), the internal energy tends to a con-
tinuous behavior for larger sizes (L =32,64). Also the
distribution of h displays only one peak. Nevertheless,
the critical temperature T, =0.047, as defined by the
maximum of C„ is not very far from the extrapolated
value T, =0.05 from the n = ~ limit. This crossover be-
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FIG. 11. The density of topological defects D (dashed lines)

and the topological order parameter (1—p)/2 (solid lines) vs

temperature T for sizes L =8, 16, 32, 64, and 128. Solid and
dashed lines are as in Fig. 8.

FIG. 12. The density of topological defects ln(D) vs 1/T for
sizes L =8, 16, 32, 64, and 128.
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FIG. 14. The susceptibility per unit volume for the defects
gD /L" vs T for size L =8, 16, 32, and 64 for the RP model.

tween large n and large L is observed in all quantities dis-
cussed below.

The correlation length g and the susceptibility y are
given in Fig. 16. There is a clear high-temperature re-
gime where /=1 and y= 1. The critical temperatures
correspond to the end of this regime. Below T„ there is
first a linear increase with T of g and y, followed by a sat-
uration. Contrary to the n =3 case, this saturation is not
fixed by the lattice size (for example, at g=L/2), but
much below. Also, y grows slower than some power of
L, but rather like g . This seems to indicate that the
correlation length remains finite below T„even if our lat-
tice sizes are too small to give the precise value. This be-
havior has to be compared with the n = 00 limit, where
g= 1 for T)T„and g very large but finite for T( 'r, .

The rotational rigidity modulus X is given in Fig. 17.
This shows that, even in the low-temperature region, X
seems to vanish as the size of the system grows, in agree-
ment with the analysis for n = 00.

The topological quantities D and p are reported in Fig.
18. The behavior is similar to the case n =3, indicating

FIG. 15. The internal energy per link h vs temperature T for
sizes L =4, 8, 16, 32, and 64 for the RP model. For size 64,
the statistic is insufficient for the Ferrenberg-Swendsen method
to work and the dots correspond to simulations, as for Figs.
14-18.

that the transition is associated to the unbinding of de-
fects. The search for an activated law for D in the low-
temperature phase is given in Fig. 19, and we obtain the
value Eo=5. This value is different from the n =3 case,
rejecting the fact that spin waves and defects are coupled
in the RP" ' model. The susceptibility of defects per
unit volume, as given in Fig. 20, clearly marks the two
different phases. The number of defects fluctuates very
strongly as we approach the critical temperature, in con-
trast to the n =3 case.

Finally, the autocorrelation time ~ for the energy
shows a slow increase with the size of the system, and a
clear increase around the critical temperature, but seems
not to diverge. The order of magnitude for size L =64 is
between 250 and 2000 in an equivalent sweep unit.

In conclusion, for this large-n simulation, we clearly
observe two different regimes, similar to the n = Do

analysis, but the precise nature of the transition between
them remains elusive. It seems not to be of first order, as
defined by a jump of the internal energy, and not to be of
second order, as defined by a divergence of the correla-
tion length. How can we understand the fact that a
phase transition seems to occur for large n, at a critical
temperature T, given by the n = ~ limit, but that its na-
ture is not correctly described by that limit? We have
rigorously proved that, for the free energy, the thermo-
dynamic limit and the n = ao limit can be interchanged,
justifying an assumption made in Ref. 7. This implies
when n is very large that the internal energy of the
infinite system is given correctly by its n = 00 limit for all
temperatures except possibly near T, (n = 00). We may
suspect that, for finite n, in a neighborhood of T, of size
1/n, these two limits cannot be exchanged. The cross-
over effects observed numerically also indicate that, in
two dimensions, the two limits cannot be interchanged
for the correlation functions. In contrast, in three dimen-
sions they can, since a first-order transition already ap-
pears for n =3.
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FIG. 16. The susceptibility y and the correlation length g vs temperature T for the RP model.

VI. THE GENERAL n CASE

A scan for small size through the various models for
different n shows a continuous change with n. For large
n, the critical temperatures, taken as the maximum of C„,
scale as T, =n/2, in agreement with the n = 00 limit. On

the opposite side, we can extrapolate the curve T, (n)
down to n =0, with T, (0 }= l. However, we have no in-

terpretation for this model.
The comparison of the autocorrelation time ~ for vari-

ous n shows that ~=n. This can be understood as com-
ing from the fact that we need n draws of the random
vector r to really explore RP" ' and to generate an in-

dependent con6guration. This is why the simulation for
large n is much more difficult.

VII. CONCLUSIGNS

%e have presented various corroborating pieces of evi-

dence for a topological phase transition in the two-

2.0 0.5
I

'
I

'
I

'
I

'
I

'
I

dimensional RP" ' model. The numerical results
demonstrate that defects and their interactions are the
leading mechanism for this transition. It would be highly
desirable to construct an effective Hamiltonian which
mould describe the interaction of these defects. This is a
rather difficult task because this interaction should be of
the many-body type. Indeed, the law of addition of their
charge implies that, sufficiently far apart, two defects will

always look as no defect at all. This should be contrasted
with the interaction of vortices in the XY model, and
might explain the differences observed between the two
transitions, despite some common features, the most not-
able ones being a divergent correlation length and suscep-
tibility at low temperatures and a discontinuity in an or-
der parameter. However, it should be kept in mind that a
numerical result is certainly not a proof.

On the more analytical side, we can dispose of the
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FIG. 17. The rotational rigidity modulus X vs temperature T
for sizes I =4, 8, 16, 32, and 64 for the Rp' model.

FIG. 18. The density of topological defects D (dashed line}

and the topological order parameter (1—p)/2 (solid line) vs

temperature T for sizes L =4, 8, 16, 32, and 64.
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FIG. 19. The density of topological defects ln(D) vs 1/T for

sizes L =4, 8, 16, 32, and 64.
FIG. 20. The susceptibility per unit volume for the defects

yD/L" vs T for sizes L =4, 8, 16, 32, and 64 for the RP model.

large-n limit. Although we saw that this limit correctly
gives the critical temperature but does not reproduce the
observed nature of the transition. This unsuspected
phenomenon might be cause for concern in the study of
other models, for which a 1/n expansion is the only
theoretical tool at the investigator's disposal.

Finally, we think that these results can explain the puz-
zle posed by the 2+e expansion applied to RP" ', which
predicts incorrectly a continuous transition in three di-
mensions when a first-order one is observed. Indeed, we
have presented evidence of a phase transition at positive
temperature already in two dimensions.
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